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Abstract. Let K = {A,B} ⊂ MN×n with rank(A − B) > 1
and Ω ⊂ Rn be a bounded arcwise connected Lipschitz domain.
We show that there is a direct estimate of the size of the ε-neighbor-
hood Kε of K such that Kε = B̄ε(A) ∪ B̄ε(B) separates gradient
Young measures, that is, if (uj) ⊂ W 1,1(Ω, RN ) is bounded and∫
Ω

dist(Duj , Kε)dx → 0 as j → ∞, then up to a subsequence,
either

∫
Ω

dist(Duj , B̄ε(A))dx → 0 or
∫
Ω

dist(Duj , B̄ε(B))dx → 0.

In this note I present some direct estimate on neighborhoods Kε of
a two matrix set K = {A, B} that separate gradient Young measures.
I also show how one can use the BMO seminorm of approximate so-
lutions of linear elliptic systems to control the oscillation of sequences
gradients approaching Kε. The note is based on a recent work [19]
with a slightly different approach. In the case of the two matrix set,
we can establish our main result (Theorem 1 below) without quoting
a recent deep approximation theorem obtained by Müller [14], instead,
most of the tools we use will be standard in the calculus of variations.
The problem we consider is motivated from the variational approach of
material microstructure [4, 5], in particular, the study of metastablility,
hysteresis and numerical analysis related to them.

Let MN×n be the space of N × n real matrices with N, n ≥ 2.
Let Ω be a bounded arcwise connected Lipschitz domain throughout

this note. We denote by ⇀ and
∗→⇀ weak convergence and weak-∗

convergence respectively. The characteristic function of a set V ⊂ Rn

is denoted by χV . The following result is now well-known [4, 17].

Theorem A. Let A, B ∈ MN×n with rank(A − B) > 1. Let (uj) ⊂
W 1,p(Ω, RN) (1 ≤ p < ∞) be a bounded sequence such that
limj→∞

∫
Ω

distp(Duj, {A, B}) → 0. Then, up to a subsequence either
Duj → A a.e. or Duj → B a.e..

In the study of metastablility and hysteresis of material microstruc-
ture, Ball and James [6] established the following:
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Theorem B. If a compact set K = K1 ∪K2 ⊂ MN×n (K1 ∩K2 = ∅)
separates gradient Young measures in the sense that supp νx ⊂ K a.e.
⇒ supp νx ⊂ K1 or supp νx ⊂ K2 a.e. Then there exists ε > 0, such
that Kε still separates gradient Young measures.

In other words, K separates gradient Young measures if dist(Duj, K)
→ 0 in L1(Ω) implies, up to a subsequence either dist(Duj, K1) → 0
in L1(Ω) or dist(Duj, K2) → 0 in L1(Ω). Theorem B then claims that
there exists ε > 0 such that Kε still separates gradient Young measures.

Theorem B was established by using a contradiction argument in [6].
In this note I give an estimate of ε > 0 for the special case K = {A, B}
with rank(A−B) > 1 such that Kε = B̄ε(A)∪B̄ε(B) separates gradient
Young measures, i.e. we give an estimate of the size of the balls such
that a sequence of gradients approaching two balls can only approach
one. We have,

Theorem 1. Let K = {A, B} ⊂ MN×n with rank(A − B) >
1. Let Kε = B̄ε(A) ∪ B̄ε(B), and λmax be the largest eigenvalue of
(A − B)t(A − B)/|A − B|2. Then there exists an estimate of ε > 0
depending on n, N, |A − B|, λmax such that uj ⇀ u in W 1,1(Ω, RN),∫

Ω
dist(Duj, Kε)dx → 0 as j → ∞ implies that up to a subsequence,

either

lim
j→∞

∫
Ω

dist(Duj, B̄ε(A))dx = 0, or lim
j→∞

∫
Ω

dist(Duj, B̄ε(B))dx = 0.

In the language of gradient Young measures [11, 15], this means
supp νx ⊂ Kε, a.e. x ∈ Ω implies either supp νx ⊂ B̄ε(A) a.e. or
supp νx ⊂ B̄ε(B) a.e.

We use the following standard tools to establish Theorem 1.

(i) A non-negative quasiconvex function vanishing exactly on Kε [10,
17], (ii) homogeneous Young measures [15], (iii) BMO estimates for
elliptic systems [9], (iv) Besicovitch’s covering lemma [8].

More precisely, we have an explicit non-negative quasiconvex func-
tion f satisfying

0 ≤ f(X) ≤ C(1 + |X|2), f−1(0) = Kε.

