
Chapter 2 

"Highly symmetric" space-times 

In this chapter we shall describe the spaces of maximal globally hyperbolic (Hausdorff) 

spaces-times for which the groups S0(3) x U(l), S0(3) (two-dimensional principal orbits) 

and U(l) X U(l) X U(l) act by isometries on some compact, connected and orientable 

Cauchy surface. We start by proving the well known result, that symmetries of Cauchy 

data lead to symmetries of the space-time: 

2.1 From symmetric Cauchy data to symmetric space
times. 

In this Section we shall show that the existence of symmetries of Cauchy data implies the 

existence of symmetries of the space-time. Let us start with a "Killing vector approach" 

to this problem. The result that follows is essentially due to Moncrief [86] [Sections 

IV, V], we present the proof here for completeness (the proof below also seems to be 

somewhat simpler than the one in [86]; a similar proof can be found in [47]): 

Theorem 2.1.1 Let (M, 1) be a vacuum globally hyperbolic space-time, with a time func

tion t, let Er = {p E M : t(p) = T}. Let X" be a vector field on M defined in a 

neighbourhood of Eo such that for p E Eo we have 

(2.1.1) 
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(2.1.2) 

where '\7 is the covariant derivative of the metric 'Y· There exists a vector field X on M 

satisfying 

pE ~o Xa(P) =X a(P), '\7 a X13(p) = '\7 a X f3(P) · 

Proof. Let X"' be the unique solution of 

DX"' =0 

{2.1.3) 

{2.1.4) 

(2.1.5) 

satisfying (2.1.4). (Because {M,/) is globally hyperbolic, a solution of {2.1.4)-{2.1.5) will 

exist on M, if e.g., in local coordinates, we have 8a1 ••• 8a, ·111, E L~c{~t), 0 :::; i :::; k + 2, 

k E JN U {0}, where L~c(~t) denotes the space of functions defined almost everywhere 

on ~t which are measurable and essentially bounded on every compact subset of ~t. and 

if 8;1 ••• 8;lX alEc E L~oc.(~o), 0:::; f.:::; k + 1, 8;1 ••• 8;j(8tX a)IEo E L~oc{~o), 0:::; j:::; k; 

under these conditions we will have (8a1 ••• 8a, Xa) IE, E Lfoc(~t) for all t, 0:::; i:::; k+ 1). 

Let us note that (as is well known) it follows from {2.1.3) that 

(2.1.6) 

so that {2.1.5) is a necessary condition for {2.1.3) to hold in a vacuum space-time. We 

shall show that {2.1.1), (2.1.2), (2.1.4) and (2.1.5) and the fact that (M,1) in vacuum 

imply (2.1.3). Set 

From {2.1.5) and from 

one obtains 

(2.1.7) 

Under the ,conditions on the metric and on X a outlined above with k ~ 1 (which will 

hold if e.g. fJlV and X11 are SmOOth) it follOWS that every SOlution Of {2.1.7) With zerO 

50 



initial data vanishes identically; and the vanishing of the initial data for A.,p follows from 

(2.1.1 )-(2.1.2). 0 

Corollary 2.1.1 Under the hypotheses of Theorem 2.1.1, suppose that on ~0 there exists 

a smooth vector field Y such that 

Cv g = Cv K = 0, 

where Cy denotes a Lie derivative. There exists a smooth vector field X on M such that 

Cx 1 = 0, 

p E ~o X(p) = iEo. Y, 

where iEo is the embedding of ~0 in M. 

Proof. Let us rewrite eqs. (2.1.1)-(2.1.2) in 3+1 notation; let n"' be the unit normal to 

the slicing~.,. (n"' n., = -1), define 

f3u = n"' 'V.,n", g11v = ! 11v + n 11 nv, I<11v = g11"' 9v.B'V., np, 

X= -X"' n01 , ya = 901 ,8 X.B ( ==> X 01 = xn01 + Y 01 ), 

Dnx = n~' 'V 11x , Dn ya = g01 .B n 11 'V 11 y.B . 

