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Abstract. This paper focuses on physics and mathematics behind the 
numerical software. Our calculations show that the temperature variation 
recorded in the Great Artesian Basin significantly affects thermodynamic 
properties of groundwater such as dynamic viscosity and density. Dynamic 
viscosity varies by a factor of four within the temperature difference typical 
of the basin, and water density variation may produce a convective motion 
in higher permeability regions. We suggest to treat the fl.ow in the higher 
permeability regions as a non-isothermal fl.ow. A rigorous approach to mod­
elling such a fl.ow will be to invoke the continuity equation for a variable 
density fl.uid, the energy equation and the momentum equation in the form of 
the generalised Darcy's law. Accordingly, numerical packages for simulating 
non-isothermal fl.ows in porous media should be applied. 

1. Introduction 
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The Great Artesian Basin (GAB) occupies 1, 700,000 km2 or 22% of Australia. Its 
groundwater is of vital importance to economy and environment of the Australian outback 
regions. The main exploited aquifer of the GAB consists of the Cadna-owie Formation 
and Hooray Sandstone of the Jurassic and Lower Cretaceous sequence of the aquifers. 
The horizontal extent of the main aquifer is of the order of 106 meters, while its vertical 
extent is of the order of a few hundred metres with the maximum value of approximately 
800 metres. Throughout the GAB area the main aquifer is fairly deep and confined by 
impervious sediments. Near the basin boundaries it outcrops at the surface underlying 
permeable sandy sediments. The detailed description of the geology and hydrogeology of 
the GAB can be found in Habermehl (1980). 

Hydrogeological studies of the GAB have been carried out since the 1870's with an 
abundance of measured data now available for modelling. Measurements taken from 
numerous water bores in the area have been summarised in Australian Geological Sur­
vey Organisation (previously Bureau of Mineral Resources) hydrogeological maps and 
digital databases. This observation data comprises a good solid foundation for building 
groundwater models. The purpose of modelling is to develop a computerised model to 
assist in the management of the GAB and therefore to test various scenarios of ground­
water extraction. The computerised model includes all simplifications and assumptions 
made at the starting step of the modelling process when the conceptual model is build. 
The conceptual model determines the choice of mathematical equations and a numerical 
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method for solving those equations. This has a major impact on the final numerical 
results. Therefore, all the assumptions in the conceptual model must be justified. 

The aim of this paper is to examine the applicability of the following assumptions to 
the main exploited aquifer of the GAB: 

1. The assumption of isothermal flow. 

2. The horizontal flow approximation. 

The first assumption reduces the number of dependent variables by eliminating tem­
perature, whereas the second assumption reduces the number of independent variables by 
eliminating the vertical coordinate. It is important to realise that both aforementioned 
assumptions exclude the dependence of water thermodynamic properties on tempera­
ture from consideration. In what follows we show that these assumptions are not valid 
everywhere in the main exploited aquifer. 

2. Non-isothermal Effects 

Significant temperature variation has been recorded in the GAB. Groundwater tem­
peratures in waterbores range from 30°0 to 100°0 at the surface (Habermehl, 1980, 
86). Geothermal gradients calculated from temperature logs range from 15K/1000m 
to 100K/1000m with a mean value of 48K/1000m (Pitt, 1982; Cull & Conley, 1983). 
According to Pitt (1982), more than 75% of these estimates exceed "normal" geother­
mal gradient of 30K/1000m as given in Grant et al. (1982). These observations are 
remarkable and should not be overlooked. Temperature differences in a horizontal di­
rection are as large as 70K. Such large temperature differences will considerably affect 
thermodynamic properties of groundwater. 

The effect of these temperature differences on water dynamic viscosity and density is 
examined below. 

2.1. Water Properties. Figure 1 shows the dynamic viscosity of water calculated 
from steam table equations for a range of temperatures typical of the GAB. According 
to our calculations, dynamic viscosity varies by almost a factor of 4. Since flow velocity 
is inversely proportional to dynamic viscosity, the dependence of dynamic viscosity on 
temperature is important. Water density calculated for this temperature range is shown 
in Figure 2. Although the density change is relatively small, it cannot be neglected. 
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Figure 1. Dynamic viscosity versus T. 
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Figure 2. Water density versus T. 

