
New Methods in Applied and Computational Mathematics (NEMACOM'98)
Proceedings of the Centre for Mathematics and its Applications

On the ~rnplerr~entation o·f A~gebrah~ Multi""h~~ile~ MeU1ods
on Vector and Pcn·aUei .. Vector Con1puters

Lutz Grosz

School of Mathematical Science, Australian National University, CanbeTra, ACT 0200, Australia.

1. The Introduction

Iterative methods of the conjugate gradient type (CG, see [9]) are applied to solve the
system of linear equations

Au=b (1.1)

where A = (ai,j)i,i=,l...,n E Rnxn is the given, non-singular and sparse coefficient matrix,
b E Rn the given right hand side and u E Rn the sought solution. In order to improve the
convergence rate and the robustness of the iteration procedure a non-singular precondi­
tioner matrix M E Rnxn is introduced. The CG method is applied to the transformed
linear system:

(1.2)

In order to limit the number of iteration steps the preconditioner matrix Af has to
be selected such that the eigenvalues of the new iteration matrix M-1 A are clustered.
Moreover the complexity for the evaluation of M-1p for a given vector p E Rn must have
moderate complexity in order to reduce significantly the computational effort for the
whole solution procedure. Unfortunately in practical applications a preconditioner which
fulfils these conditions in theory does not necessarily reduce the all-over computing time
if the preconditioner cannot be or is not implemented efficiently on the used computer
architecture.

The paper is aimed at the implementation of a subroutine which provides a robust
and highly efficient solver for a linear system (1.1) which arises from the finite difference
discretisation of a scalar boundary value problem of order two on a rectangular grid.
The obvious preconditioner for this problem class is the multi-grid technique, see [4]. In
order to achieve a reasonable flexibility and keep the interface of the subroutine simple
for user the algebraic multi-level iteration see [1]) is the method of the choice.
The method is related and competitive to the multi-grid method but is more robust
and offers more flexibility regarding the problem, the discretisation method and the grid.
Therefore AMLI needs only the coefficient matrix A as input, a fact that makes the
application very handy for the user. However, it is clear that for some applications a
suitable multi-grid solver is much faster than AMLI. This price has to be paid for more
flexibility and robustness.

The target platform is a distributed memory, MIMD computer with shared memory,
SIMD nodes (eg. Fujitsu VPP, NEC SX-5). The nodes are linked with aX-bar network
with a high bandwidth (1- 4 floats per cycle) but with a high latency (» 1000 cycles).
Consequently on these architectures the transfer of one single long message has to be
preferred the transfers of several shorter messages even if the total volume of the sent
data is larger. This fact has to be considered in the distribution of the data over the
nodes.

2 L. Grosz

input vector V

\
extension of V

matrix A diagonals of A dummy entries output U

FIGURE 1. Vectorised matrix-vector multiplication.

The performance of a single node is quite impressive (> 2 Gflops). Unfortunately
the times for parallel operations (eg. vectorisable loops) is quite large. It is
very surprising that for vector computers the start-up of vector instructions became even
more costly during the last years (eg. > 300 cycles for a daxpy-operation an the Fujitsu
VPP300). The reason for this trend is the introduction of parallel vector pipes which
are delivering several results per cycle (eg. 16 results per cycle for NEC SX-5). Thus
the usage of extremely long vectors is vital in order to get a good performance, eg. on
the Fujitsu VPP300 the vector length for a daxpy-operation has to be larger than 3000
to achieve at least of the possible peak performance. This is the reason why in the
presented implementation vector oriented data structures are preferred to grid oriented
data structure (as typically used in multi-grid codes).

In the first part of the paper the basic data structures of the implementation is pre­
sented. In the second part the AMLI algorithm is introduced as a block incomplete
factorisation preconditioner. The third part of the paper discusses the approaches to
get a highly efficient implementation on the relevant computer architectures as well as
a black-box type routine which requires only the coefficient matrix as input data. It is
emphasised that the selected methods require a logically rectangular grid, which can be
recovered from the given coefficient matrix, but no information on the location of the
grid points is needed. Some examples are presented and discussed in the fourth part.

