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PARTICULAR SOLUTIONS METHODS FOR 
FREE AND MOVING BOUNDARY PROBLEMS 

J.C. Mason R.O. Weber 

1 Introduction 

Consider a quasilinear partial differential equation 

(1) Lu = f on S 

subject to a fixed boundary condition 

(2) on r 
where r is the boundary of the region S. Suppose that u is approximated in the form 

(3) 
n 

U ~ Un = L Cj'l/;j(x, y) 
i=l 

where W; is a particular solution of Eq. 1 for everyj. Suppose that the parameters ci in 
Eq. 3 are determined by requiring that Un should satisfy Eq. 2 approximately according to 
a chosen interpolation or least squares (or similar) fitting criterion. 

In the case of a free boundary problem, the boundary r is unknown, and a second 
boundary condition 
( 4) B 2 u = h on r 
is specified. Some form of iterative procedure is then applied to determine a Un of form 
Eq. 3 and an approximation r n to r such that, in the limit, Un satisfies both Eq. 3 and 
Eq. 4. 

Such a "method of particular solutions" has been adopted successfully for free boundary 
problems by [6], and the aim of the present paper is to expose and further expand on this 
work. In particular a broader variety of particular solutions is provided, and a wider range 
of test problems is considered. Specifically a family of piecewise polynomial solutions of the 
heat equation, which coincide with a spline in t on x = ±1, is introduced, which provides 
a robust basis for Stefan and related problems. Further, an advection-diffusion (bush-fire) 
problem is tackled, using separable variable solutions based on modified Bessel functions 
and a least squares fitting method on the boundary. 

Collocation methods are illustrated in a number of effective applications, but, by way 
of a cautionary tale, an example is given in which an apparently well chosen collocation 
method leads to divergent approximations while a least squares method converges. 
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Figure 1: The 1-shaped region 

2 A Milestone in Particular Solutions 

In advocating particular solutions methods, it behoves us to acknowledge our great debt 
to [4], who demonstrate most elegantly the formidable efficiency that can sometimes be 
achieved. They consider the vibrating membrane eigenvalue problem 

(5) 

(6) 

inS 

on r 

for the particular case in which Sis an 1-shaped region consisting of three squares placed 
together (Figure 1 ). By separating r, 8 variables, and considering even solutions (1st, 
3rd, ... eigenvalues), particular solutions are found in the form 

(7) 1/J;(r, 8) = Ja(r.f>.) cos a8 

for a = a; = ~(2j - 1) (j = 1, 3, 4, 6, 7, ... , 3k, 3k + 1, ... ). (Values j = 2, 5, 8, ... , 3k + 
2, ... are omitted, since these give integral values of a). The functions Eq. 7 are polynomials 
in r 213 and have precisely the right singular behaviour at the reentrant corner (r = 0). 
Following [5], who extended the accuracy of the FHM results, both an eigenvalue >. and 
corresponding coefficients c; in the approximation 
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N 

(8) u,.. = L, ci'I/Ji(r, B) (j # 3k + 2, k integral) 
j=l 

are determined by interpolating Eq. 6 at the zeros of cos CiN+lB, namely the equal angles 

(9) 8 = 37!" ( k - 1/2 ) 
4 N + 1/2 

(k = l, ... ,N). 

Only values of 8 between 1r /4 and 371" /4 are included, as a consequence of the symmetries 
of the region. Precisely n homogeneous equations are obtained in then non-zero parameters 
Cj of Eq. 8, provided we choose 

(10) N = [3n/2], 

The equations form a generalised eigenvalue problem, and each eigenvalue may be deter­
mined to correspond to a unique (apart from a multiplicative constant) set Cj. Remarkable 
results are obtained in this way by [5] and in particular, for n = 24, the first eigenvalue A 
is obtained to what are believed to be 13 correct digits, namely 

(11) ). = 9.639723844022. 

This example teaches us that if key features of a problem (such as singularities) are 
included in particular solutions, then a very powerful numerical method may result. 

3 Choice of Particular Solutions 

There are a variety of possible ways of generating particular solutions, of which we mention 
four below, and in particular we present a novel family of piecewise polynomial solutions 
of the heat equation. 

