
Appendix C 

Maximal developments. 

In this Appendix we shall discuss the existence of maximal developments, and we shall 

also prove some criteria which allow one to decide whether or not a given development 

is maximal. 

C.l Existence of maximal space-times. 

In this section we shall prove the existence of maximal space~times; the reader should 

note that we are not making any global hyperbolicity hypotheses. The arguments here 

follow essentially those of [21]. Throughout this section "W manifold" stands for a 

connected, paracompact, Hausdorff n~dimensional manifold of differentiability class W 

such that W C C 1, where W stands for e.g. Ck,Oi or some Sobolev class, etc. The 

manifold will be said Lorentzian if it is equipped vvith a metric tensor, perhaps defined 

only almost everywhere, of a differentiability class adapted to that of W. For example, 

if W = Ck,cx then we should have k 2 1 and the metric, defined everywhere, will be 

of ck-l,OI differentiability class. It is useful to keep in mind that w can be a rather 

complicated space, e.g. for the purpose of the Cauchy problem in general relativity an 

appropriate space W is the set of maps which preserve the condition that the components 

of the metric tensor /'"v restricted to the hypersurfaces E = { t = const} are of Sobolev 

class HfoJI:;), the time~derivatives of /'"v are in Ht1 (E), etc. A W Lorentzian manifold 
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will be called vacuum if W is such that the equations RJ.Lv = 0 can be defined, perhaps 

in a distributional sense, and if RJ.Lv = 0 holds. 

Theorem C.Ll Let (Af,{) be a W Lorentzian manifold, there exists a W Lorentzian 

manifold ( M, i') and an isometric embedding <!> : M ---+ M such that M is inextendible 

in the class of W Lonmtzian manifolds. The same is true if "Lorentzian W manifold" is 

replaced by "vacuum Lorentzian W manifold" everywhere above. 

Remarks: 

1. The C 1 differentiability threshold for M cannot be weakened in the proof below. 

The author ignores whether or not the C 1 differentiability of M is necessary. 

2. The maximal manifolds (M,i') need not be unique, and may depend upon W. A 

non-trivial example of tV dependence, with W = Ck,Oi, is given by some Robinson­

Trautman (RT) space-times, which for k + a :2: 123 admit no non-trivial future 

extensions, while for k + a < 118 they admit an infinite number of non-isometric 

vacuum RT extensions. 

Proof: For £ :2: n let Ae denote the set1 of subsets of IRe which are n-dimensional 

manifolds, set Aoo = U~0Ae. By a famous theorem of Whitney [128] every ( C 1 , con­

nected, paracompact, Hausdorff) manifold can be embedded in JR" for some f, which 

shows that every manifold has a representative which is an element of Aco; it follows that 

without loss of generality a manifold can be defined as an element of Aco; and we shall 

do so. With this definition the collection of all manifolds is Aoo, and therefore is a set. 

It follows from the axioms of set theory that the collection of all C 1 manifolds which 

are W manifolds forms a set; the same is true of the collection Mw of W Lorentzian 

manifolds (recall that a Lorentzian manifold can be identified with a subset of the bun­

dle T2IVI, where T2M is the bundle of 2-covariant tensors on I\1), and of the collection 

},;( w, vac of W vacuum Lorentzian manifolds. Let ( M, 1) be a Lorentzian, respectively 

1 cf e.g. [78][Appendix] for an overview of axiomatic set theory. 
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a vacuum Lorentzian, W manifold, consider the subset Mw(M,I) of Mw, respectively 

M w, vac( M, 1) of M w, vac, defined as the set of those Lorentzian manifolds ( M ~ 7) for 

which there exists an isometric C1 embedding~ : M-+ M. On both Mw(M,I) and 

Mw,vac(M,I) we can define a partial order-< as follows: (M,7)-< (M1,7I) if there ex­

ists an isometric C1 embedding~: M-+ M1. If A C Mw(M,I) or A C Mw,vac(M,I) 

is a chain, define M = (u(M,.:Y)EA.M) /"',where for p EM and q E M1, we set p"' q iff 

q = ~(p), where~: M-+ M1 is an isometric C1 embedding. It is not too difficult to show 

that M is a W manifold (Hausdorff, paracompact, connected), a Lorentzian metric ;y can 

be defined on M in an obvious way. Since every element ( M, 7) of A can be embedded 

in M (M 3 p-+ [p]~ E M), it follows that M is an upper bound for A. Zorn's Lemma 

(cf. e.g. [78]) shows that both Mw(M,I) and Mw,vac(M,I) have maximal elements, 

which had to be established. 0 

C.2 Some maximality criteria. 