2. Diagonal Storage Scheme

It is assumed the coefficient matrix A arises from the discretisation of a boundary value
problem on a rectangular, d-dimensional grid. Fori= 1, ... , d m; denotes the number of

Algebraic Multi-level Methods

grid points in the i-th spatial direction. Thus the number of unknowns is
d

n :=II mi.
i=l

3

(2.1)

The non-zero entries in the coefficient matrix A are concentrated in a few diagonals
L). = {dsls = 1, ... , ~(L).)} C Z, ie.

a· · -'- 0 =? J. - i E L). 'L,J I (2.2)

for all i, j = 1, ... , n. Notice that the i-th spatial direction is represented by the diagonal
i-1

Di := II mk E L). , (2.3)
k=l

fori= 1, ... , d, see Figure 1. In the case of a 2d+ 1-point stencil used in a finite difference
scheme of order two it is L). = {±Dili = 1, ... , d} U {0}. Thus it is ~(L).) = 2d + 1.
Conversely it is simple to find a set { Dili = 1, ... , d} in a given set of diagonals L).

that allows to recover the spatial dimension and the number of grid points in the spatial
directions (especially in the case of 3d-point stencil).

To get an efficient implementation of the CG iteration an optimal implementation of the
matrix-vector multiplication has to be used as this operation consumes most computing
time within one iteration step (especially for CG methods with short recurrences like
classical CG and TFQMR, see [9]).

To get an efficient matrix-vector multiplication on a vector computer the matrix A is
stored into the two-dimensional array MAT(n, ~(L).)) using the diagonal storage scheme,
see [8]: For diagonal d8 E L). with d8 2 0 the entries (ai,i+d.)i=l, ... ,n-d. are stored into
MAT(l : n- d8 , s) where the entries MAT(n- d8 + 1 : n, s) are set to zero. For diagonals
d8 E L). with d8 < 0 the entries (ai,i+d,)i=l-d,,n are stored into MAT(l- d8 : n, s) where
the entries MAT(l : -d8 , s) are set to zero.

The matrix-vector multiplication u := u+Av is executed by the following nested loops:

do s = 1, ~(L).)
do i = 1, n

U(i) = U(i) + MAT(i, s) * V(ds + i) (2.4)
end do

end do

where U is the array of the result vector u. Notice that the array V of the input vector
v E Rn must be allocated as V(1 - Bt:. : n + Bt:.) where

~<(!:.)
Bt:. =max Ids I (2.5)

s=l

is the bandwidth of the matrix A. The values V(1- Bt:.: 0) and V(n + 1: n + Bt:.) do
not have any effect on the result, as the corresponding entries in the matrix array MAT
are set to zero.

The inner loop of the procedure (2.4) can be vectorised with a very long vector length
n. To avoid unnecessary load and store operations on the output vector U unrolling over
the outer loop s can be introduced. This is possible as the length of the inner loop is
independent from the outer loop by filling the array MAT with zeroes. The loop unrolling
reduces the performance loss by the narrow memory bottleneck between memory and
vector unit as it is common for recent vector architectures.

4

portion of V on processors

matrix A

L. Grosz

overlap in V

_______________________ .P~~e~s~r_l
________________ _pr~~e~s~r_?.

__________ _p~o~e~s~r_3
__________ p:_o~e~s~r_4

processor 1

processor 2

processor 3

output U

FIGURE 2. Parallel-vectorized matrix-vector multiplication.

3. Parallelisation

On a parallel computer with p nodes the array U as well as the array of the diagonals
MAT are stored in banded form, ie. each node holds (about) np := ~' consecutive entries
of the arrays. For instance the array entries U((q- 1)np + 1 : qnp) are stored on node
q E {1, ... ,p}. The input vector Vis stored with overlap, ie. V((q- 1)np + 1- B~ :
qnp + B~) is stored on node q E {1, ... ,p}, see Figure 2. The entries in the overlap
regions V((q- 1)np + 1- B~ : (q -1)np) and V(qnp + 1: qnp + B~) have to be adjusted
before starting the procedure (2.4). It is emphasised that the vector length for a parallel
execution is reduced to np which limits the reasonable problem size for a particular
number of nodes.

Notice that this distribution of the data corresponds to a slice-partioning of the un­
derlying grid. Although a box-partioning would reduce the volume of transfered data to
adjust the overlap the number of start-ups which are extremely costly on the relevant
computer architectures is much higher than for a slice-partioning.