3.1 Separation of Variables 

In the classical method of separation of variables, solutions are sought as products of 
functions of one variable, and, since these are by definition particular solutions, they may 
serve as basis functions for our method. For example the separable variable solutions Eq. 7 
were used in the solution of the membrane eigenvalue problem Eq. 5. Some boundary 
conditions of the problem are generally included, and, for example, Eq. 6 ( u = 0 on 
B = ±371"/4) is satisfied by Eq. 7. 

If odd solutions, corresponding to 2nd, 4th, ... eigenvalues are required, then we replace 
Eq. 7 by the particular solutions. 

(12) la( nA) sin aB 

for a= f3; = ~j1r,(j = 1,2, ... ) which also satisfy the boundary condition Eq. 6. 
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The one-dimensional heat equation 

(13) 

has classical separable variable solutions 

(14) 

which may be adopted as transient particular solutions. These are particularly useful in 
fitting homogeneous boundary conditions such as 

(15) >.u ± p,u., = 0 on x = ±1. 

and, for example for >. = 1, p, = 0 we adopt 

cos ax for a = a; = (j - ~ )'1!", 

sin ax for a= {:Ji = j1r. 

However, the solutions Eq. 14 are not appropriate for all boundary conditions and in­
deed have little relevance to Stefan problems whose solutions grow with time. On the other 
hand, they are useful as complementary solutions, which, when combined with dominant 
solutions, may be able to match the boundary conditions - this idea is exploited in §3.4 
below. 

Either cartesian or polar coordinates may be adopted and lead to particular solutions 
of rather different characters. For example, Laplace's equation 

(16) 

has as separable variable solutions not only 

(17) { sin ax } . { 
cos ax 

sinhay } 
coshay 

but also 

(18) r±a { cos aB } 
sinaB · 

Solutions Eq. 17 may be appropriate to regions bounded by lines parallel to the y axis, 
and solutions Eq. 18 may be appropriate to regions with corners (a not an integer) or to 
regions with an interior origin (a an integer). 
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3.2 Harmonic Functions 

Laplace's equation Eq. 16 is almost unique (apart from related equations such as the 
biharmonic equations) in its close link with complex variable theory. As a consequence 
of the Cauchy-Riemann equations, the real and imaginary parts of any analytic function 
are harmonic functions (i.e. solutions of Eq. 16), and this immediately leads to a source 
of particular solutions. For example, harmonic polynomials are defined as the real and 
imaginary parts of 

(19) (k=0,1,2, ... ) 

Le. 

(20) 

In fact, if we change to polar variables then we note that these are just separable 
variables solutions of form Eq. 18, namely 

(21) 1; rcosB, rsinB; r 2 cos2B, r 2 sin2B; r 3 cos3B, r 3 sin3B; 

Harmonic functions are particularly useful in perfect fluid flow, since both the fluid 
potential cjJ and the stream function 1/; satisfy the Cauchy-Riemann equations and are 
hence harmonic. 

3.3 Special Polynomial Solutions 

It is sometimes possible to generate particular solutions by substituting a chosen simple 
form into a differential equation. For example, for the heat equation Eq. 13, [6] introduce 
polynomial solutions u of the form 

j 

(22) P2;(x,t) = L:A..(xW 
r=o 

by specifying 

(23) u = ti on x = ±1. 
This leads to the formulae 

j-r 

(24) Ar(x) = L:a,rx2' 
s=o 

where 
2s(2s - 1) a,r = (r + 1) as-l,r+l 

and 
ao; = 1, aor = -( alr + a2r + ... + a;-r,r ). 

The resulting polynomials are even, of degree 2j in x and of degree j in t. 
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Odd solutions of Eq. 12 may be similarly defined in the form 

(25) 

by specifying 

j 

P2j+l(x,t) = LBr(x)t' 

(26) u = ±ti on x = ±1 (respectively). 

This leads to the formulae 

(27) 

where 

•-r 
B,(x) = L b,,x2•+1 

j=O 

(28) (2s + 1)2sbsr = (r + l)bs-1,r+l 

and 
(29) boj = 1, bo, = -(blr + b2r + · · · + bj-r,r)· 

Specific examples of these even/odd solutions of Eq. 12 are 

(30) P6 ( x, t) 

(31) P5( x, t) 

Such solutions have the advantage of being unbounded in t and are hence used to great 
effect to solve a Stefan problem in § 6.1 below. 