Using this notation, (2.1.1) can be rewritten in the form 

Ly 9a,B = -2x Ka,B, 

Dnx = -f3u Y" , 

DnY01 = K 01 p y.B + D 01x- xj301 , 

(2.1.8) 

(2.1.9) 

(2.1.10) 

where D is the covariant derivative operator of the Riemannian metric 9a.B induced by 'Ya.B 

on~.,.. When (2.1.8)-(2.1.10) hold, one finds that 1) the equations obtained by projecting 

all indices in (2.1.2) on~,. are identically satisfied, 2) the equations obtained from (2.1.2) 

by projecting one of the indices along n and the remaining on ~.,. are equivalent to 

(2.1.11} 
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where K = ga/3 Kap, and 3 Ra/3 is the Ricci curvature of the metric 9af3, 3) and finally 

the equations obtained from (2.1.2) by projecting more than one index along n~' involve 

second time derivatives of x, ya in a way consistent with eq. (2.1.5) if (2.1.8)-(2.1.11) 

hold. If (g, K) are invariant under the flow of a vector field Y, then we can set X~'(O, ·) = 
Y~'(·), (x(O,·) = -X~'np.(O,·) = 0) and use (2.1.9)-(2.1.10) to determinen~'\7p.Xa(O,·), 

obtaining thus Cauchy data for equation (2.1.5), which satisfy those of the equations 

(2.1.1)-(2.1.2) which do not contain second time derivatives of xa. Solving (2.1.5) we 

will obtain a Killing vector field on any globally hyperbolic development of (3~,g,K).D 

When considering symmetric data sets, it is natural to ask the following: 

1. are discrete symmetries of (3~,g, K) preserved under evolution? 

2. suppose that we have a group G acting on 3~, which leaves both g and K invariant; 

can we define an action of G on some development of (3 'f., g, K)? 

The argument that follows answers both of these questions, at least when 3~ is compact: 

Theorem 2.1.2 Let (3~,g, K) be a smooth Cauchy data set, with 3~ - compact, sup

pose that a group G acts smoothly on 3 'f. 

and we have 

( ¢/ gih ¢/ K;i) = (g;h Kii) . 

For any development (M, 1) of (3~, g, K) there exists a (globally hyperbolic} neighbour

hood 0 C M of 3~, and an action IJ! of the group G on 0, 

G X 0 3 (g, p) ~ IJ! g (p) E 0 , 

such that 
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Moreover, there exists_ a diffeomorphism '1/J : 0 f-+ ( -T, T) x 3 I: such that we have 

w o = w o q,o o w-1 , 

where q,o is the following action ofG on (-T,T) x 3 I:: 

(2.1.12) 

and the hypersurfaces { t} x 3 I:, t E ( -T, T), are space-like. 

Remark. Theorem 2.1.2 will still hold if (g;j K;j)(O, ·) E Hk(I:o)tBHk-t(I:o), k 2 4. One 

would expect the result to be true under the condition k > 5/2, or, say k 2 3, the proof 

presented here, however, fails if k = 3. This is due to the fact that the differentiability 

of the map IT! constructed below is not better than this of 1, which in turn leads to 

a differentiability class of i = (w-1 )*I worse by one as compared to I· If k = 3 the 

differentiability of i is not high enough to guarantee uniqueness of solutions, and the 

argument breaks down. 

Proof. Let vei:) be the domain of dependence of 3 I: in (M,1); replacing M by vei:) 
if necessary we may assume that M = vei:), and thus M is glob~lly hyperbolic. Let t 

be the unique solution of the problem 

(2.1.13) 

(2.1.14) 

where o., is the scalar wave operator of the metric 1, o., = '\7"' '\7 a· Let 0 be any 

neighbourhood of 3 I: on which IJLv '\7~"t'\7vt < 0, by compactness of 3 I: there exists a> 0 

such that M(! = {p E M : t(p) < a} C 0. Let I:t denote the level sets of t, we can 

use the integral curves of '\7t to identify Mu with (-a, a) x I:0 • Let g be any smooth 

Riemannian G-invariant metric on 3 I:, on Mu we can define the Lorentzian metric 

0 0 2 0 

1 = 1 JLV dx~" dxv = -dt + g . 