In this Appendix we will discuss some inextendability criteria. Let us start with some 

terminology. Recall that we have defined ( M, 7) to be an extension of ( M, 1) if there 

exists an isometric embedding~ of Minto M, and M f. M. We shall often identify M 

with ~(M). If M is a subset of M, by aM we always mean the topological boundary of 

Min M: aM= {p EM\ M such that :lp; EM with the property that Pi-+ p}. When 

considering inextendability criteria, it is useful to keep in mind the possibility of allowing 

extensions in which a weak form of violation of Hausdorffness occurs. Following Clarke 

[40] we shall say that a (possibly2 non-Hausdorff) space-time is a Hajicek space-time if 

there exists no bifurcating causal curves in (M,1) (more precisely, let r"': [O,b)-+ M, 

a= 1,2 be two continuous causal curves such that f 1i[O,a) = f 2 i[O,a) for some a< b, 

then r 1 (a) = r 2 (a). In this section all geodesics are affinely parametrized; unless specified 

otherwise we do not impose any particular orientation on the affine parameter. In all the 

results presented in this section we make essential use of both existence and uniqueness 

2If M is Hausdorff, then the Hajicek condition trivially holds. 

108 



of solutions of the initial value problem for geodesics; those are guaranteed by cl~; 

differentiability of the metric and by the requirement that the space-times considered 

satisfy the Hajicek condition. The results here need not to hold in an arbitrary non­

Hausdorff space-time, or in space-times with metrics the derivatives of which are not 

Lipschitz continuous. 

Let us recall a criterion which has been used by Misner and Taub (85] to prove inextend­

ability of the Taub-NUT space-time: 

Proposition C.2.1 Let (M, !) be a Hausdorff space-time with a C1~; met7·ic, suppose 

that for every geodesic segment f : [so, s1 ) --7 M which cannot be extended beyond s1 

there exists a compact set I< such that f c I<. Then ( M, 1) is inextendible in the class 

of Hausdorff space--times with C1~; metrics. 

Remark: It should be noted that in Tanb-NUT space-time there exist inextendible 

geodesic segments which remain in a compact set. 

Proof: Suppose that (it,:Y) is an extension of (M,1). For any p E oM there exist 

some geodesic segment fp: [O,a]-+ M such that fp(O) = p, fp(a) EM (fp- timelike, 

spacelike or null). Since p rf_ M, it follows that r P n M is inextendible in M and is not 

contained in any compact set K, which leads to a contradiction. 0 

In exactly the same way one proves: 

Proposition C.2.2 Let (M,1) be a Hajicekspace-time with a C1~: metric, suppose that 

for every geodesic segment r : [so, si} -+ M which cannot be extended beyond s1 eithe1· 

1. there exists a compact set J{ such that r C K, or 

2. some polynomial scalar of the curvature tensor is unbounded on f as s --7 s1 • 

Then (M, 1) is inextendible in the class of Hajicek space-times with C1~; metrics. 
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Note that if 1 and ;y are assumed to he twice differentiable, then point 2 above can be 

weakened to "some polynomial scalar of the curvature tensor has no finite limit on r as 

s ~ s 1 " (in other words, if the limit exists, it is infinite). 

If we have an extension of ( M, 1) and a point p E oM such that there exists a timelike 

curve from M to p, it is easily seen that there necessarily exists a timelike geodesic from 

M top. Whenever (M,1) is time-orientable1 it is natural to divide extensions in the 

following classes: 

1. there exists a future directed timelike geodesic from M to M, 

2. there exists a past directed timelike geodesic from M to M, 

3. there exist both future and past time directed timelike geodesics from ]1,{ to M, 

4. there exists no timelike geodesics from M to M. 

Let us show that case 4 above cannot occur: 

Proposition C.2.3 Let (M,1) be a Hajicek space-time with a Cl;; metric, suppose that 

( jf{, :Y) is a Hajicek extension thereof with a C1~; metric. Then there necessarily exists 

1. a timelike geodesic M to aM, and 

2. a null geodesic from M to oM. 