3.4 Piecewise Particular Solutions 

Piecewise approximations are known to be advantageous for covering a large region ef­
fectively, and it is actually possible to develop piecewise particular solutions, as we now 
show for the heat equation Eq. 12. For simplicity we shall restrict discussion to even solu­
tions; odd solutions can be developed in a similar way, and hence general solutions can be 
obtained by combining even and odd parts. 

Assume that a general solution u( x, t) coincides on t = ±1 with the cubic spline 

3 m 

(32) S(i) =I: c;t' + L dj(t- tj)! (0 S:_ t S:_ T) 
i=O j=l 

where 

(33) 

with knots t1, t2, ... , tm. 
Then we may write 



(34) 

where 

Clearly 

(35) 

and hence 

(36) 
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u(x,t) =u(il(x,t) 

to= 0, 

3 

u<0l(±1, t) = L c;ti 
i=O 

3 

on x = ±1, 

uC0l( x, t) = L c;P2;( x, t) 
i=O 

where P 2; is given by Eq. 22. 
Now 

and hence 

(37) 

where Q;(x, t) is the solution of Eq. 13 on [t;, tjH] subject to 

(38) u=O on t = tj, 

(39) u = (t- t;)3 on x = ±1. 
The condition Eq. 39 is satisfied for 

and hence, by superposition, we also satisfy Eq. 38 if we write 

(40) Q;(x, t) = Q(x, t- t;) = P6 (x, t- t;) + R(x, t- t;) 

where R(x, t) is the solution of Eq. 13 subject to 

(41) u = 0 on x = ±1 

( 42) u = -P6(x,O) on t = 0. 

Now 
61 5 2 1 4 1 6 

Ps(x, O) = -120 + Bx - Bx + 120x 

and it is not difficult to deduce that 
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where 

and 
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co 

R(x, t) = L ek cos a~~:x e-a~t 
k=l 

1 
CI!A: = (k- -)11" 

2 

e~~: = (-1)k-1 12(a~~:)-7 

The values e~~: decrease rapidly with k (being proportional to k-7 ), and specifically 

e1 ~ 0.5, e2 ~ 0.0002, e3 ~ 0.000007, ... 

Hence very few terms, typically 1,2 or 3, are required in the expansion Eq. 43,and so the 
representation Eq. 37 is compact. 

Thus we finally obtain a family of particular solutions, corresponding to the individual 
terms 

1, t, t2, t3 , (t- t1)!, (t- t2)!, ... , (t- tm)! 

in the spline Eq. 32, namely 

(44) 

where 

and 

(i=0,1,2,3); Q(x,t-t;)+ (j = 1, ... ,m) 

Q( t _ >.) = { Q(x, t- >.) (t;::: >.) 
x, + 0 (t::;>.) 

Q(x, t) = P6 (x, t) + R(x, t) 

for R(x, t) given by Eq. 43. 
We have adopted the family of particular solutions Eq. 44 very successfully in approx­

imation methods for solving a variety of fixed boundary problems for the heat equation, 
corresponding to boundary conditions of the form 

u = f(t) on x = ±1. 

We believe that the family Eq. 44 is appropriate for many Stefan problems in which 
solutions grow with t, such as the problem considered in § 6.1 below. 

4 Approximation Techniques for Boundary Condi­
tions 

Once a basis of particular solutions 4J; has been determined, the (numerical) solution is 
expressed in the finite form 
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n 

u ~ Un = L c;t/J; 
j=l 

The next key requirement is that boundary conditions 

(45) on r 
should be fitted by some sound criterion, where r is initially regarded as a fixed boundary. 
Assuming that B1 u is linear in u and its derivatives, the equation ( 45) must be used to 
obtain a system of linear equations for the determination of the parameters c;. 

4.1 The Collocation Method 

A classical and extremely simple technique to apply is to satisfy Eq. 45 exactly on a set 
of n suitably chosen collocation points, thus providing a well-determined linear algebraic 
system. The key questions underlying this are those of selecting collocation points and 
of establishing convergence. Two alternatives for collocation point selection are now dis­
cussed. 

4.1.1 Orthogonal Polynomial Zeros 

If the particular solutions involve polynomials in one of the variables, and if the region 
S is bounded between parallel lines, then collocation may be carried out at the zeros 
of an orthogonal polynomial such as the Chebyshev polynomial Tn. For example, if the 
polynomials P 2;, P 2;+1 of §3.3 are used to solve the heat equation between t = 0 and t = T, 
then collocation points may be chosen as the zeros of Tn*(t/T). 