This parallelisation strategy, ie. partioning of the vectorised loop and data partioning
with overlap (where necessary) is applied when implementing the algorithms presented
in this paper.

Algebraic Iviulti-level Methods 5

4. Block Incomplete Factorisation

In this section we present the framevvork of block incomplete factorisation in order to
construct the preconditioner see [7]:

Let C be a subset of the set of unknowns { 1, 2, ... , n}. The n c unknowns in C are
called the coarse level unknowns and the unknowns in F := {1, 2, ... , n} \ C are called
the removed unknowns. The matrix A is subdivided in the following way:

A= [App Ape] . (4.1)
Acp Ace

The columns and rows of the sub-matrix App E R(n-nc)x(n-nc) belong to the removed

unknowns in F and those of the sub-matrix Ace E Rn°xnc to the coarse level unknowns
in C.

Using a suitable definition of the coarse level unknowns AFF is a diagonal matrix.
To be more general it is assumed that App has entries outside its main diagonal but
can be approximated with reasonable accuracy by a diagonal matrix Vpp, eg. by using
approximate inverse techniques. Notice that the usage of an approximation of AFF allows
the construction of a larger set of removed unknowns F which produces a smaller and
thus faster solvable coarse level system.

Using the approximation VFF of AFF the approximate Schur complement

(4.2)

of A is calculated. The matrix A c E Rn° xnc defines the coefficient matrix for the coarse
level system. A block incomplete factorisation JV! of A is now constructed by

M = [~~: ~] [~ Vp1ft~FC] (4.3)

where M 0 is an approximation of the Schur complement A0 . If the dimension of A0 is
reasonably large M 0 is constructed by a block incomplete factorisation again. For 'small'
matrices A c the matrix is implicitly constructed by the iterative solution of a linear
system with coefficient matrix A0 . Normally an accuracy of three digits is sufficient.
It is emphasised that in a strict sense the preconditioner is not a linear operator. The
construction of may include dropping strategies which is not considered in this paper,
see [7]

The algorithm to calculate p := Jvl- 1q = BIF(O, q) is the following recursive procedure:

1: BIF(k, q)
2: if(k=l)
3: solve Ap = q
4: else
5: (qp, qc) +-- q
6: qc +-- q0 - AcpVppqp (4.4)
7: Pc <- BIF(k- 1, qc)
8: PF +-- Vpp(qF- AFcPc)
9: p +-- (pp,Pc)

10: end if
11: return p .

6 L. Grosz

Here (like in the following presentation) the lower index C for the coefficient matrix
on the coarse level is dropped. The operation (qp, qc) +-- q in step 5, which separates
a vector q E Rn into the components qp E R(n-nc) belonging to the set of removed
unknowns and components q0 E Rna belonging to the set of coarse level unknowns, is
called restriction. The inverse operation p +-- (p F, Pc) in step 9 is called prolongation.
The forward substitution in step 6 and backward substitution in step 8 need matrix-vector
multiplications with the matrices AcF and Ape. Moreover matrix-vector multiplications
with the coefficient matrix on the coarsest level l are needed in order to perform the
iterative solver. As we want to get a fast evaluation of M-1 these matrices may have
only a view diagonals with non-zero entries in order to store these matrices efficiently in
the diagonal storage scheme. This requirement has to be considered when selecting the
coarse level unknowns C.

5. AMLI

In order to get a stable block incomplete factorisation we assume that the matrix A is
an M-matrix, see [2]. Then there is a vector vpos E Rn with

vpos > 0 and Avpos > 0 (5.1)

(v > 0 iff for all i = 1, ... , n vi > 0).
The positive vector vpos is used to construct the diagonal matrix VFF of the matrix

AFF in the approximate factorisation (4.3). VFF is calculated from the equation

(5.2)

The entries of the main diagonal in VFF are positive due to the M-matrix properties of
A and the definition of vpos. Moreover it can be shown that the new coarse level matrix
fulfils the condition (5.1) with the positive vector vf78 and for all levels Vpp has positive
main diagonal entries (ie. there is no break down) independent from the selection of the
coarse grid.