Note that the action (2.1.12) preserves+ 

"' * • • 
'i!g I =I · (2.1.15) 
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Consider the following initial value problem for a map W : ( ( -r, r) x 3 :E, 1) --t ( (-a, a) x 

3:E,1), 

o(I,,.Y)w = o, 

1!1(t = 0, ·) = id3E(·), 
aw"' n'" ?)""(t = 0, ·) = sg, 
ux~" 

where D('Y, -Y) is the Lorentzian harmonic map operator; in local coordinates 

(2.1.16) 

(2.1.17) 

(2.1.18) 

where f3'"~(h) denotes the Christoffel symbols of a metric h. There exists r > 0 such 

that there exists a unique smooth1 solution of the problem (2.1.16)-(2.1.17) defined on 

( -7, r) x 3 :E. Note that from (2.1.13) and (2.1.14) we have 

and uniqueness of solutions of (2.1.16) implies l/J0 = t. This shows that, decreasing 7 if 

necessary, there exist diffeomorphisms 1/Jt :3 :E +-+ 3 "E such that 

( -r, x 3 E 3 (t,p) +-+ <l!(t,p) = (t, 

and from (2.1.17) we have 

1/Jo = 

On 11Jr we can define an action of group G as follows: 

g E G, W9 =W-1 o~goW. 

The claim that the maps W 9 are isometries of 1 is equivalent to the statement that the 

maps <ll9 are isometries of the Inetric i' = (w-1 )*I· The covariance of the equation 

(2.1.18) under changes of coordinates in the source space implies that the identity map 

1It is not too difficult to show, using e.g. the methods of[20], that if Oa 1 ••• Oa; !,..v(t, ·) E Hk0~j (3E1), 

0:;:; j $ k, k 2 3, then there will exist a solution of (2.1.16)-(2.1.17) satisfying 0011 •• • Oa; \li~'(t, ·) E 
Hlo~j (3E,). 
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also satisfies (2.1.18) which in local coordinates reads 

(2.1.20) 

As is well known ( cf. e.g. [20]) Einstein equations with conditions (2.1.18) are a well 

posed hyperbolic system for the metric ;y, the solutions being determined uniquely by 

the initial data (g, J<), with (g, J<) - obtained by appropriately transforming (g, I<). 

In our case, (2.1.19) implies (g,I<) = (g,J<). Consider now the metric i'9 = cl>/i'· 

19 satisfies vacuum Einstein equations, and by coordinate-invariance of (2.1.20) under a 

simultaneous change of coordinates for both the metric 1 and i' it follows that A'Y defined 

by (2.1.20) satisfies A'Y = 0 = 1;/3 (r:13(1)- r:13(i'9 )) (and we have used q;9 * 1 = 1). 

The initial data for i'9 are given by 

and uniqueness implies 

0 

It must be stressed that while the Killing vectors argument, Theorem 2.1.1, proves the 

existence of Killing vector fields defined on the whole of (M,/), provided (M,1) is 

globally hyperbolic, Theorem 2.1.2 shows only existence of a neighbourhood of 3 E on 

which the group G acts. It is easily seen that the hypothesis of compactness of E is 

necessary: consider the space-time M = {( t, x) E JR? : It I < f( x)} with the metric 

/11-vdxll-dxv = -dt2 + dx2 , where 0 < f is a differentiable function such that ldf fdxl < 1, 

and limlxl->oo /( x) = 0. ( M, 1) is globally hyperbolic, the translations in x are isometries 

of the Cauchy data at t = 0, but the action does not extend to M. Similarly it can 

be seen that for spatially compact space-times the action of the symmetry group given 

by Theorem 2.1.2 needs not to extend beyond a neighbourhood o{the Cauchy' surface: 

consider the space-time M = {(t,x) E lR x S1 : ltl < 1 + (sinx)/2}, with the metric 
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-dt2 + dx 2 , and we have identified S 1 with [0, 211" hmod 2,.. The translations in x do not 

extend beyond the strip {ltl < 1/2}. 