4.1.2 Basis Function Zeros- Equiangled Points 

In a separation of variables process, an infinite expansion is normally obtained. If the 
particular solutions method adopts the separable variables basis functions, then it is rea­
sonable to regard this method as one which attempts to mimic the partial sum in the true 
infinite series expansion. A natural collocation procedure is then based on setting to zero 
the first neglected term in the expansion. For example, in § 2 the approximation Eq. 8 was 
obtained by collocation at the zeros of 

for a = aN+l• namely the equally angled zeros of cosaN+18 ,and this led to extremely 
good results. There are many applications, where there is a (multiplicative) term of form 
cos a8 or sin a8 in the separable variables solution, and in such a case the use of equiangled 
collocation appears to be justifiable and indeed was advocated in [5]. 
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However, these collocation points are based on angles which are independent of the 
boundary shape, and the possibility has always been present that for certain types of 
boundaries the method might fail. It comes, therefore as something of a surprise, but also 
as a fascinating discovery, to observe as we do in § 6 below that the equiangled collocation 
method can diverge for a relatively simple elliptic equation in a region exterior to an ellipse, 
where a least squares method converges. The nature of the divergence appears to be similar 
to that which sometimes occurs in algebraic polynomial interpolation at equally spaced 
points on an interval (the Runge Phenomenon), but it is somewhat more surprising, since 
equally spaced points are generally excellent for interpolation by trigonometric polynomials 
(ie. sine and cosine functions). 

4.2 The Least Squares and Galerkin Methods 

A less convenient but generally more robust procedure than collocation is to fit Eq. 45 
by least squares over a set of m(> n) discrete points which model the boundary. This 
leads to an over-determined system of m equations in n unknowns, which are solved in a 
least squares sense by a standard procedure (such as Givens rotations). Such a method is 
inevitably more expensive. 

An alternative, but somewhat similar, method is the Galerkin method, in which the 
error (in the boundary condition) is made orthogonal to the chosen set of basic func­
tions. However, this method is not easy to formulate on non-rectangular two-dimensional 
boundaries. 

5 Iterative Techniques for Free Boundaries 

In a free boundary problem, it is necessary to determine both the solution u and the 
position of (part of) the boundary r at which two boundary conditions are specified: 

(46) B1(u) = 0 on r 

(47) on r 
The general technique is to determine sequences u<k), rCkJ of approximations to u and 

r, u(k+I) being obtained from Eq. 46 and rCk+l) being determined from Eq. 47 based on 
some initial guess r<oJ at the position of r. If r is fixed in Eq. 46 then a collocation or least 
squares method§. 4 defines uCk+ll. If u is fixed in Eq. 47, then this effectively becomes 
a nonlinear equation typically expressed in terms of its polar distance r for any given () 
or in terms of its distance x for any given timet or distance y. Sometimes this nonlinear 
equation may be readily solved, as it stands, by a standard numerical method such as 
Newton iteration, using as initial guess the solution u and free boundary r determined 
already for a smaller value of n. Indeed a damped Newton iteration is used successfully for 
larger values of u in §. 6 below. However, a simpler technique which, if well chosen, can 
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be globally convergent, is to write the condition Eq. 4 7 as an equation with both left and 
right hand sides, say 

(48) F(u,r) = G(u,r) 

and then to adopt an iteration of the form 

(49) 

to determine r(k+l) (at discrete positions). This idea is used very successfully for almost 
all the results in § 6.1,§ 6.2 below. 

This part of the formulation of a numerical method is probably the most difficult in 
practice. There are typically several obvious ways of reforming Eq. 47 as Eq. 48, and a 
number of the resulting iterations may diverge. There is at present a certain amount of 
luck involved in determining a good iteration, based on a process of intelligent trial and 
error. It is also advantageous to start with a reasonable guess at the true position of r, 
and to solve the numerical problem first for a small value of n. Then solutions may be 
developed progressively and more accurately for a succession of larger values of n. Ideally 
we wish to establish the convergence of the free boundary iteration, but this appears to be 
very difficult to achieve in practice. 

6 Two Particular Free Boundary Problems 

In the context of our overall discussion above, and in order to show what can be achieved, 
we discuss two applications which were first introduced by us in [6] , and indicate ways in 
which the approaches could be extended. 

