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ISSUES IN TRANSMISSIVITY ESTIMATION 

G.N. Newsam 

Abstract 
The dependence of transmissivity estimates on head data is both nonlinear 
and ill-posed, and so is difficult to analyse and solve. The paper looks at the 
setting of this problem, in particular in what spaces are the actual data and in 
what spaces can uniqueness be proven. The paper also looks at the problem 
of finding a discretization that has at least some of the useful properties found 
in discretizations of linear ill-posed problems based the singular value 
decomposition. As definitive answers have not yet been found to the many 
of the questions raised, the paper is intended to serve more as a platform for 
further work than as a report on results achieved. 

1. Introduc.Hon 

Water resource management is shaping up as a major issue for Australian communitles. A 

succession of local crises (pollution of beaches and rivers, contaminated drinldng water and 

land loss due to salinity) has dragged it into the limelight, and, in particular, has brought home 

the need for efficient management of what are quite limited resources [1]. Effective 

management requires good quantitative models of reality to resolve the many "What if?" 

scenarios that arise when a limited resource is to be distributed among many users. As is so 

often the case, the importance of Lhe problem is reflected in the intrinsic interest and difficulty of 

the mathematical and numerical analysis needed to get reliable results from these models. 

The particular mathematical problems considered here arise out of analysis of a model widely 

used in groundwater management: that is the modelling steady state flow in a confined aquifer 

as an elliptic p.d.e. The model assumes that the observable variables of piezometric head qi.x) 

(i.e. water pressure in the aquifer) and recharge I discharge q(x) of water in to I out of the 

aquifer may be reasonably related by a p.d.e. of the fonn: 

V • (a(x) Vq>(x)) = q(x) (1) 

where a(x) > 0 is the transmissivity of the aquifer and Q is the region containing the aquifer. 

Effective management of groundwater requires repeated solution of this equation for rp under 

differing recharge regimes in order to explore the resulting changes in groundwater flows and 
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associated phenomena, such as the height of the water table and discharges at the margins of the 

aquifer. 

Before such exploration can be carried out, however, the transmissivity a must be determined. 

Transmissivity essentially reflects the porosity of the aquifer and the ease with which water can 

flow through it. However, as the model is only valid on scales greater than the width of the 

aquifer, transmissivity is really a bulk property of the aquifer and includes the effects of large 

scale features such as cracks or gravel lenses as well as small scale pores. Thus transmissivity 

cannot be simply inferred from examination of rock cores from drills; indeed the only way to 

get "point" measurements of transmissivity is by what are known as pump tests (see, e.g., [6] 

and the references therein), and these are relatively costly to make on a large scale. Therefore 

the preferred method for determining transmissivity is to take measurements of recharge and 

piezometric head in the aquifer's existing equilibrium, and to use these and (1) to infer a. 

This parameter identification problem is, however, an ill-posed inverse problem in that 

solutions for a can be arbitrarily sensitive to errors in measurements of ({), or to errors in the 

model. Therefore numerical solutions of (1) for a need to be preceded by a fairly rigourous 

mathematical analysis in order to ensure that they are reliable in some well-defmed sense. This 

note briefly discusses the key issues in such an analysis: existence, uniqueness and stability. 

As transmissivity estimation is a difficult and at times frustrating problem, many of the points 

raised concern still open problems. 

2 • Appropriate mathematical settings for the model 

Any rigourous analysis requires a well-defmed setting for the model. Given the discontinuous 

nature of some of the variables (e.g. recharge), perhaps the most natural interpretation of (1) for 

scenario modelling is that it holds in some weak sense. No boundary conditions were given in 

(1) as in practice they are not usually known with confidence, so for convenience we assume 

here Dirichlet boundary data with ({J(x) = 0 on aD. (This corresponds to maintaining a fixed 

pressure on the boundary, and would be true in practice if, for example, the boundary was a 

river). In this case (1) might be recast as: 

The theory of elliptic p.d.e.'s in weak form is very well developed; in it the most suitable 

spaces for the various functions would be: a E L -(D), ffJ E H~(D) and q E H(/(D). 
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If a is known a priori, this setting is also convenient for numerical analysis; it is easiest to set 

up approximation schemes and derive error analyses for them in fmite dimensional subspaces 

of Hilbert spaces. If, however, a is to be determined, then it would be more convenient that a 

also be in a Hilbert space, e.g. £2(!2) or HJ(D). 

In opposition to these considerations is the fact that the data on fP and q available for 

identification of a usually consist of water pressures measured in a number of bore holes 

scattered over the aquifer, together with flow rates of any pumps sunk into the aqnifer plus a 

(usually very rough) estimate of wide area recharge rates into the aquifer from above or below. 