2.2. The Onset of Thermal Convection. Figure 2 shows that density of water 
decreases when temperature increases. In the presence of a downward temperature in­
crease, the buoyancy forces may overcome stabilising effects of the viscous forces and 
instability may appear in the form of convective flow. The Rayleigh number is normally 
used as a quantitative measure for the onset of thermal instability. 

For the fl.owin porous media the Rayleigh number can be written in the form (Nield 
& Bejan,.1992): 

& = p*g(3kHt:..T, 
/1*0'. 

(I) 

where p* is the density of water at some reference temperature, g is gravitational ac­
celeration, (3 is thermal expansion coefficient for water, k is rock permeability, 11* is 
characteristic dynamic viscosity, a is thermal diffusivity of the porous medium, and t:..T 
is the temperature difference over a distance H. 

The critical Rayleigh number for the onset of thermal instability in homogeneous porous 
media is (Nield & Bejan, 1992) 

(2) 

For the GAB model, p "' I03kgjm3 . (Here and in the following ""'" stands for "is 
of the order of".) We take H "' 250m, then t:..T "' 12K, where t:..T is calculated 
from a mean value of geothermal gradient for the basin of 48 K /1000 m. For thermal 
expansion coefficient of water, steam table equations give the characteristic value of 
(3 "' 10-3 K-1. The characteristic value of dynamic viscosity, as calculated from the 
steam table equations, /1* rv 0.5 X 10-3 N sjm2 (Figure 1). Thermal diffusivity of the 
saturated rock can be calculated using a= >..j(pep), where>.. is rock thermal conductivity 
and cp is water heat capacity at constant pressure. For the basin sequences, >.. is around 
3WjmK (Cull & Conley, 1983) and cp is of the order of 0.4 x I04 JjkgK (Haar et al., 
1984), hence 0'. rv 10-6m2 Is. According to (Habermehl1980), permeability k ranges from 
10-14m2 to 10-12m2. 

Finally we have: 

fu rv 12 X 1013 X k. 
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When k ~ 10-12m 2 , the Rayleigh number becomes Ra ~ 120 > Racr. Therefore, 
convective flow is likely to develop in the higher permeability regions of the aquifer. The 
actual flow pattern is not horizontal in the vicinity of these regions, because vertical 
forces are significant there. Hence, the essentially horizontal flow approximation is not 
applicable to the aquifer as a whole. 

2.3. A Mathematical ModeL A mathematical model for the flow in the con­
vective regions includes the continuity equation for a variable density fluid, the energy 
equation to account for heat transfer, and the momentum equation written in the form 
(Nield & Bejan, 1992): 

- k v = --(vp- p?J), 
f../, 

(3) 

where V is the Darcy velocity vector, p is pressure and g is the acceleration vector. 
Equation (3) is known as the generalised Darcy's law equation. It is used to describe 
non-isothermal and variable density flows in porous media when the Reynolds number is 
less than 10 (Bear & Verruijt, 1987; Nield & Bejan, 1992). The concept of potentiometric 
head is no longer applicable for such flows, and three aforementioned equations involve 
pressure p and temperature T as dependent variables. The constitutive relationships that 
describe thermodynamic water properties as functions of temperature must be added to 
these equations. There has been a number of numerical packages developed for solving 
these equations, for example TOUGH2 (Pruess, 1991). 

Note that the numerical program MODFLOW (McDonald and Harbaugh, 1988) is 
only applicable to constant density flows. It solves one second order partial differential 
equation in terms of potentiometric head obt<:1ined combining the continuity equation 
for a constant density fluid and the Darcy's law equation in the following form: 

V= -K\lh. (4) 