6.1 A Stefan Problem for the Heat Equation 

Suppose that u is the required solution to the following Stefan problem, which has also 
been discussed by [9]. 

(50) L(u) u.,.,- Ut = 0 in S : 0 ::; t ::; T, 0::; X::; X(t) 
(51) Bo(u) u., = 0 on C: x = 0 

(52) B1(u) u-x=O on r: X= X(t) 
(53) B2(u) X 1(t) + u.,- 1 = 0 on r 

where c is a fixed boundary (or axis of symmetry) and r is a free boundary with initial 
position 

(54) X(O) = 0 
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Table 1: Error Estimates for Stefan Problem 

n K .. JIB1(u..)JI llu..+l -u..ll IIXn+l - Xnll 
6 15 2 X 10 4 2 X 10 4 6 X 10 5 

7 9 8 X 10-5 

8 8 3 X 10-5 3 X 10-5 5 X 10-6 

9 8 1 X 10-5 

10 8 4 X 10-6 4 X 10-6 7 X 10-7 

Then, adopting as particular solutions the even polynomials P2j of Eq. 22, we may 
approximate u by 

n 

(55) Un =I: CjP2j(x, t) 
j=l 

and represent r by the approximation 

n 

(56) r n : Xn(t) =I: diti 
j=l 

Boundary conditions are now solved by a two-stage iterative process (for k=0,1,2, ... ): 

(i) Determine {cj} in u~k) by collocation to Eq. 52 at the zeros of T;:(t/T) 

(57) 

(ii) Determine {dj} in Xik) by solving 

{)u(k) 
(X(k+l)]' = 1 _ _ n_ 

n ax 
at the zeros of T;:(t/T) on Xik) where T:, is the shifted Chebyshev polynomial of degree n. 

The process works well in practice with initial approximations 

(58) (n > 6) 

where Xn(t) denotes the limit of the sequence {Xikl(t)} and un(t) denotes the limit of the 
sequence {u~l(t)}. 

The Step (i) is based on orthogonal (Chebyshev) collocation, as discussed in§. 4.1, and 
step (ii) adopts an iteration of type Eq. 49 discussed in §. 5. 

In Table 1 are given the maximum absolute values of B1(un), Un+t-un, and Xn+l -Xn 
over discrete point sets in steps of 0.1 in x and t, forT= 1. From these results we estimate 
that r and u have been determined correctly to 6 and 5 decimal places, respectively, at 
all points of S with just n = 10 parameters for each. The number of iterations needed for 
each n is also shown. 

One improvement that we propose to this method is to write Xn(t)in the form 

n 

(59) Xn(t) =I: diTj(t/T) 
j=O 
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so that 

(60) X~(t) = ~ t d;j Uj_ 1 (t/T) 
J=l 

Then, if we change the collocation points to the n zeros of U~(t/T), Eq. 57 becomes a 
process of collocating a (2nd kind) Chebyshev polynomial at (2nd kind) Chebyshev zeros, 
which can be carried out extremely rapidly by a discrete Fourier transform. 

As a second improvement, or extension, in the method, we propose that a large range 
[0, T] of t should be dealt with by using a piecewise approximation method, and for this 
purpose we believe that the piecewise particular solutions procedure derived in § 3.4 would 
prove highly effective. A different set of collocation points in t would be required in this 
case and equally spaced abscissae are proposed, since they generally work well for splines. 

6.2 An Interface Problem for Laplace's Equation 

The potential ¢> and stream function 'lj; of a perfect fluid satisfy the Cauchy-Riemann 
equations 

(61) 

and hence correspond to the real and imaginary parts of an (analytic) "complex potential" 

(62) u(x,y) = cf>(x,y) + i'lj;(x,y). 

Consider such a flow in the region of Figure 2, subject to the boundary conditions shown, 
and note that z112-type singularities occur at D and E and that B is a stagnation point. 

A preliminary transformation 

(63) Znew = C- Zl/2 (z = x + iy) 

where c = -ja, a= DE, b =CD, removes the singularity at D and gives the region of 
Figure 3. 

