
57 

FIRE SPREAD AS A MOVING BOUNDARY 

R.O. Weber 

1. INTRODUCTION 

Attempts to model fire spread go back at least as far as Fons [1]. Most of the models 

(see Weber [2] for a review) consider only the heat transfer and hence can be classified as 

Stefan-type models of fire spread. However, following the "combustion theory" approach 

(e.g. Williams [3]) one can formulate a fire spread model which considers chemical kinetic 

effects as well as heat transfer. 

The two types of fire spread models will be compared using examples and by refering 

to experimental observations. Including chemical kinetics offers several advantages; in 

particular the potential to predict extinction phenomena. However, it is difficult to justify 

favouring one type of model over the other because of the many parameters in each type 

of model which can only be roughly estimated. Combined experimental and theoretical 

work is required to test either type of model. 

2. STEFAN FORMULATION 

Cekirge [4], Fujii et al [5] and Pagni [6] have all proposed a formulation of fire spreading 

which is mathematically similar to an ablation problem (e.g. Crank [7]). The simplest 

version of this is 

pCUt = kuxx, s(t) <X < 00, t > 0 

u(x -+ oo, t) = Ua 

u(x = s(t),t) = u; 

ds 8uj pL- = k- +Q 
dt ax x=s(t) 

(1) 

(2) 

(4) 

(4) 

The heat input at the boundary between burnt and unburnt matter, Q, drives the fire 
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front as can be seen from the exact solution for the temperature u, and the speed .S: 

U = Ua + (u;- Ua)e-pc8(x-s(t))fk (5) 

. ds Q 
s=-= 

dt pc(u;- ua) 
(6) 

The speed s is constant. The constant is the ratio of the energy input across the front 

per unit area of the front to the energy required to ignite a unit mass per volume of the 

combustible matter. Notice that s is independent of k. 

In more sophisticated versipns of this model the conductivity k is replaced by a non

linear function to model radiation, e.g. Fujii et al [5], replace k with 4ubu3 , and append 

cooling and other terms. However, this does not alter the qualitative behaviour as k --+ 

4ubu3 can be bounded above and below by a positive constant. 

The comparison of the results of this type of model with experiments is revealing. 

Figure 1: Temperature (°C) versus 

time (sec) curves from Fujii et al [5]. 

Dashed line is experiment, solid lines 

are two theoretical models. 
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Figure 2: Temperature (K) versus distance 

from flame ( m) curves from de Mestre 

et al [8]. Solid line is experiment, broken 

lines are two different models. 
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Figures 1 and 2 show the comparisons made by Fujii et al [5] and de Mestre et al [8]. 

In each case it was possible to predict the speed s by a judicious choice of parameters. 

However, it was not possible to reproduce the temperature curves. The experimental curves 

are always much steeper near ignition. Baines [9] has modified the ignition temperature to 

526K (from 593K) to match the temperature curves, but there is no real justification for 

this ad hoc approach. On the other hand, this highlights a significant weakness of these 

fire models; namely, that there are many parameters which are only approximately known 

- often only upto a factor of two. 

3. INFLECTION POINT MODEL 

The temperature-time curves in Figs.l and 2 for a fuel bed are only given in the interval 

from ambient to ignition temperature.' Therefore, it is of interest to seek temperature-time 

information during and after the ignition period. Fig.3 shows a full temperature-time curve 

for a fire spreading on a single, horizontal, ponderosa pine needle. 
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Figure 3: Temperature (°C) versus time (sec) curves for fire spread 

on a single, horizontal ponderosa pine needle 
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Notice that at the ignition temperature of approximately 320°C (593K) there is no 

evidence of any "latent heat" associated with the transition to flaming combustion. This 

is to be compared with a phase change (such as ice to water) where the temperature-time 

curve has a flat portion at the phase change temperature. 

The point in the temperature-time curve at which ignition occurs appears to be an 

inflection point (Weber, [10]). This would also tie in nicely with asymptotic methods for 

determining the flame spreading velocity in reaction-diffusion models, e.g. Williams [3]. 

An example (which can be compared with the models in section 2) is 

pcut = kuxx + Qo(x- s(t)) (7) 

lim u(x, t)-; Ua (8) x-= 
u(s(t), t) = u; (9) 

Uxxl = 0 
x=s(t) 

(10) 

Obviously, the last equation replaces the Stefan condition of eq.( 4), and the heat release 

at the fire front Q must be placed in the governing partial differential equation, eq.(7). 

Transforming to a reference frame which is moving with the fire front, 

X=x-s(t), (11) 

and looking for a steady solution in this frame one obtains the fire spreading velocity 

s= 
Q + [Q2 + 4k(u;- ua)Q]! 

2pc(u;- ua) 
(12) 

Comparing this with the prediction from the Stefan model, eq.(6), one notices that now 

the conductivity k influences the fire spread rate. Furthermore, eq.(6) is obtained from 

eq.(12) if the limit k-; 0 is taken. 

This forces the remarkable conclusion that in the Stefan models of fire spread, the 

spread rate is independent of any diffusive mechanism of heat transfer; while in the inflexion 

point model the spread rate increases as the strength of the diffusive mechanism increases. 