case where p = is identical to (3). 
~~~-'U'"' flow modifications of MOD FLOW, for example (Kuiper, 1983), do not 

solve the energy equation and, hence, can only give the first approximation to the reality. 
assuming the temperature distribution to be known, ignore coupling between 

heat and mass transfer which is the most essential of non-isothermal flows. Thus, 
MODFLOW and its modifications cannot be used for simulating flow in the convective 
regions of the GAB. 

2A. Potentiometric Surfaces. As mentioned above, the concept of potentiomet­
ric head is not applicable to non-isothermal flows. However, to some limited extent it can 
be used for constructing potentiometric surfaces. An important point is to distinguish 
between interpolated and calculated heads. Interpolated heads are derived from mea­
surements. Hence, they do not involve computational errors due to a use of equation ( 4) 
instead of equation (3). Also, the dynamic viscosity variation does not affect interpolated 
potentiometric heads because the definition of potentiometric head does not include ,n. 
The only effect we need to consider in the case of interpolated heads is variation in water 
density with temperature. 

Let us obtain a quantitative estimate for the effect of temperature variation on the 
interpolated potentiometric head h. 
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By definition 

p 
h =- + z, (5) 

pg 

where z is the vertical coordinate. In equation (5) we assume p = p(T). As shown 
in Figure 2, water density does not vary significantly with temperature. If the density 
change due to temperature is small, then the Boussinesq approximation can be used 
(Nield & Bejan, 1992): 

p = [1- {3(T- T*)], (6) 

where is the density of water at some reference temperature T'' For the sake of 
simplicity, we take {3 = canst. 

Equation in a dimensionless form is 

where T = (T­
factor (Pestov, 1997). 

p - = (1-
p* \ 

(7) 

is dimensionless temperature and {) = (3f).T is the buoyancy 

e, can be used as a quantitative estimate for the impact of 
variation on the interpolated head. For the GAB we have 

!::.T = 70}( for the longitudinal convection. to our calculations, f3 ,..__, 0.73 x 
. Finally we have f) ~~ 5% to for the interpolated potentiometric head 

an error due to the of isothermal flow does not exceed 6%. Note that for the 
calculated head an error due to neglecting temperature variation may be nmch larger. 

3, Conclusions 

This paper has examined the applicability of the assumption of isothermal flow and 
the essentially horizontal flow approximation to the main exploited aquifer of the GAB 

aquifer). l1~s the above a,ssumptions neglect the dependence of water 
thermodynamic on temperature, are not applicable everywhere in the 
aquifer considered. 

According to our the dynamic viscosity of water changes a factor of 4 
within the GAB horizontal temperature difference of 70IC Since hydraulic conductivity 
is inversely proportional to dynamic viscosity, the dependence of dynamic viscosity on 
temperature cannot be neglected. 

Density variation with temperature, although relatively small, cannot be neglected 
either. Our calculations show that in the higher permeability regions of the aquifer with 
k ,..__, l0- 12m 2 density variation may produce the convective flow. In such regions forces 
acting in the vertical direction are not negligible and the vertical flow component is 
significant. The essentially horizontal flow assumption involves two conditions: (1) the 
aquifer horizontal dimension must be much larger than its vertical dimension, and (2) 
forces acting in the vertical direction must be much smaller than those acting in the 
horizontal direction. As the second condition does not hold in the convective regions, the 
assumption of essentially horizontal flow is not valid everywhere in the main exploited 
aquifer. 
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The n1athematical model for non-isothermal flow includes the continuity equation for 
a variable density fluid, the energy equation, and the Darcy's law equation in a general 
form as given by equation (3). In the case of single phase flow, these three equations can 
be reduced to two second order partial differential equations in terms of pressure p and 
temperature T. 

The mathematical model for isothermal flow consists of the continuity equation for 
a constant density fluid and the Darcy's law equation in terms of head h as given by 
equation ( 4). It can be reduced to one second order partial differential equation for one 
dependent variable h. 

It is generally accepted that the flow in the convective regions is neither horizontal 
nor isothermal. Therefore, the mathematical model for non-isothermal flows in porous 
media should be used to model such regions. The corresponding numerical packages for 
simulating non-isothermal multidimensional flows in porous media should be applied. 

Outside the convective regions, the flow can be assumed to be horizontal and, as the first 
approximation, the constant density flow model can be used. The dependence of dynamic 
viscosity on temperature can be included either calibrating hydraulic conductivity 
values against measurements or introducing effective hydraulic conductivity Keff = 
Kt-t(T*)/ t-t(T). Here t-t(T) must be calculated from numerical steam table equations 
using measured and interpolated temperatures. There is no need to use variable density 
modifications since variable density effects are insignificant outside the convective regions. 
For calibrating purposes it is advisable to use the most recent measurements, since the 
application of the isothermal model is limited to periods of time during which water 
thermodynamic properties remain unchanged (Kuiper, 1983). The computerised model 
of this type is computationally less expensive and will give reasonable predictions over 
periods of time during which only the pressure changes occur. It is not advisable to use 
isothermal models for transient simulations. 
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