It is a remarkable fact, that isometries of Cauchy data always extend to the maximal 

globally hyperbolic developments, regardless of whether the Cauchy surface is compact 

or not. Before proving this, let us restate the Choquet-Bruhat- Geroch theorem 1.1.2 

in a form more suitable for our further applications: 

Theorem 2.1.3 Let (E,g, K) be a Cauchy data set, where E is a Hausdorff manifold 

and g, ]{ E C00(E). There exists a coo I vacuum, Hausdorff, globally hyperbolic devel

opment (M, I• i) of (E, g, K) such that for every smooth, Hausdorff, globally hyperbolic 

development (M, :y, i) of (E, g, K) there exists an isometric embedding \]! : M -+ M 

satisfying 

\]!oi=i. 

Any developement ( M, 1) satisfying the above will be called a maximal globally hyperbolic 

developement. It is clear from the above that maximal developements are unique, up to 

isometry, and inextendible in the class of smooth, Hausdorff, globally hyperbolic space

times. We shall also need the following: 

Lemma 2.1.1 Let (M,1) be a smooth, Hausdorff, connected Lorentzian manifold, let 

\]! : M -+ M be a smooth map such that 

\]!*1 =I ' 'l!fs = id (S # 0) , 

where S is either an open set, or a non-everywhere-null submanifold of codimension 1; 

in this last case we moreover assume that \]! is oritmtation-preserving. Then 

\]! = id . 

Remark:. Note that in the case when Sis a submanifold one does not need to assume 

any kind of completeness of S. 
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Proof: Suppose first that Sis an open set, letS be the largest open set such that Wls = 

id. Suppose that s is not dosed, thus there exists p E aS, let 0 be any neighbourhood 

of p with a local coordinate system such that x~"(p) = 0, smoothness of il' implies, in 

local coordinates, 

()if! it 
-0 (0) = 8~ , 8<7, · · · 8cr, W~-'(0) = 0 . 

XI-' . 
(2.1.21) 

From = 1 one has 

(2.1.22) 

(2.1.23) 

where r denotes the Christoffel symbols of the metric I· Setting A~ :=: ~, from the 

equation (2.1.23) one obtains the following of ODE's along rays emanating from 

the origin: 

r = (l:::(xc?)l/2 ' 

and the initial conditions 1.21) together with 

which leads to a 

of solutions of systems of 

ODE's imply W~-' = x~-' in and shows that = 0, thus 

S=M. 

Suppose now that 8 is a hypersurface, let p E S be such that S is not null in a. neighbour

hood of p, let 0 be a neighbourhood of p with a coordinate system 

such that S n 0 = and lxi(O, y) = 0; note that 

follows that along the curves y = canst we have 

d(!JP 

d;;~ 

y) = 0, --fO y1 = {)yj \ 5. I 
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which together with (2.1.22) gives 

and \II iu = id for some neighbourhood U of p follows. U = M foliows by part 1 of this 

Lemma. 0 

Corollary 2.1.2 Let ('2;, g, K) be smooth Cauchy data on a Hausdorff manifold r;, let 

¢ : r; --> !; be a smooth diffeomorphism, set g = ¢* g, k = ¢* K. Let (M, 1, i), respectively 

(M,)',i) be the maximal globally hyperbolic (vacuum, Hausdorff, smooth) development of 

(E,g,K), respectively of('l;,g,K). There exists a diffeomorphism <I>: M--> M such that 

<I>*!=)', and 

<I>oi=io¢. 