Such a sharp distinction should be amenable to experimental tests, if only through glowing 

combustion such as in a cigarette. 
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4. THE REACTION REGION 

So far, only the preheat region, Ua :::; u :::; u;, has been modelled (even though impli

cations of the whole temperature-time curve were used in section 3). An obvious way to 

include the reaction region is by a reaction term in the energy equation: 

pCUt = kuxx + F( U ). (13) 

It is no longer necessary to include a heat release term Q anywhere in the model, as the 

reaction F( u) provides the energy needed to drive the front. The reaction F( u) must at 

least be bounded for the system to reach a steady state and it is preferable if it is zero 

or very small at ambient temperature and zero at some higher final temperature. A nice 

example of this was studied by Fisher [11] and Kolmogorov et al [12] in the context of 

genetics: 

pcUt = kUxx + AU(1- U). (14) 

Here the temperature U has been scaled so that U = 0 corresponds to u = Ua and U = 1 

to u = Ub (burnt or final temperature). A is a constant which measures the energy released 

when a unit amount of substance is consumed. As proved conclusively by Hagan [13], the 

initial value problem for eq.(14): 

U(x,O) = f(x) 

U(x, t)--+ 0 as x --+ ±oo 

has a unique "diffusive wave", and associated with it a unique spreading velocity 

(15) 

(16) 

(17) 

provided the initial function f( x) in eq.(15) is non-zero in only a finite range of x; i.e. if 

f( x) has compact support (other forms of f( u) do not change the qualitative behaviour). 
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One can see this numerically, e.g. in fig.4 with kfpc = 0.1, Afpc = 1.0 and f(x) = 0.1 

sech2 10x, whence s = 2JQ.I. One notices that the inflection point, in the steady front 

which is ultimately reached, occurs at U = 0.5. This corresponds to u; = t< Ua + ub); the 

mean of the ambient and the burnt temperatures. 
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Figure 4: Numerical solution of eq.(14) from Tang and Weber [19]. 

Each time is represented by one curve 

The spreading velocity can be found analytically by linearising about U = 0: 

pcUt = kUu +AU, 

then 

40 

(18) 

(19) 
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Balancing these exponentials yields eq.(17). 

It is also of interest to note that we have passed from a conductivity independent 

model in section 2, through an intermediate in section 3, to a model in which the fire does 

not spread if k = 0. 

Comparing temperature profiles shows that the experimentally observed rise to a 

maximum temperature is reasonably well modelled (parameter fiddling will ensure this). 

However, thereafter the two curves will differ, presumably because the model of eq.(13) 

ignores any heat loss mechanism such as convective cooling. 

Finally, note that the rather imprecise quantity Q has been replaced by A. This latter 

quantity is also difficult to determine, but at least it is in principal amenable to direct 

measurement in the laboratory. 

5. TOWARDS MORE REALISTIC MODELS :INCLUDING WIND 

It is an easy matter to include the effect of bulk advection of hot material in the 

previous models. One simply includes a term pcwux in the partial differential equation, 

where w is the speed of the bulk advective process (wind speed). This merely provides an 

additional change of reference frame when one calculates the fire spreading velocity. Hence 

one finds a linear law for the dependence upon windspeed. This seems to work very well for 

high wind speeds and for elevated fuels, see Catchpole [14]. However, for low wind speeds 

and ground based fuels there is usually a more complex dependence of fire speed upon 

windspeed, e.g. Rothermel [15]. The real physical reason for this is not known, however, 

there are at least two possibilities. 

(1) Flame spread over a solid, such as a single pine needle, is at least a two, if not three, 

dimensional process. Therefore, only when the windspeed is independent of x, y and 

z will a one-dimensional modef suffice. Conversely where there is a significant wind 

profile, such as near the ground, a two or three-dimensional model will be necessary. 

This should be valid for fuel beds as well as for single solid fuels (the latter have been 

studied by di Blasi et al [16]). 
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(2) The models so far presented are only based upon energy conservation equations in 

the solid phase. However, many studies of fire spread (e.g. ·weber and de Mestre 

[17]) have realised the importance of the interaction of the gas and solid phases. This 

necessitates the inclusion of at least one other equation, that for energy conservation 

in the gas phase, together with some coupling between the solid and gas phases. A 

complicated example has been introduced by Grishin et al [18] but the large number of 

variables obscures the influence of the coupling. Let us therefore consider the following 

model: 

(20) 

(21) 

The subscripts s and g denote solid and gas respectively, and partial derivatives are 

indicated in fulL A linear coupling with strength given by the parameter h is assumed. 

The reaction really only occurs in the gas phase so there is only one reaction term 

and it is in eq.(21). Any analysis of eqs.(20) and (21) is now already much harder to 

carry out. However, linearising by expanding u9 and U 8 about ua, yields 

(22) 

(23) 

where f 8 =(us- ua)/ua, Eg = (ug- ua)/ua. 

From eq.(23) one can read off immediately that a fire will not propagate if 

(24) 

This is just from the terms with Eg and noting that a positive coefficient is required if fg 

is to grow. This is already interesting as it provides an extinction condition. Namely, 

the fire will not propagate if the coupling between the solid and gas is too large, 

because then the gaseous combustion does not produce enough energy to overcome 

the heat sink effect of the solid. 
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This example demonstrates the possibilities offered by models with coupled equations 

for modelling complex phenomena such as firespread. However, as a final caveat, it should 

be mentioned that the associated increase in the number of parameters increases the ex

perimental work needed to "calibrate" the model. It is for this reason that one wishes to 

construct a model with a minimal set of parameters, and that the single reaction-diffusion 

equation of section 4 deserves further attention. 
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