Moreover any data on a is usually in the form of pump tests. Thus the data consists of the 

measurement sets: 

am f a(x) dx pump tests 
B.£x,.) 

(/)n = (/)(xn) bore measurements 

{qp O(X-Xp) pumps 
Qp = 

qn(x) background recharge 

where B.£x) is the ball of radius e around x. Thus translating error bars on the data set into 

error bounds on the functions suggests that the setting for the problem most consistent with the 

data is: a E Li(D), t/1 E C(.Q) and that q consist of two components q1 and q2 with q1 E C*(D) 

and q2 E Li(D). 

Finally, in transmissivity estimation (1) is viewed not as an elliptic p.d.e. for fP but as a first 

order p.d.e. for a. The standard theory for such an equation centres on the idea of 

characteristics along which the solution behaves like an o.d.e., and this theory essentially 

requires piecewise continuity of the variables in order for the characteristics to be well defmed. 

As we shall see, this appears to be the only setting in which uniqueness can be easily proven. 

3. Existence 

We shall not examine the particular question of under what conditions a solution exists for the 

transmissivity estimation problem, but shall rather make a general point about the existence 

question: in a sense it may usually be reduced to questions of uniqueness or stability. To see 

this, consider the general linear problem: 
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'X! = g where '1(: X~ Y (2) 

If a solution f to (2) does not exist then g must be in Y but not in the range 'l({X)r;;;;Y. If 

'l({X);~;y then there are two possibilities: that 'l({X) is a proper subspace of Y. or that 'l({X) 

is dense in y. The first case might well be termed strong non-existence since it implies that 

there is data g such that: 

inftExll'l<J-gll > e > 0 

It immediately follows from this that the kernel of the adjoint operator '1(* : Y* ~ X* is non

empty, and that the equation 'l(*u = v will have multiple solutions. Thus in transmissivity 

estimation we could settle the question of strong non-existence of a solution a to V. (a Vq;) = q 

by deciding whether the adjoint equation Vcfi. VqJ = 0 has a nontrivial solution 1/J. 

The second case can be termed weak non-existence since in this case there exists data g and a 

sequence fk such that II'J<lk -gil J, 0 but the sequence fk does not converge in the given norm 

for X This is essentially a statement that the problem is unstable; under the given norms for 

X and y, 'l( does not have a bounded inverse. If, however, X (9') was enlarged 

(diminished) by appropriate re-norming (i.e. the problem was recast in a different setting) then 

in the new norms '1( may have a bounded inverse, the problem would be stable and a solution 

would always exist. The relationship between the new norms and the old can then be used to 

characterize the degree of instability of the problem. 

4. Uniqueness 

Two general results on uniqueness of solutions to (1) for a have previously appeared. The 

first, due to Chicone and Gerlach [2], contains an elegant proof showing that if no characteristic 

crosses the aquifer then the solution must be unique. This condition applies in the particular 

problem considered here since the boundary essentially defines a closed contour for the head q;, 

and a characteristic cannot cross a closed contour twice. Their result requires, however, that qJ 

be twice differentiable and does not hold out much promise of being generalized to prove 

uniqueness of weak solutions of ( 1 ). 

The second, due to the author and Claude Dietrich [3], is based integration by parts, and so 

may still hold under weaker conditions than those of Chicone and Gerlach. To see if this is 

indeed possible, we look more closely at the result and its proof. 
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Theorem 1. If Vrp is continuously differentiable and vanishes only on a set of measure zero 

in D, then ( 1) coupled with the condition rp = 0 on ()Q has a unique solution among all 

continuously differentiable functions a. 

Proof: It suffices to show that V. (a Vrp) = 0 implies a= 0, and this we shall prove by 

contradiction. In particular, assume that a non-zero solution does exist, let A+ = {x : a(x);?: OJ 

and let D +=DnA+. Then w.Lo.g. we may assume that a(x) > 0 in some subset of Q + with 

nonzero measure (if not we simply work with Q- in what follows). Now consider: 

J f V • (a Vcp) 

Integrating by parts gives: 

J T V • (a Vcp) + fa ()cp 
cp

an 

(3) 

()Q + 

Since V. (a Vp) = 0, the l.h.s. vanishes. By continuity and the construction of Q + at any 

point x E iJQ + either a(x) = 0 or q;(x) = o, so that the boundary integral also vanishes. But by 

assumption there is some subset of Q+ with nonzero measure such that a Vrp. Vp is strictly 

positive. As the integrand is non-negative over the rest of Q+ it follows that the first term on 

the r.h.s. is strictly positive, which establishes the desired contradiction. Q.E.D. 