' 
Proof: By definition we have (¢-1)*9 = g, (¢-1)*K = K, thus (M,)',i6¢-1 ) 1s a 

development of ('l;,g, K): By maximality of (M, /, i) it follows from Theorem 2.1.3 that 

there exists an isometric embedding <I> : M ~ M such that <I> o i o ¢-1 = i. A similar 

argument using maximality of (M, )', i) shows that there exists an isometric embedding 

\II : M--> M such that \II o i o ¢ = i. One thus has \II o <I> o i = i, (\II o <I>)*)'=)', so that 

W o <I> is an isometry which is the identity on i(l;)~ therefore \II o <I>= id by Lemma 2.1.1. 

This shows that <I> is invertible, and the result follows. 0 

The main result of this Section is the following: 

Theorem 2.1.4 Let ('l;,g,l<) be smooth Cauchy data on a Hausdorff manifold r;, let 

(M, /, i) be the maximal globally hyperbolic (vacuum, Hausdorff, smooth) development of 

('l;,g,K), suppose that a group G acts on ('l;,g,K) by smooth isometries: 

(¢;g = g, <P; K = K). There exists- an action of G on- M, 

G x M 3 (g~~)--> ci>9 (p) EM , 
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such that 

'VgEG 

Proof: Let (M9 , -y9 , i9 ) be a maximal globally hyperbolic development of (E, </>;g, </>;I<). 

By Corollary 2.1.2 there exists a diffeomorphism W 9 : M9 -+ M such that W 9 o i9 = i o ¢>9 , 

w;-y = 'Yu· Since </>;g = g, <t>;I< = I<, Theorem 2.1.3 moreover implies the existence 

of a diffeomorphism 2 9 : M9 -+ M such that 29 o i 9 = i, s;'Y = -y9 • Consider the 

diffeomorphism ()9 = \119 o 2;1 : M-+ M. We have 

thus the ()g's are isometries, moreover 

~ ' •T• ~-1 ' ,T, · ' ), 
'j!gOZ='Ilg0:;,9 OZ='Ilg0Zg=ZO<f'g• 

Lemma 2.1.1 easily implies <Pgh o(>h"1 o<P;1 = id, thus <P9h = <P9o<Ph. Finally continuity of 

<P9 in g follows from the continuous dependence upon Cauchy data (on compact subsets) 

of the solutions of the initial value problem for Einstein equations. D 

2.2 80(3) x U(l) symmetric space-times, 3 ~ = L(p, 1). 

Consider the set of space-times with Cauchy-data on compact, connected, orientable 

manifolds 3 E, invariant under an effective action of the group G = S0(3) x U(1) or 

G = ( SU(2) X U(1)) / D, D = {( -1, -1), (1, 1)}, with three-dimensional principal orbits. 

In this Section we shall outline the proof of the claim, that this set consists of the Taub

NUT metrics. As discussed by Fischer [45), 3 E is necessarily S3 or a lens space L(p, 1), 

and the action of G is unique up to equivalence. Identifying U(1) with the subgroup of 

SU(2) consisting of matrices of the form diag(ei"', e-i"'), and identifying SU(2) with S3 

in the standard way, it follows that up to homomorphism of G and diffeomorphism of 3E 

the action of G on 3 E is given by 

(2.2.1) 
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91 E S0(3) or SU(2), 92 E U(l). 

When G = [SU(2) x U(l)]/D, and/or when 3 :E = L(p, 1), p-=/:- 1, appropriate equivalence 

relations in (2.2.1) should be taken into account2 • For any p E 3 :E there exists a neigh

bourhood Op of p diffeomorphic with a neighbourhood Ue of the identity of SU(2) ~ S3 , 

using this diffeomorphism any G-invariant metric on 3L: can be pulled-back to define a 

G-in variant metric on Ue. Let X;( e) be any basis of Te SU(2), let 

where R9 is the right action of SU(2) on itself. Since the right and left actions commute, 

the vector fields X; are left-invariant. Also, by definition of the adjoint representation 

ad, 

As is well-known, the ad representation of SU(2) acts on Te SU(2) ~ lEi? by rotations, 

and we can choose X 3 (e) so that U(l) = diag(ei"',e-i"') acts as rotations around the 