In the case that A is symmetric the coarse level matrices are positive definite which is
important for a fast iterative solution of the linear system with a CG method. For this
case a very well-developed analysis is available, see [1]. The corresponding preconditioned
CG method is called algebraic multilevel iteration (AMLI). However, the analysis was
given for a W-cycle type implementation, but by solving a sufficiently large system at
the lowest levell the computing time for a V-cycle method (4.4) is optimal, see [5].

6. Construction of vpos

Unfortunately there is no algorithm available to calculate vpos which is significantly
cheaper than the costs for the solution of the original system (1.1). Therefore a heuristic
method, which is not always but mostly successful, is used to construct a suitable vpos

cheaply.
Motivated by the assumption that the matrix is produced by the discretisation of a

boundary value problem it is assumed the vpos is a d-dimensional polynomial

Po
Vpos := 2:::: CXpAP

p=O
(6.1)

Algebraic Multi-level Methods

where it is

In the case that A). 0 > 0 is not fulfilled (in which case it is p0

(ap)p=O, ... ,po are calculated successively in the following way:
Starting with p = 1 and v = 1 we try to find f3 with

V + j3).P > 0
Av + j3A).P > 0 .

7

(6.2)

0) the values for

(6.3)

Using the fact that .\f > 0 for all i = 1, ... , n the following conditions for f3 can be
derived:

).P
f3 > (3, . •

0 :=mm-
• Vi

f3
. (Av)i

(6.4) > f3min := - min -(--
(A.AP);>O A,\P)i

f3
(Av)i

< f3max := - max -(--
(A.AP);<O A.\P)i

here we set max 0 = -oo and min 0 = oo.
In the case that max(f3o, f3min) < f3max we can set f3 = ~(max(f3o, f3min) + f3max) (and

f3 = I max(f3o, f3min)l + 1 if f3max = oo). The vector vpos = v + j3).P fulfils the positivity
conditions (5.1).

If max(f3o, f3min) 2: f3max (ie. there is no f3 to fulfill condition (6.3) we set f3 =
1.05 max(f3o, f3min) if max(f3o, f3min) > 0 and we set f3 = 0.95 max(f3o, f3min) if max(/3o, f3min) >
0. Using this setting we ensure that the first condition in (6.3) is fulfilled and becomes
likely that the second condition hold for a large number components. With v := v + (3.\P
and p := p + 1 a new f3 is calculated to fulfill conditions (6.3).

We found that this approach works very good in many applications. However, the
algorithm can fail even if A is an M-matrix. However, if the algorithm is not successful
after Po = 4 steps it is set vpos = (1, ... , 1) = .\0 . By experience we learned that if the
main diagonal of VFF contains only positive entries AMLI works still very well, although
vpos does not have the required properties. Therefore the factorisation is stopped if the
matrix condensation (5.2) produces a non-positive diagonal matrix.

7. Definition of Coarse Level

The selection of the coarse level unknowns C bases on an alternating direction ap­
proach: The coarse grid is constructed by removing every second grid hyperplane in a
fixe~ spatial direction. The spatial direction is changed from coarsening step to coarsening
step in order to achieve a uniform coarsening. The number of unknowns is approxima­
tively halved in every coarsening step.

For instance starting from a m1 x m2 , 2-dimensional grid the first level is created
by removing every second grid line in the XI-direction The second level is created by
removing every second grid line in the x2-direction, see Figure 3. So the first level deals
with m 12+1 x m 2 and the second level with m 12+1 X m22+1 unknowns.

8 L. Grog

removed unknowns in the first level removed unknown in the second level
,...---,--- ,...---,

...
[J

•

"" " [J
... ..

[]
..___.__.___.

FIGURE 3. Definition of the two coarse level grids for a 7 x 7 grid.

7.1. Direction of Coarsening It turned out that in some applications it is not
optimal to follow strictly the alternating direction approach, eg. if the number of grid
points m 1 in the first grid direction is much larger than the number of grid points m 2 in
the second grid direction. In this case it is better to execute two successive coarsening
steps in the first grid direction before one in the second grid direction. The following
selection strategy for the direction of coarsening is used:

It can be expected that the error of the condensation of the matrix block AFF to the
diagonal matrix VFF is small if the entries of AFF which are outside the main diagonal
are small. Thus the block matrices AcF and AFc should contain the larger entries of
the matrix. The entries in these matrix blocks belong to the diagonals ±Di of A which
represent the direction of coarsening according to definition (2.3).