The proof rests on the assumption that the functions fP, V. (a VfP) and the level set Q + are 

sufficiently nice to permit integration by parts. It is known [5] that the class of sets for which 

the Gauss-Green identity: 

f div g 
A. 

where 

2 

divg "~ - ~dXi 
i=l 

holds for every vector-valued continuously differentiable function g : A. --+ 9\2 are the so-called 

Cacciopoli sets. These sets can be characterized by the fact that their associated characteristic 

functions are in the space BV(Q), where A cc D and BV(Q) is the space of functions of 

bounded variation in . D, i.e. the set of all functions f E L 1 ( Q) for which: 

sup { f f div g : gi E Crf£2), IMx)l :f 1} 
Q 

(4) 
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is finite. Moreover it can be shown that if f E BV(.Q) then almost all level sets of f are 

Cacciopoli sets. 

These results indicate that the minimum requirement on a to ensure that integration by parts is 

permissible on the set .Q+ is that a E BV(.Q). Since D c 9!2, the Sobolev inequalities show 

that this is roughly comparable to the condition that a E L ~(.a). However, with this restriction 

(3) should more properly be rewritten as 

L (q>Xa+) V•(a Vcp) 

Recognizing cp Xn + as a function of bounded variation, in the worst case it follows from the 

definition (4) that integration by parts is valid only if the remainder of the integrand is 

continuous, and therefore that a E c 1 (D) and cp E cJmJ. 

This shows that striving for the most general level set .a+ does not actually result in a 

weakening of the conditions under which the theorem is valid. It may be possible, however, to 

get slightly weaker conditions on V. (a V()') by tightening the class of permissible level sets. If 

a theory analogous to that of BV(.Q) could be developed by relaxing the class of functions g 

appearing in (4) to be, e.g., g, E Hi(D), llg,ll2 = 1 (and so produce a new function space that 

was strictly contained in BV(.Q)), then it might be that the existing two conditions (a E BV(D) 

and a E C 1(.0), p E C 2(.Q)) could be adjusted simultaneously with the first being strengthened 

while the second was relaxed, until ultimately some sort of optimal balance is reached. 

Finally, the following example shows that a general uniqueness result for (1) cannot be 

established under the weaker conditions: a E L =(D), If> E Hi(D). Let .a= {-1,11 and let ()'(x) = 

1-/x/. Now it is simple to show that if a(x) =sgn(x) then 

Ja(x)dcpdtf> dx 
dx dx 

-1 

5. Stability 

0 '<itf>E HJ!:l) 

It is clear that a solution a to (1) depends linearly on q but nonlinearly on cp, and furthermore 

that a will be stable w.r.t. small perturbations in q (since these are essentially integrated and 

so smoothed out in recovering a) but the solution will be unstable w.r.t. small perturbations in 

cp (since these are differentiated to give the coefficients in the p.d.e. and are thus amplified). A 

rigourous stability analysis confirming this has been given by Richter [8] who showed that, 
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under some reasonable conditions needed to ensure uniqueness, given perturbations 7p, if of 

the data rp, q (due, e.g., to measurement errors), the induced perturbation in the transmissivity 

estimate is bounded above by: 

Moreover Falk has given a finite element method for the numerical solution of (1) (again under 

certain side conditions necessary to ensure uniqueness) together with an error analysis 

consistent with Richter's. In particular, he showed that if a E H r+1Q) and ah is a solution to a 

particular discretization of ( 1) using standard finite element spaces and with perturbed data 7p, 

then: 

(5) 

Unfortunately these results do not give much insight into exactly what sort of perturbations in 

tp cause instability in a, and thus how to construct a numerical solution that efficiently 

approximates only that component of a that is well determined by the model and the data. To 

make this point more clearly, consider again the model linear problem (2) with the extra 

assumptions that X and 9' are both Hilbert spaces and that '!( is a compact operator. For 

simplicity, consider the class of numerical solutions l PO.. got by choosing two N dimensional 

subspaces 'U c: X, "v' c: y and then solving the reduced finite dimensional system: 

QJ(PfpQ = Qg 

where P, Q are the orthogonal projections onto 'll, o/ respectively and g is a perturbation of 

the data. After noting that the complete projection of the original system is: 

where pc = I -P is the projection onto the complement of 'l1, it follows that 

(6) 

The terms in Falk's error bound (5) may now be matched with those in (6). 
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Note in particular that there are two possible approaches to deriving error bounds from (6). 

The frrst, essentially that used by Falk, is take standard subspaces for 'U and o/, use known 

results for these spaces to bound II(QXP}-1 11, and then to assume that f is such that as N 

increases IIP':/11 goes to zero faster than II(Qm') -1 11 grows. 