X3 (e)-axis. Let (·,·)be a metric on Ue C SU(2), invariant under the action (2.2.1). The 

SU(2) invariance implies that the functions 

are p-independent. The U(l) invariance implies that g;j is a 2-covariant tensor on JR3 

invariant under rotations around the "z-axis", which by straightforward considerations 

leads to 

-d. ( a a b) 9ij = 1ag e , e , e , 

for some a, b E JR. It follows that any G-invariant metric on S3 is of the form 

(2.2.2) 

where the wi's are left invariant forms on S3 , dual to the vectors X; as defined above. 

The argument presented in Ref. [12], Chapter II, Section 3, shows that the vacuum 

2Equation (2.2.1) defines an action of 8U(2) x U(l) on 3:E, this action is however not effective. 
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dynamics does not lead to a rotation of the eigen-axes of the U(1) action, thus in a 

vacuum S0(3) x U(1) or [SU(2) x U(1)]/ D symmetric space-time an appropriate choice 

of time r and of the wi's leads to 

(2.2.3) 

for some functions a(r), b(r). In Section 8.2 of Ref. [111] all solutions of Einstein 

equations with a metric of the form (2.2.3) have been found-these are the Taub-NUT 

metrics. 

2.3 80(3) symmetry, 2-dimensional principal orbits. 

In this Appendix we shall describe the family of vacuum, maximal globally hyperbolic 

space-times 4M which admit compact, connected, orientable Cauchy surfaces aE with 

Cauchy data invariant under an S0(3) action with two dimensional principal orbitsa. 

The results presented below are a global version of the generalized Birkhoff theorem ( cf. 

Appendix B to [66]). 

As has been shown in Ref. [45], one has aE ~ S1 X S2 or sa or JPa or JPa# IPa 

(connected sum of two projective spaces), and the action of S0(3) is in each case unique 

up to homomorphism of S0(3) and diffeomorphism of aE. S1 x S 2 as well as sa or JPa 

or lPa# IPa are of the form 

(2.3.1) 

where 

• in the S1 x S 2 case the relation " rv " identifies {0} x S 2 with {1} x S 2 via the 

identity map from S2 to S2, 

• in the IPa# IPa case " rv " identifies {0} x S2 with itself via the antipodal map 

from S2 to S2 , similarly for { 1} x S2, 

3The author is grateful to dr G. Cieciura for useful discussions about the results presented here. 
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s in the S3 case " "' " shrinks { 0} X S2 to a point Po and { 1} X S2 to a point Pll 

o in the JP3 case " ""' " shrinks { 0} x S2 to a point p0 and identifies { 1} x S2 with 

itself via the antipodal map. 

From [45] it follows that in all cases there exist coordinates ('ljJ, (8, qy)) on [0, 1] X 8 2 such 

that the action of 80(3) consists of 'ljJ-independent rotations of 8 2 , which implies that 

any S0(3) invariant metric on 3 1.:: in these coordinates takes the form 

(2.3.2) 

Let eE, g;j, K;j) be any 80(3) invariant Cauchy data, let (4 M, 1) be the maximal globally 

hyperbolic development thereof, let t be a time function in a neighborhood 0 of 3 1.:: such 

that for T E (t1, t 2 ) the group S0(3) acts on the level sets Ir = {p : t(p) = T} of 

t by isometries (cf. Section 2.1). By Lie dragging along the normals to Ir the above 

coordinates ( 'ljJ, ( 8, <jJ)) can be extended to 0, and one finds that in this coordinate system 

the metric takes the form 

(2.3.3) 

for some (strictly) positive functions F, X, and a non-negative function Y; Y strictly 

positive for~~' E (0, 1), and 

111 if 3 2:: ~ 8 3 the area function Y vanishes at 'ljJ = 0 and 'ljJ = 1 only, 

e if 3 1.:: ~ JP3 the function Y vanishes at 1p = 0 only. 