So the grid is refined in that direction i where the sum of the corresponding diagonal
entries

n-D; n

L iak,k+DJ + L iak,k-DJ (7.1)
k=l k=l+D;

is maximal. As the size of the entries in the diagonal Di are proportional to the square of
the number of grid points mi in the corresponding spatial direction, condition (7.1) picks
up this direction for coarsening (if the underlying boundary value problem is isotropic).

7.2. Numbering of removed unknowns Usage of the lexicographic ordering for
the grid point of the coarse level and the set of removed unknowns creates matrices Ace
and AFF which both contain only a small number of diagonals with non-zero entries.
When using a 2d + 1-point stencil for the discretisation the number of diagonals is 2d - 1
for both matrices.

Unfortunately this is not necessarily true for the matrices AFc and AcF, namely if the
number of grid points in the direction of coarsening is odd. Figure 4 shows the example of
a 5 x 5 grid with coarsening in the first spatial direction. The number on the connection

d -

Algebraic Multi-level Methods

4 5 4

3 4 3

2 3 2

1 2 1

0 1 0

entry to diagonal d in AFc

5

4

3

2

1

removed unkowns

coarse level

FIGURE 4. Canonical numbering of removed unknowns.

9

between a coarse level and a removed node shows the diagonal of the corresponding entry
in Ape. Obviously in this example the number of diagonals with non-zero entries is 6 (in
case of an m 1 x m 2-grid it is m2 + 1). In a general situation the number of diagonals is
too large to achieve a fast matrix-vector multiplication using a diagonal storage scheme.

Using the observation that this situation does not occur if the number of grid point in
the direction of coarsening is even a dummy grid point is introduced. The grid points on
the created hyperplane which is orthogonal to the direction of coarsening are added to
the set of removed unknowns F. The corresponding additional rows in Ape and columns
in Aep are set to zero. As now the grids of coarse level unknowns and removed unknowns
are interlocked like a zipper the number of diagonals with non-zero entries in Ape and
Aep is minimal, see Figure 5. In the case of a 2d+ 1-point stencil the number of diagonals
is two for both matrices.

8. Assemblage of the Schur Complement

As we have seen in the previous section all sub-matrices contains only a few diagonals
with non-zero entries. We will see that this is also true for the approximate Schur
complement Ae.

If .6. e denotes the set of diagonals of the Schur complement A e and d E .6. e we get for
the entries in diagonal d by equation (4.2)

nc

(ae)i,i+d = (aee)i,i+d- 2..:)aeP)i,k(ape)k,i+d (8.1)
k=l

10 L. Grosz

dummy grid line

1 ~
1

1

1

1 -·~·=·Q·-·-·

removed unkowns
entry diagonal d in A

FC coarse level

FIGURE 5. Numbering of removed unknowns with dummy grid line.

for all i = 1, ... , , where Ape := VFFAFc· Using the fact that AcF is only non-zero
for entries in the diagonals l:icF we get

(a0)i,i+d = (acc)i,i+d- L (acF)i,i+e(iiFc)i+e,i+d (8.2)
eE,t,cF

for all i = 1, ... , . Consequently the diagonal d of the approximate Schur complement
A 0 can only contain non-zero entries if dis a diagonal with non-zero entries of Ace (ie.
d E f::1cc) or there is a diagonal e E l:icF in such a way that d - e is a diagonal with
non-zero entries of AFc (ie. d e E !::1pc):

1::1 c C !:icc U (l:icp + l::1pc) . (8.3)

This shows that the number of diagonals with non-zero entries in the approximate Schur
complement A0 is small as !:icc, t::..cF and t::..Fc contain only a small number of elements.
Actually in the case of a 2d + 1-point stencil and coarsening in the first spatial direction
it is fl.cF = { -1, t::..pc = {0, -1} and fl.cc = {±D;Ji = 2, ... , d} U {0}. From
formula (8.3) we get C:.° C Ll (as D 0 = 1).