Equations Eq. 61 still apply, and boundary conditions become 

(64) B0 (u) { 'lj; = 1 on y = 0 (x > 0) 
¢> = 0 on y = 0 (x < 0) 

(65) B1(u) { ¢> = -2 on x = c (DC) 
'lj; = 0 on ( x - c )2 - y 2 + b = 0 (CB) 

(66) B2(u) 'lj;=O on r (AB) 
(67) B3(u) ¢>- 2(x- c)y = 0 on r (AB) 

The condition B3(u) corresponds to the condition¢>+ y = 0 in Figure 2. 
A remarkable economy and accuracy is achieved by using the approximation 
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n 

u ~ u,.. = i + Lcizi-l/2 , 

j=l 

which corresponds to 

n 

(69) 4> ~ cPn = L c;ri-1/ 2 cos(j - 1/2)8 
j=l 

n 

(70) '1/J ~ '1/J,.. = 1 + L CjTi-112 sin(j - 1/2)8 
j=l 

Note that Eq. 69 Eq. 70 automatically satisfy B0 ( u) and remove the singularity at E. 
A collocation process is based on n equally spaced lines. 

(71) 

namely the zeros of sin(n + 1/2)8 (as proposed in §4.1). 
The free boundary r is now represented in the discrete form 

(72) r n : r = r(8) at8=8j (j=n-p+l,···,n) 

where the latter values 0; are those lines Eq. 71 which intersect r n· The :fixed and free 
boundary conditions Eq. 65 Eq. 66 Eq. 67 are then satisfied by the iterative process: 

(i) Determine u~k+l) by imposing B1 and B2 at then positions Eq. 71 on DC, CB, 
r~kJ 

(ii) For () = 8; (j ;:::: n- p + 1 ), determine r(I<+I)( 8) on r~+l) by solving 

(73) 

The condition (i) gives n simultaneous equations for c; in u~+1 l, while (ii) gives a 
quadratic equation, based on an iteration of the type Eq. 49 discussed above, which is 
solved for each () for that root r(k+l) nearest to r(k). 

The iterative method works very successfully for the case a = 1.082, b = 0.489 consid­
ered by [3], taking as r~o) the transform Eq. 63 of an ellipse with axis CA = 3.262 and 
CB = 1.8 in Figure 2. Rapid convergence occurs for n = 8, 10, 12, although a damped 
Newton method was needed to ensure convergence for n = 14. All coefficients Cj were 
observed to be individually converging as n -> oo. 

For n = 14, r/>, '1/;, r were determined in [6] with an accuracy varying between about 2 
decimal places near B, C and about 4 decimal places near D, E, A, a comparable result to 
that of Charmonman [3] who used hundred of grid points. For n = 14, there were p = 9 
collocation points on r 14 , and so, to tidy up the representation, a cubic spline with 11 
parameters 

8 

(74) r~4 : s = d1 + d2a + d3a2 + I: aj+3( a - O!j+l )~ 
j=l 
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B~--------------

Fig. 'L Charmonman's problem: original region. 
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1)! 0 
c 

<I> 

cpx ljiy 

cpy -1)1 
X 

<I> -2 

Fig. 3 Charmonman 's problem: transformed region. 



102 

Table 2: Charmonman's Problem: Final Representations 

Coeffs. of u14 Coeffs. of r~4 
C1 -2.09609 X 10° dl 3.26221 X 10° 
c2 2.95177 X 10-l d2 -4.014 75 X 10° 
CJ -1.44368 X 10-1 d3 1.27836 X 10° 
c4 -2.62067 X 10-2 d4 1.67279 X 10° 
cs 2.18361 X 10-2 ds 9.80398 X 10-1 

Cs -9.51682 X 10-3 ds 5.34046 X 10-1 

C7 -1.34656 X 10-3 d7 -3.11432 X 10-2 

cs 2.58528 X 10-3 da -1.07110 X 10° 
Cg -2.53178 X 10-3 dg -1.06654 X 10° 
Cto 6.43614 X 10-4 dlO -2.07028 X 10° 
en 3.08907 X 10-4 dn -1.51789 X 10° 
c12 -5.62240 X 10-4 

C13 2.53651 X 10-4 

c14 -1.07529 X 10-4 

was fitted to r 14 in Figure 2 in (s, a) coordinates. The parameters dj were determined by 
collocation to r 14 at a = a 1 , a 2 , ••. , a 9 corresponding to B = Bn, Bn_1 , . .. , Bn-a in Figure 3, 
subject to the constraints that r~4 should meet CB and EA at right angles. The resulting 
parameters {ci} and {dj} in Eq. 68 Eq. 74 are given in Table 2. 