In order to analyze the constraint equations it is useful to introduce the following "null" 

derivatives: 

We have the following: 

62 



Lemma 2.3.1 Let Cauchy data for a metric of the form {2.3.3} satisfy the vacuum 

constraint equations, suppose that there exists tP+ such that 

Then 

t/J < tP+ =? Y+(O,t/>) < 0, 

t/J > tP+ =? Y+(O,t/>) > 0. 

The same statement holds with the subscript "+ '' replaced by the subscript "- ". 

Proof: From equations (A.2)-(A.3) on p. 370 in (66] we have 

thus 

ay± X 
atjJ = h± y± + 2Y ' 

ax XY'f 
h± = ±F 7it - 2Y ' 

(2.3.4) 

(2.3.5) 

(2.3.6) 

0 

Lemma 2.3.1 implies, that in the vacuum the topologies S3 and JP3 are excluded: 

Proposition 2.3.1 Let (3E,g;j,I<ij) be S0(3) invariant Cauchy data, 3 E compact, con

nected, orientable. Then 3 E ~ S 1 x S2 or IP3#, JP3 ; moreover, V'Y is timelike, where Y 

is the areafunction (cf. {2.3.3}}. 

Proof: Suppose first, that 3 E ~ S3 • By construction of the coordinate system (2.3.3) 

we must have 

Y(t = 0, t/> = 0) = 0 , 

Y(t = 0, t/> = 1) = 0, 

aY 
atjJ (t = 0, tP = 0) > 0 ' 

aY 
-(t = 0, tP = 0) = 0' at 
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( cf. e.g. Appendix C to [32] for a detailed description of functions and tensors invariant 

under in that reference rotations around a single axis are considered, the results 

generalize to the full rotation group in a rather straightforward manner). 

that 

1) < 0' 

therefore there exist ?/J± such that 

which makes inconsistent with (2.3.4), thus on S 3 no solutions of the vacuum 

constraints exist. Since a solution of the vacuum constraints on JP3 can be pulled-back 

to S 3 via the r"'""'"'nrr map, no such solutions exist on 1P3 either. It thus remains to 

that on S1 x and JP3# JP3 the vector field 'VY must be timelike. Let us first 

note that the map (j) : [0, 1] X --> [0, 1] X S 2 defined by 

?jJ E [0, ~] , 

Rw), ·if;E 1], 

where R is the antipodal map, extends to a double covering map <1> : S1 x S2 --> JP3# IP3 

Since S1 X 5'2 is itself covered 1R x S2 it is sufficient to show timelikeness of 'VY for 

solutions (with period 1) of the constraint equations on 1R X S 2 • Suppose that 

there exists a point ~J+ such that 

Y_(?f-) = 0, or both, then from 

( 1f+) = 0, or there exists a point 'lj,_ such that 

it follows 

(2.3.9) 

which contradicts periodicity of Y±, thus neither nor Y_ can change signs. Let ?fo be 

a local extremum of then ~~ ( t = 0, ?fo) = 0, and we have 

which implies 
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D 

One can now proceed as in the Appendix B to [66] to conclude that 3 :E can be deformed 

in 4 lVI in such a way that ~~ = 0, a reparametrization of the 'tj;'s leads to ~~ = 0, A and 

f as in (2.3.2), and thus in both S1 x .'P and JP3# IP3 cases one obtains a two-parameter 

family of metrics on 4 _M (parametrized by the area A of the group orbits and the length 

.f of closed geodesics orthogonal to the orbits4 ) which are, locally, isometric to the metric 

under the horizon of the Schwarzschild-Kruskal-Szekeres manifold. 

It may be of some interest to describe a larger family of space-times, with S1 x S2 spatial 

topology, the metric of which is locally isometric to the "r < 2m Schwarzschild metric", 

but on which no global action of S0(3) by isometries exists. Consider the metric (2.3.2) 

with ~~ = * = 0 on the manifold (2.3.1) in which the relation " "' " identifies {0} x 52 

with { 1} x S 2 via a rotation w E S0(3) of S2 : 

(O,p),...., (l,wp), wE 50(3). 