In a general situation formula (8.3) is evaluated to get an estimate for the number of
diagonals with non-zero entries in A c. This allows to provide the storage needed for the
diagonals of the approximate Schur complement in order to assemble this matrix. The

Algebraic Multi-level Methods 11

diagonals of Ace are copied into this array and the remaining diagonals are initialised
with zeros. To evaluate the sum in equation (8.2) we take a diagonal e E b.cp of Acp
and a diagonal e E b.pc of Ape and multiply both component-by-component, where
in the diagonal e on offset of e is used. The result vector is subtracted from diagonal
e + e of the approximate Schur complement. Notice that these assemblage technique
requires K,(.6..cp) · K,(.6..pc) vector operations with vector length n° (actually it is n- n°
but because of the dummy grid points it is n°). After all diagonals of Acp and Ape have
been processed diagonals containing no non-zero entries are removed from the array of
the diagonals of the Schur complement.

It is emphasised that the small number of diagonals with non-zero entries in Ape
and Acp not only provides an efficient matrix-vector multiplication in the forward- and
backward substitution but also a very fast diagonal-by-diagonal scheme for the assemblage
of the approximate Schur complement. The latter ensures that the start-up phase to
calculate approximate factorisations does not devour the acceleration of the iterative
solver by the preconditioner.

9. Optimal Number of Levels

The selected number of levels has to be large enough to ensure that the coarse level
system is small and can be solved very fast. On the other hand a large number of levels
produces a significant loss of information during the coarsening procedure (which have to
be compensated by a W-cycle method). So the optimal number of levels has to balance
both effects.

If the number of operations per unknown for the forward/backward substitution is
equal to C0 and n(k) denotes the number of unknowns in level k the total complexity for
the forward/backward substitution C1b(l) is

(9.1)

where we use the fact that the number of grid points is nearly halved in every coarsening
step and assume that the l is sufficiently large.

When using a CG method for the solution of the coarse level system the complexity per
iteration step is proportional to n(l). The number of iteration steps, which are needed to
reach a certain accuracy, is assumed to be proportional to the number of matrix-vector
multiplications that are needed to transfer a perturbation from one end of the grid to
the other (a very optimistic assumption!). Thus, the complexity for the solution of the
coarse level system is

(9.2)

with a constant cl > 0.
A large number of levels l would make Czs (l) very small and would so minimise the

total complexity C1b(l) + C18 (l) for the evaluation of M-1. On the other hand l has to
be small in order to limit the number of outer iteration steps. If Cz8 (l) and Ctb(l) are
equal, ie. the same computational effort is invested to the forward/backward substitution
as well as to the solution of the coarse level problem, we can expect to achieve optimal

12 L. Grosz

computing time. So the coarsening procedure is stopped after level l if the condition

n(l) max m(l) < n
i=l, ... ,d(t) • -

(9.3)

is fulfilled (where we assume that C0 :=:::: C1).
By setting m~l) :::::: (n(ll)~ for all i = 1, ... , d and n(ll = ¥z- condition (9.3) is simplified

to
1

l = d + 1 log2 n (9.4)

(see [6]). Thus a typical number of optimal levels is in the order six. Notice that the
number of optimal levels grows very slowly with the number of unknowns n. In case of a
3-dimensional grid the number of grid points has to be increased by a factor of 16 before
an additional level should be used. This indicates that the valley of optimal values for l
is rather fiat. This is likely the reason why the condition (9.3) delivers very good results
(see next section) although its derivation seems to be very far-fetched.

10. Examples

In the following examples the timings of the presented AMLI implementation is mea­
sured on the Fujitsu VPP300 (with peak performance 2.2Gfiops). The coefficient matrices
A are generated by the discretisation of boundary value problems and normalised sym­
metrically to make the main diagonal entries equal to one. The right hand side b of the
linear system (1.1) is calculated from a solution u which is generated by a random sample.
The linear systems are solved with an accuracy TO L = 10-6 . For the inner iteration the
accuracy 10-3 is used. In cases of a symmetrical coefficient matrix ORTHOMIN is used
on the finest and coarsest level. Otherwise GMRES with truncation after five residuals
and restart after 20 iteration step is used on the finest and GMRES with truncation after
ten residuals and without restart is used on the coarsest level.

