
195 

PLANS FOR AN ECONOMIC EVALUATION OF A 
DRYLAND SALINITY PROGRAM IN YORNANING, WA 

ANN COWLING 

L AI:rviS OF THE PROJECT 

ABARE proposes to conduct a case study of a dryland salinity ame­
lioration program being carried out by the Western Australian Department 
of Agriculture in the East Yornaning catchment. The Yornaning catchment 
is located 170 km south-east of Perth, and has an area of approximately 
100 sq km. There are 16 farms in the catchment, which are involved almost 
exclusively in the production of wheat and wool. Increasing salinity in the 
area has resulted in decreasing production, and as a result of the salting, 
there are a number of large bare eroding patches. 

The aims of the Y ornaning project are to: 
1. Develop models for linking economic performance with farm manage­

ment practices, soil quality and geological structure. 
2. Develop models for making these same links over time. 
3. Perform a cost-benefit analysis of the "'Western Australian Department 

of Agriculture's farm management plan for the Yornaning catchment. 

2. DATA 

Data are available on a large number of variables describing aspects 
of economic performance, farm management practices, geological features 
and soil quality. 

The catchment was overflown by a geological survey company several 
times in 1989-90 using a variety of remote sensing techniques. Hence most 
of the physical data are available measured on a 10 metre grid, whereas 
the economic and farm management practice data will be available on a 
paddock by paddock basis only. Paddocks will therefore be used as the 
units in the analysis. 
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3. STATISTICAL ANALYSIS 

Measurements made on paddocks that are close together are generally 
more similar than those made on paddocks that are far apart, so that the 
data are likely to be positively correlated rather than independent. Spa­
tial methods of analysis will therefore be used with these data in order to 
estimate mean parameters efficiently. 

3.1 SPATIAL ANALYSIS USING VARIOGRAMS 

A two-dimensional spatial data set has components 
1. locations {x1 , x 2 , ... , xn: xi ED C R 2 }; 

2. data {Z(x1 ), Z(x2 ), ... , Z(xn)}. 
In agricultural field trials, the locations at which the data are collected 

typically form a regular lattice, and ARIMA models can be used for the 
covariance in each of the directions of the axes as in CULL IS and GLEESON 
[3]. 

However, in the Yornaning context, the data come from an irregular 
lattice, and the above approach cannot be taken. The covariance struc­
ture will therefore be modelled using variograms, a method developed in 
Geostatistics (see, for example, JOURNEL and HUIJBREGTS [4]). 

The variogram, 2')'(x1 , x 2 ), is defined by 

and is related to the covariance function, C(x1 ,x2 ) when the covariance 
depends only on the distance h = x 2 - x 1 between the two locations and 
not on the actual locations themselves. More formally, a spatial process is 
said to be stationary of order 2 when: 

1. The mathematical expectation E[Z(x)] exists and does not depend on 
the location x: 

E[Z(x)] = m, \fx. 

2. For each pair of rv's {Z(x +h), Z(x)} the covariance exists and de­
pends on the separation distance h, 

C(h) = E[Z(x + h).Z(h)]- m2 , \fx. 

Under second order stationarity, the variogram is related to the co­
variance as follows: 

'Y(h) = C(O) - C(h). 
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The hypothesis of second order stationarity assumes that the covari­
ance exists, but the existance of the variogram is a weaker hypothesis allow­
ing infinite variance, which corresponds to many physical phenomena. Con­
sequently, the second order stationarity hypothesis is often slightly weak­
ened to the intrinsic hypothesis: 

1. The mathematical expectation E[Z(x)J exists and does not depend on 
the location x: 

E[Z(x)] = m, 'Vx. 

2. For all vectors h, the increment [Z(x +h)-Z(x)] has a finite variance 
that does not depend on x, 

var[Z(x +h)- Z(x)] = 21(h), 'Vx. 

Although the condition E[Z(x)] = m appears restrictive, more com­
plex mean surfaces can be fitted. CRESSIE [1] uses median polish to esti­
mate the mean surface,· then subtracts it off and uses Z(x) to refer to the 
error terms which all have mean 0. 