In this way one obtains a five-parameter family of smooth metrics, parametrized by5 

(f, A, w) E (0, oo) X (0, oo) x 50(3). The four-dimensional metric is, again, loca.lly 

isometric to the "r < 2m Schwarzschild" metric with an appropriately chosen m. 

2.4 Spatially compact Bianchi I space=times. 

In this Section we shall discuss the space of maximally developed, globally hyperbolic, 

smooth Hausdorff vacuum metrics with compact U(l) x U(l) x U(l) symmetric Cauchy 

surfaces 3:E. G = U(l) X U(l) X U(l) symmetry implies that 3:E is a three dimensional 

torus T 3 ( cf. e.g. [45]) and the action of G is transitive on 3:E, choosing group coordinates 

one 3 :E and the geodesic distance on geodesics normal to 3 :E as a time coordinate in 4 I\1. 

4Strict!y speaking, f is the length of such geodesics when 3 2; = 5 1 x 5 2 , and half of the length when 
3y; = JP3# JP3. 

5It is easily seen that two such metrics with w1 =f' w2 will not be isometric: a geodesic orthogonal to 
a sphere S~. =: { !/; = 1/Jo} and passing through a point p E S~. will again interesect S~. at wp. 
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we have 

(2.4.1) 

Let us momentarily forget about the identifications xi = xi + 271" and consider the metric 

(2.4.1) on JR3 • At any chosen timet= to there exists a matrix L~ E SL(3,JR) such that 

(2.4.2) 

Since the right hand side of (2.4.2) is invariant under S0(3) the matrix L~ is not uniquely 

defined, and we may choose wj E 50(3) so that 

(2.4.3) 

by an abuse of notation we have used the symbol L~ to denote Liwj. Let 

(2.4.4) 

at t = to we have 

(2.4.5) 

From 1) the existence of diagonal solutions of the equations of motion, namely the flat 

metrics on JR4 or the Kasner metrics [79] on (0, oo) x Jli3; 2) uniqueness up to coordinate 

transformation of solutions of vacuum Einstein equations; it follows that all solutions can 

be diagonalized for all t and are either Minkowski space-time or the Kasner metrics6 

P7 = L;p; = 1. (2.4.6) 

Returning to T 3 , the equations (2.4.4), (2.4.6) and (2.4.1) give 

(2.4. 7) 

6This simple argument is due to V.Moncrief. 
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in the T 3 - Minkowski case, or 

(2.4.8) 

in the T 3 - Kasner case. All coordinate transformations preserving (2.4. 7) can be shown 

to be of the form 

t--+ t + T, Zj E SL(3,Z) (detZj = 1,Zj E Z), 

(2.4.9) 

while those preserving (2.4) are 

t --+ t, Zj E S£(3, Z), (2.4.10) 

Let Diffo(4M) be the path-connected component of the identity of the diffeomorphism 

group of 4M. Elementary singular homology considerations show that the diffeomor

phisms (2.4.9)- (2.4.10) are in Diffo(4M) if and only if ZJ = 15}. It follows that the set 

of maximally developed globally hyperbolic Hausdorff Bianchi I space-times with spa

tially compact Cauchy surfaces divided by Diff0 can be given the structure of a manifold 

which is the union of three disconnected pieces: 

• a six dimensional manifold of metrics (2.4. 7) (parametrized by 9ii ), 

• a ten dimensional manifold of metrics (2.4) (one parameter for the p;'s, nine for 

the L}'s), and 

• a ten dimensional manifold of metrics which differ from (2.4) by a change of time 

orientation, t --+ -t. 

The subset of extendible metrics of the above type consists of six disconnected nine 

dimensional submanifolds, which consist of Kasner metrics with one of the parameters 

p; equal to 1, thus a generic maximal Bianchi I space-time is inextendible. 
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