All timings are given in seconds and consider the whole solution procedure including the
assemblage of the coarse level matrices. If the timings are given in the form 'time/perf'
time is the computing time in seconds and perf the performance in million floating point
operations per second (Mfiops). The performance considers only the iteration procedure
but does not include the assemblage of the coarse level matrices. Columns entitled with
'Jacobi' refer to tests with Jacobi preconditioning but without multilevel preconditioning
(ie. l = 0).

10.1. 2D Poisson Equation The first test case is the 2-dimensional Poisson equa-
tion

-\7 · \7 u = f on 0
u = ¢ on an (10.1)

on the unit square 0 = [0, 1]2. The equation is discretised by the finite difference method
using a rectangular fo x fo grid.

The timings on one compute node for several grids and several number of levels is
presented in Table 1. The smallest CPU times for a particular problem size is marked
by using the bold font. Obviously the condition (9.3) for the selection of the number of
levels picks the optimal number of levels. However, this is not too difficult as the valley
of nearly optimal numbers of levels is rather fiat.

Algebraic Multi-level Methods 13

l n
123585 1 492929 1 1968897

0 4.13/785 17.50/856 233./839
1 8.23/793 59.60/829 448./837
2 3.49/704 22.40/806
3 2.28/637 12.20/770 80.6/791
4 1.31/504 6.02/688 30.1/804
5 1.12/393 4.27/626 20.4/753
6 0.92/320 3.02/538 12.7/683
7 1.03/293 3.09/487' 11.3/611
8 0.93/297 2.'74/472 9.95/57'1
9 1.11/308 3.29/471 11.7/563

10 1.08/317 3.20/483 11.5/555
11 1.21/323 3.85/497 14.3/558

TABLE 1. Computing time for 2D Poisson equation

I Ry = 1 Ry = 10 Ry = 100
n AMLI I Jacobi AMLI Jacobi AMLI Jacobi

274625 2.57/662 7.32/1012 3.48/639 17.6/908 16.9/669 83.9/907
I 571787 5.11/737 19.3/1036 6.95/768 49.8/944 32.3/801 180./944
11092727 10.8/677 45.9/1040 14.7/790 134./935 60.1/862 >900
L1685159 16.2/801 80.6/1049 24.5/841 249./961 90.6/874 >900

TABLE 2. Convection driven diffusion (one compute node)

I Ry = 1 Ry = 10 Ry = 100
n p AMLI Jacobi AMLI Jacobi AMLI Jacobi

571787 1 5.11/737 19.3/1036 6.95/768 49.8/944 32.3/801 180./944
1092727 2 6.39/1147 23.8/1996 10.1/1151 99.4/1835 46.0/1053 569./1886
1685159 4 6.04/1952 21.0/4033 8.92/2026 83.7/3957 40.2/2035 513./3964
3176523 8 6.34/3862 25.6/7640 11.1/3816 104./7496 52.9/3729 685./7490

TABLE 3. Convection driven diffusion

The computing times for the optimal number of levels increase less then linearly with
the number of unknowns, although the complexity grows slightly faster than linearly (as
a V-cycle is used). But the performance for the larger problems is much better since the
coarse level system is larger and thus the solver works with longer vectors. Notice that
a smaller number of levels improves the performance but does not reduce the computing
time.

14 L. Grosz

10.2. Convection driven diffusion The next test case is the 3-dimensional equa­
tion for convection driven diffusion

-\7. \lu + b\lu = f on n
u = rjJ on 80

(10.2)

on the domain [-1, 1 p. The vector-valued coefficient function b which represents a ve­
locity field b is defined by

b= (a'I/J _ a'I/J B'I/J _ B'I/J a'I/J _ a'I/J)
ax2 ax3' OX3 axl' axl OXz

(10.3)

with stream function 'ljJ defined by

1/J = Ry(xr- 1)(x~- 1)(x~- l))xi + x~ + x~. (10.4)

The equation is discretized by the finite difference method using a rectangular n1 xni xni
grid where an up-wind scheme is used for the convective term b\1. The problem is a hard
case for iterative solvers as for large values of Ry the coefficient matrix is singular.