Moment estimation is used for the variogram: 

where IN(h)l is the number of distinct sample pairs lagged by the vector h, 
and is estimated in a number of directions. If the variogram is anisotropic, 
that is, different in different directions, then a linear transformation of 
the coordinate system can be performed to induce isotropy, or otherwise 
different variograms have to be fitted in different directions. 

A number of different variogram models have been found useful in 
practice (see, for example, JOURNEL and HUIJBREGTS [4]), two of which 
are given below: 
linear model 

{ 0 if h = 0; 
l(h; O) = c~ + bllhll, if h =I= 0. 

exponential model 

(h· 0) - { 0, if h = 0; 
1 ' - c0 + ce[l- exp( -llhll/ae)J, if h =I= 0. 
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The variogram parameters can be estimated in any of the usual ways. 
ZIMMERMAN and ZIMMERMAN [6] performed a Monte Carlo compari­
son of seven methods of estimation using the linear and exponential models 
above, and concluded that no estimator was uniformly superior and that all 
give unbiased predictors of the mean. They therefore suggest that compu­
tationally simple methods such as ordinary least squares or weighted least 
squares be used rather than computationally intensive methods such as re­
stricted maximum likelihood (REML) or maximum likelihood. However, in 
the case in which more than one mean parameter is being estimated, it is 
likely that REML would produce superior estimates. 

Once the variogram has been estimated, the covariance matrix can be 
obtained, and the mean is estimated using generalised least squares. 

3.2 THE FIRST YEAR'S DATA 

At this stage, it is envisaged that a linear model will be fitted, of the 
form 

where the locations x 1 ,x2 , ... ,x0 are the paddock centres, Y(xi) is an 
economic variable such as gross margin measured on the ith paddock, 
P1 (xJ, ... , Pp(xJ are measurements of physical variables such as conduc­
tivity and soil type measured on the ith paddock, M 1 (xi), ... ,MM(xi) rep­
resent farm management practices such as crop planted, tillage practices, 
fertilizer application rate used on the ith paddock, and E(xi) is the error for 
the ith paddock. 

Initial estimates of the mean parameters will be made assuming that 
E(x1), ... , E(x0 ) are independent. The estimated surface will then be sub­
tracted from Y(x1 ), ... , Y(x0 ) giving residuals R(x1 ), ... , R(x0 ), which 
are our estimates of the errors. The errors, which all have zero expectation, 
will then be modelled ,using variograms, and the correlation matrix of the 
errors will be used to re-estimate the mean parameters using generalised 
least squares. Successive cycles of re-estimation of covariance then mean 
parameters can be performed if desired. 



199 

3.3 LONGITUDINAL DATA 

Changes in farm management strategy do not generally show an im­
mediate effect on the water table level. It generally takes at least 5 years 
for the water table level to drop under a plot of trees. The study in the 
Yomaning catchment will therefore be continued for at least the next 5 
years to monitor the effect of the various management choices on economic 
performance and salinity level. This information should be of use in identi­
fying management strategies that are effective in reducing salinity, and at 
the same time are profitable for the farmer~. 

In modelling over time, a model of the form 

where the locations x 1 , x 2 , ... , xn are again the paddock centres, t E T = 
{1, ... , 5} is the year, Y(x11 t) is the economic variable such as gross margin 
measured on the ith paddock in the tth year, P1 (xi, t), ... , Pp(xi, t) are 
measurements of physical variables such as conductivity and water table 
height measured on the ith paddock in the tth year, Jlvf1 (xi, t), ... , M M(xil t) 
represent farm management practices such as crop planted, tillage practices, 
fertilizer application rate used on the ith paddock in the tth year, and E( xi, t) 
is the error for the ith paddock in the tth year. It is expected that the co­
variance structure over time can be modelled using an ARIMA process, and 
the spatial covariance can be estimated as in Section 3.1. Then, provided 
the process is separable (see MARTIN [5] for a definition of separable lattice 
processes), the covariance variance structure of the whole data set can be 
easily obtained, and the mean parameters estimated using generalised least 
squares as in Section 3.3 above. 
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