Proof: Suppose there exists p E oM such that there exists no timelike geodesic from 

M top, thus I(p) n M = 0, where I(p) is the union of the future and of the past of p 

in M. There exists a sequence Pi E M such that p; --+ p, choose any normal geodesic 

neighbourhood 0 C Jtf of p with a local coordinate chart, for i large enough we have 

Pi E 0. It is easily seen that fori large enough a maximally extended geodesic through Pi 

with tangent vector 8/ at at p must leave M and enter M, and the result follows because 

in a Hajicek space-time there exists no bifurcate timelike geodesics. The result for null 

geodesics is proved in a similar way. 0 
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We shall say that a time-orientable space-time ( M, 1) is future inextendible if there 

exists no extension ( M, i') of ( M, 1) in which a future directed causal curve starting in 

M enters M; the notion of past inextendibility is defined similarly. Proposition C.2.3 

shows that a space-time which is both future and past inextendible is inextendible. This 

is a useful result, because together with Proposition C.2.2 it reduces the task of proving 

inextendability of M to an analysis of the behaviour of either null or timelike geodesics 

in (M,1): 

Proposition C.2A 1. In Propositions C.2.1 and C.2.2 "every geodesic segment" can 

be replaced by "every tirnelike geodesic segment". 

2. In Propositions C.2.1 and C.2.2 "every geodesic segment" can be replaced by "every 

null geodesic segment". 

Given a globally hyperbolic space-time ( M, 1), it might be useful in some situations 

to be able to determine whether (M, 1) is maximal in the class of globally hyperbolic 

space-times (note that this does not exclude the existence of non-globally-hyperbolic 

extensions of (M, 1)). We shall say that a globally hyperbolic Lorentzian manifold (M, 1) 

admits a crushing future boundar·y if there exists a foliation of ( M, 1) by spacelike Cauchy 

hypersurfaces :Er, T E ( T 0 , T1), -oo :=; T 0 < T1 :=; oo, such that 

where 

gij is the inverse of the metric 9ii induced by 1 on :En and J{i.i is the extrinsic curvature 

of :Er. Similarly a crushing past boundary is defined by the condition 

(Eardley and Smarr [43} have proposed the term "crushing singularity" for the above 

described behaviour: we find that terminology misleading, because the existence of a 



crushing boundary does not imply existence of a singularity in the geometry3 , there 

might exist perfectly smooth extensions of ( M, 1) as is seen e.g. in some polarized Gowdy 

metrics [37].) Although it is irrelevant for further purposes, it might be of some interest 

to note that in spatially compact space-times (M, 1) with crushing boundaries there 

exist constant mean curvature (CMC) surfaces [7]; if moreover the timelike convergence 

condition holds (Rp,vX~' X" ~ 0 for all timelike vectors X), then (M, 1) can be foliated 

by CMC surfaces. 

As has been noted by Moncrief [87], the existence of crushing boundaries implies maxi­

mality in the class of globally hyperbolic space-times: 

Proposition C.2.5 Let (M, 1) be a globally hyperbolic, spatially compact, Hajicek space­

time with a cl~: metric. 

1. Suppose that ( M, 1) has a future crushing boundary. Then ( M, 1) is future inex­

tendible in the class of globally hyperbolic, Hajicek space-times with C1~: metrics. 

2. The same is true if "future" is replaced by "past" everywhere above. 

Proof: Let Er, To < T < r1 be a foliation of ( M, 1) as in the definition of future crushing 

boundary, suppose that Uf1, :Y) is a future extension of ( M, 1), let p E M \ M be such 

that M n I-(p; i:f) i- 0, where I-(p; M) is the past of pin M. By global hyperbolicity 

of ( M, :Y) for any r < r1 there exists a future directed maximizing timelike geodesic 

f 7 : [O,s1(r)]-+ l'd parametrized by proper time such that fr(O) E En f 7 (s1(r)) = p, 

for some s1 ( T) > 0, where throughout this proof "maximizing" stands for "maximizing 

in the class of geodesics which start on 2:: 7 and have p as endpoint" . Choose some 

To < f < T}j there exists 3 < sl(r) such that rf(s) E aM. Since the Er's are Cauchy 

surfaces it follows that for T > T we have Ern r f i- 0, and since the r T 's are maximizing 

geodesics from Er to p it follows that s1 ( T) ~ s1 ( T) - s > 0. But by [66][Corollary, 

3If the space-time is spatially compact and the timelike convergence condition holds (RI'vXI' xv 2: 0 
for all timelike vectors X) (M, 1) will b~, however, geodesically incomplete, cf. e.g. [66)[Chapter 8, 
Theorem 4]. 
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Section 6. 7] and [66] [Proposition 4A.3) there are no future directed maximizing geodesics 

of length more then 3/ Kf starting at :En which gives a contradiction since 3/ Kf -+ 0 

~rMs-+~. o 
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