We note that this method has been remarkably effective and accurate. However, we 
believe that increased accuracy and reliability would be achieved by adopting a least squares 
rather than a collocation method. Effectively, more than n collocation points/angles would 
be chosen in the method above, to ensure sufficiently dense coverage of the boundaries, and 
this would lead to an overdetermined system of linear equations (solved in a least squares 
sense) for {cj} in part (i) of the iterative process. 

7 Preliminary work on a bush-fire problem 

If we model an area of bush as a self-heating reactive medium, then conservation of energy 
leads to the reaction-convection-diffusion equation 

(75) 

(See for example [2].) For co-moving coordinates sitting at the reaction front, 

(76) 
au at +y_.'Vu=O 

where y_ is the velocity vector of the reactionwave. Considering the preheated region ahead 
of the wave, where f( u) can be linearised, Eq. 75, Eq. 76 combine to give 
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(77) W.'ilu = \72u + J'(ua).(u- ua) 

where W = Y!_- 11. , and U 0 is an equilibrium solution of Eq. 75 (i.e.f( u0 ) = 0). This is an 
equation for the "outer" solution in the regular perturbation procedure. In two dimensions 
x, y, assuming that wind speed is much greater than the speed of the reaction wave, we 
may take the components of W to be 

(78) W.,=w, 

and Eq. 77 then becomes 

(79) 

Let V = u- Uo , so that V(O) = 0, and then 

(80) 

where a = f'(O). In the case a = 0, the equation also arises in soil physics ((7]). If we 
further write 

(81) v = etwrcose<P 

then it follows from Eq. 80,Eq. 81 that 

(82) 

where 
(83) 

A solution of Eq. 79 is sought, in a region exterior to some unknown closed curve r, which 
decreases to an ambient value (of zero, say) as x2 + y2 --t oo. By separation of variables, 
we obtain the infinite expansion 

(84) u(r, B)= u0 + etwrco•e f: c;K;-1( ~w1r) cos(j- 1)8 
j=l 2 

where K; is the modified Bessel function of order j and where, for simplicity, we assume 
solutions (and boundary conditions) that are even in () (to eliminate sine terms). 

To complete the problem specifications, two appropriate boundary conditions are im­
posed on r ' and u and r are to be determined iteratively. 
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7.1 Fixed Boundary Problem 

A prerequisite, in order to later attempt to solve a free boundary problem, is to be able to 
solve a fixed boundary problem, namely Eq. 79 subject to 

(85) on r, 
where r is fixed and A is a constant. The method should be robust over a variety of 
such boundary shapes r. For simplicity we restrict discussion to the case u 0 = 0, a = 0, 
W = W1 = 4. 

In fact this problem is quite challenging, and we have needed to adopt a least squares 
algorithm only after first experiencing an unexpectedly unreliable collocation procedure. 
Following the discussion of §3 and observing the form of Eq. 84 we are immediately led to 
the exterior approximation 

l,.,.cose.:;.... K (1 ) (" 1)fJ u.. = e• LJ c; ;-1 2w 1r cos J -
i=1 

(86) 

where c; are undetermined parameters. In practice, to avoid overflow in the functions 
K;_ 1 , it is preferable to replace c; and K;_1 , respectively by the scaled values 

(87) K ! = 2-i ( "1)-1 K· ]-1 J. ]-1 

7.2 Collocation Procedure 

Since r is symmetrical about fJ = 0 (by our assumption of an even solution), it is natural 
to propose collocating Eq. 85 at then positive zeros of cosnfJ , namely 

(88) 
1 

fJ = (k- 2)1rjn, (k=1,2, ... ,n) 

This leads ton simultaneous equations for c;. 
We tested this procedure, with A = 1.2 in Eq. 85, for a variety of boundaries, and 

specifically: 

(i) Circle: r ::::: 1 

(ii) Ellipse: r = 0.4875(1 - 0.625 cos £Jt 1 

(iii) Quasi-ellipse: r = 0.8 + 0.5cos fJ 

The results for the circle were excellent, with il. correct to about 4 significant figures 
for n = 5, and are shown in Table 3. However, surprising results were obtained for both 
the ellipse and the quasi-ellipse. 