Table 2 presents the timings and performances for a series of grids on one compute
node. The computing time for AMLI grows linearly with the number of unknowns in­
dependent from the value for Ry which controls the influence of the convection term.
The performance is rather high compared to the performance for the iteration without
preconditioning. This arises from the fact that the solution of the coarse level system
is rather expensive and thus the solver spends most of the time with solving the coarse
level system where a very good performance can be achieved.

This changes when more then one compute node is used, see Table 3. The calculation
achieves a quite good scalability (at least for a small value of Ry) but the performance
is rather poor compared to the performance that is reached without preconditioning.
The gather and scatter operations over the compute nodes needed for the restriction
and prolongation slows down the calculation. Another factor is the low performance
per compute node during the parallel solution of the coarse level system because the
vector length per compute node is rather small as well as the part of time spent for
communication is larger. To solve the coarse level system on only one compute node
does not speed-up the calculation as the available computing power is cut down.

Although the performance is not optimal, AMLI reduces the computing time dramat­
ically on one as well as on several compute nodes.

10.3. Finite Element Problem In order to demonstrate the flexibility of the code
it is applied to the finite element discretisation of the 2-dimensional variational problem

Jo (k\lv · \lu- vf) dO= 0

U=r/J

for all smooth v : 0 ____, R

on an.
(10.5)

on the domain [0, 1] 2 . The problem is discretized by using finite elements of order one
on a triangulation of [0, 1 j2 that bases on a rectangular grid. The coefficient function
k is selected by assigning every element a random value in the interval [1, 1000]. The
matrices were generated by the finite element code VECFEM, see [3]. Table 4 shows the
reduction of the calculation time by at least a factor of 5. The heavy oscillations of the
timings are effected by the random sample of the values for k.

Algebraic Multi-level Methods 15

n l I AMLI 1 Jacobi
12544 5 0.26 0.19
25600 5 0.39 0.51
50176 5 0.65 1.20
99856 6 0.86 3.05

202500 6 1.34 7.75
403225 7 4.16 23.9

TABLE 4. Finite element problem

11. Conclusion

The assumption that the coefficient matrix A is an M-matrix allows to select the coarse
level nodes in a way which is optimal for the used computer architecture. In (nearly) any
case the construction procedure does not break down and the constructed preconditioner
is successful in reducing the number of iteration steps. The rectangular grid provides the
possibility to get optimal data flow for SIMD architectures.

However, both assumptions are very restrictive and do not provide the functionality
required users. When dropping the M-matrix properties a more careful selection of
the coarse level unknowns has to be applied as the actual entries in the matrix have to be
considered. Thus the data structures have to consider unstructured grids. Unfortunately
the introduction of suitable data structures will reduce the achievable performance as
indexed memory accesses are needed.

References

[1] Axelsson, 0., and M. Algebraic Multilevel Iteration Method for Stieltjes Matrices. Num.
Lin. Alg. 1, 1994, 213-236.

[2] Berman, A., 2,nd Plemmons, R. J. Nonnegative Matrices in Mathematical Science. SIAM, Philadel-
1994.

[3] Grosz, L., Roll, C., and Schonauer, W. VECFEM for mixed Finite Elements. Internal report 50/93,
University of Karlsruhe, Computing Center, Postfach 6980, 76128 Karlsruhe, Germany, 1993.

[4] Hackbusch, YN. Methods and Applications. Springer-Verlag, Berlin, Heidelberg, New York,
1985.

[5] IvL Experience in Implementing the Algebraic Multilevel Iteration [V[ethod on a SIMD-
type computer. Appl. Nv:mer. Math. 19, 1995, 71-90.

[6] Neytcheva, M., Adiy, A., Mellaard, M., Geogiev, K., and Axelsson, 0. Scalable and Optimal Iter­
ative Solvers for Linear and Nonlinear Problems. Final Report 9613, Department of lV!athematics,
University of Nijmegen, The Netherlands, 1996.

[7] Saad, Y. ILUM: A Multi-Elimination ILU Preconditioner for General Sparse Matrices. SIAM J. Sci.
Comput. 17, 1996, 830-847.

[8] Schonauer, W. Scientific Computing on VectoT Computers. North-Holland, Arnsterdam, New York,
Oxford, Tokyo, 1987.

[9] \iVeiss, R. Parameter-free Iterative LineaT Solvers. Mathematical Research, vol. 97. Akademie Verlag,
Berlin, 1996.