The second is instead to choose 'U and o/ so that QJ(!?• = 0 and so remove this term from the 

error; this will hold if 'U = ~o/ (see [7]). Next o/ is chosen so as to minimize the remainder 

of the error bound, i.e. to minimize II( Q7(!P) -1 11. It turns out that this is achieved if 'U and o/ 

are the subspaces spanned by the first N singular functions of ~ Moreover, this is an optimal 

discretization in that it minimizes the error over all discretizations of size N. Also, as IIP':tfl 

may now tend to zero arbitrarily slowly, a broader class of solutions can be accurately 

approximated. 

The singular value decomposition (SVD) is of course widely used to solve ill-posed inverse 

problems; the above analysis merely illustrates one of its many useful properties. It also 

answers for the linear problem the questions raised above: i.e. it demonstrates exactly how 

perturbations in g are magnified to give rise to increasing instability in f, and it shows that the 

most efficient discretization is one based on the SVD. 

Unfortunately, as transmissivity estimation is nonlinear in the data qJ, the SVD can no longer 

be used to construct optimal discretizations. Nevertheless it is still reasonable to ask if the 

above approach can still be applied to identify discretizations that are in some sense reliable. In 

particular, we may formally write (1) as: 

f}J(a,lp) q 

where '13 : Xx~ ~ Z is a bilinear operator. As before, let 'Zl, o/, 'W be N dimensional 

subspaces of X, ?; Z with associated projection operators P, Q, 9{. (but we shall no longer 

insist that the spaces be Hilbert and the projections orthogonal). Now consider the reduced 

system with perturbed data: 

and again compare it with the correct projection of the complete system: 

1{.f}J(Pa, QgJ) = 1{.[q 
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Any error analysis could be restricted solely to the operator !l? .. !B(P·, Q), and so be simplified, if 

the subspaces 'll, 'II and 'W could be chosen so that the residual operators 1('13(P., Q'·) and 1<. 

'B(Pc·, ·) all vanished identically. Moreover such an analysis would not have to make 

assumptions about the convergence rate of discrete approximations to the (unknown) solution 

in order to get stability bounds. 

The following example shows that this is not a totally impossible request. Restricting for the 

moment our attention to one dimensional problems, let Q = [-1,1] and consider the simple 

multiplicative bilinear operator :M defined by: 

9vf(j,g) (x) = f(x) g(x) 

This operator encapsulates the underlying nonlinearity in 'B. Now let the spaces X, ry; Z be 

the Hardy space %2 of analytic functions on Q whose Taylor series have coefficients that are 

square summable; %2 is a Hilbert space under the [2 norm on the coefficients. Next let the 

subspaces 'U, 'II and 'W be the space 'UN= span{xn : n = 0, ... , N-1}, and take for the 

associated projection operators the operator PN: :J-P ---!- ·UN defined by: 

N-1 

L Cn xn 

n=O 

PN is an orthogonal projection under the :J-{2 norm. Moreover the range of PNc is the subspace 

'U/ = span{ X n : n :?: N)' and if the product 'UN. 'UNC of 'UN and 'UNC is defined by: 

This shows that there is at least one setting in which a stability analysis of a bilinear operator 

such as 'B along the lines of the linear problem is possible. The setting is clearly unsatisfactory 

in practice, however, since the %2 norm is far removed from a standard error metric such as 

the L 2 norm and the mapping between point values of a function and the coefficients of the 

monomials in an approximating polynomial is well known to be numerically unstable. 

Unfortunately it may well be that 'UN and 'UN" form the only family of finite dimensional 

subspaces and associated complements such that 'UN. 'liNe c 'liNe. Support for this rather 

gloomy conclusion comes from noting that an associated problem has essentially a unique 

solution: the only finite dimensional subspaces '!IN for which '!IN x o/,v c '!IN are spaces of 
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piecewise constant functions, so that essentially the only orthonormal basis that would generate 

a family of such subspaces are the Walsh functions. 

6. Conclusion 

In conclusion, despite the progress made on transmissivity estimation in the last decade there 

are still some important unanswered questions. First, it is still not clear exactly what the correct 

mathematical setting for the problem should be. Second, while a weak formulation is the 

preferred starting point for numerical solutions, the best results on uniqueness apply only for 

continuous functions. This leaves some uncertainty as to the performance of, e.g., finite 

element methods on the general problem with discontinuous data. It may be possible to extend 

the function spaces on which uniqueness holds by generalizing the idea of bounded variation, 

but this is a problem for a different discipline. 

Finally, the numerical methods proposed for transmissivity estimation to date have used 

standard discretizations and have imposed a priori conditions on the solution in order to bound 

the residuals in the associated error analyses. The insight obtainable from these results does not 

yet match that available in the theory of linear ill-posed problems: in that theory optimal 

discretizations can be defined that separate out exactly that part of the problem for which a 

stable solution can be found. A similar approach can at least be formulated for transmissivity 

estimation, but a complete solution requires a better understanding of decompositions of 

bilinear operators. 
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