Results for the ellipse with n = 10 are shown in Table 4, and it will be noted that, 
although the approximations Un are converging for small fJ, they are diverging, and indeed 
oscillating wildly, for a large range of fJ. Results for the quasi-ellipse were also inaccurate 
in a range around fJ = 1r and indeed appeared to be diverging. 
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Table 3: Collocation on r: T = 1 at 8 = (2k- 1}rr/10. 
Print of Boundary Approximation at 8 = l7r /32 (n = 5) 

J c·* 3 l us l Us 
1 3.60853 0 1.2015 20 1.1996 
2 -4.50695 4 1.1995 24 1.2003 
3 0.80203 8 1.1992 28 1.2001 
4 -0.11987 12 1.2008 32 1.1997 
5 0.01414 16 1.2000 

Table 4: Collocation on f:r = .4875(1 - .625 cos Bt 1 at 8 = (2k - 1 )11' /20. 
Print of Boundary Approximation at 8 = 111'/20 (n = 10) 

j cj l us l us 
1 1.23525 X 10° 0 1.2020 10 1.0039 
2 4.20454 x w-3 1 1.2000 11 1.2000 
3 -3.89014 x w-2 2 1.1975 12 1.7910 
4 -2.28849 x w-2 3 1.2000 13 1.2000 
5 -1.40183 x w-2 4 1.2052 14 -0.2365 
6 -9.26773 x w-3 5 1.2000 15 1.2000 
7 -6.40033 x w-3 6 1.1844 16 3.9359 
8 -4.26193 x w-3 7 1.2000 17 1.2000 
9 -2.28635 x w-3 8 1.2560 18 -2.8369 

10 -6.68032 x w-4 9 1.2000 19 1.2000 
20 5.7971 

The results confirm a new divergence phenomenon for equi-spaced (in angle) collocation 
of a separable variable expansion involving trigonometric polynomials, analogous to the 
well-known Runge phenomenon for equi- spaced (in distance) collocation of an algebraic 
polynomial. 

7.3 Least Squares Procedure 

Fortunately the use of a least squares method, in the fitting of Eq 85 at m > n selected 
angles 8 on r, is robust and does not display the oscillating behaviour of the collocation 
method. Results for the ellipse ((iii) above for n = 10, for which collocation failed, are 
given in Table 5, and the nearly 3 significant figures obtained are very satisfactory. Indeed 
this procedure has been found to be reliable for a wide variety of boundaries. 
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Table 5: Least Squares on r : r = .4875(1 - .625 cos B)-1 at 8 = k1r /20. 
Print of Boundary Approximation at f)= l1rj20 (n = 10) 

J cj l Us l Us 
1 1.23488 X 10° 0 1.2094 10 1.2031 
2 3.50674 X 10-3 1 1.2051 11 1.2025 
3 -3.87196 X 10-2 2 1.1958 12 1.1967 
4 -2.12595 x 10-2 3 1.1895 13 1.1995 
5 -1.07538 X 10-2 4 1.1919 14 1.2031 
6 -4.81738 X 10-3 5 1.2010 15 1.1983 
7 -1.75446 X 10-3 6 1.2076 16 1.1986 
8 -4.71689 X 10-4 7 1.2040 17 1.2027 
9 -8.18185 X 10-s 8 1.1959 18 1.1989 

10 -6.78626 X 10-6 9 1.1961 19 1.1983 
20 1.2015 

7.4 Free Boundary Problems 

In order to tackle a problem for Eq. 79 in which r is a free boundary, it is necessary 
to formulate a physically appropriate pair of boundary conditions on r, and thence to 
solve the exterior problem iteratively. From §7.2, we advocate the use of a least squares 
procedure of boundary approximation. However, success will depend on the choice of the 
right iteration procedure and of a good enough initial estimate for r 0 

These observations are relevant to other studies of fire state, which we sometimes based 
on elliptical boundary models (e.g. [1].). A discussion of other wild fire models is given in 
[8]. 

8 Conclusions 

We have drawn the readers' attention to a particular solutions method which, although 
based on classical analytical techniques (such as separation of variables), is not too often 
exposed in the literature. Although applications are limited to relatively simple model 
equations, spectacular successes have been achieved for some difficult·and relevant prob­
lems. 

Attention has also been given to the various details which need to be considered when 
formulating a particular solutions method. In particular, although equi-spaced collocation 
can prove very convenient, we have reported a (specific) boundary value problem in which 
a natural equi-angled collocation procedure can lead to divergence (akin to the Runge 
phenomenon). 
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