So if
∫

Ω
dist2(Duj, Kε)dx → 0 and uj ⇀ u in W 1,2, then by the well-

known weak lower semicontinuity theorem of Acerbi and Fusco [1],

0 = lim inf
j→∞

∫
Ω

f(Duj)dx ≥
∫

Ω

f(Du)dx.
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In the language of gradient Young measures, this gives∫
Ω

∫
MN×n

f(λ)dνx(λ)dx =

∫
Ω

f(ν̄x)dx, where ν̄x =

∫
MN×n

λdνx = Du(x),

hence supp νx ⊂ Kε, and more importantly, we can locate the weak
limit

ν̄x = Du(x) ∈ Kε a.e. (1)

Recall that a continuous function f : MN×n → R is quasiconvex
[13, 3] if∫

Ω

f(A + Dφ) ≥ f(A)|Ω|, for A ∈ MN×n, φ ∈ C1
0(Ω, RN).

It is well known that if 0 ≤ f(X) ≤ C(1+|X|p), the variational integral
u →

∫
Ω

f(Du)dx is sequentially weakly lower semicontinuous in W 1,p

if and only if f is quasiconvex [1].
We may construct quasiconvex functions by calculating the quasicon-

vex envelope QF for a given function F : MN×n → R: QF = sup{g ≤
F, g quasiconvex}. In our case, we let F (X) = dist2(X, {A, B}), then
QF can be explicitly calculated [10] and

QF (X) = F (X) = dist2(X, {A, B}),

if dist2(X, {A, B}) ≤ |A−B|2(1− λmax)/4.

Let

f(X) =
[
Q dist2(X, {A, B})− ε

]
+

, ε ≤ |A−B|2(1− λmax)

4
,

then f ≥ 0 is quasiconvex and f−1(0) = Kε.
Next need the W 1,∞-Gradient Young measure and the homogeneous

Young measure [11, 15] to localize our problem: We only need a special
case of the general theorem of gradient Young measures. Let K ⊂
MN×n be compact, uj ⇀ u in W 1,1(Ω, RN) such that dist(Duj, K) → 0
in L1. Then

(I) up to a subsequence, there exists a family of probability mea-
sures (gradient Young measures) supp νx ⊂ K, a.e. x ∈ Ω, f(Duj) ⇀∫

K
f(λ)dνx weakly in L1, for all continuous functions f satisfying |f(X)|

≤ C(|X|+1) and the weak limit can be identified as Du(x)=
∫

K
λdνx :=

ν̄x a.e. (νx)x∈Ω is called the family of W 1,∞-gradient Young measures
generated by (a subsequence) of gradients (Duj).

(II) There is a bounded sequence vj ∈ W 1,∞ such that (Dvj) gen-
erates the same family of Young measures (νx), ‖Dvj − Duj‖L1 → 0,

f(Dvj)
∗→⇀

∫
K

f(λ)dνx for all continuous functions f .
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(III) For a.e. x0 ∈ Ω, there exists a bounded sequence (φk) in
W 1,∞

0 (D, RN) where D is the unit disk in Rn, such that the correspond-
ing gradient Young measures {ν̂y} of the sequence (Du(x0)+Dφk) sat-
isfy ν̂y = νx0 a.e. y ∈ D. We call ν̂y the homogeneous Young measure
and simply denote it by ν := ν̂y, y ∈ D. The homogeneous Young mea-
sure enables us to localize our problem. We may decompose Theorem
1 into

Lemma 1. (‘Existence’) Suppose ν is a homogeneous Young measure
satisfying supp ν ⊂ Kε and ν̄ = X ∈ B̄ε(A). Then supp ν ⊂ B̄ε(A).

Lemma 1 implies that for a fixed x, supp νx ⊂ Kε, ν̄x ∈ B̄ε(A) implies
supp νx ⊂ B̄ε(A)).

Lemma 2. (‘Regularity’) There is an estimate of ε > 0 depending on
|A−B|, λmax, n and N such that if Du(x) ∈ Kε a.e. in Ω. Then either
Du(x) ∈ B̄ε(A) a.e. or Du(x) ∈ B̄ε(B) a.e.

Lemma 2 shows that if ν̄x ∈ Kε then ν̄x ∈ B̄ε(A) a.e. or ν̄x ∈ B̄ε(B).
Combining (1), Lemma 1 and Lemma 2, we reach the conclusion of
Theorem 1.

To prove Lemma 1 we need to control the large scale oscillation of
the gradients of a sequence of mappings with a fixed affine boundary
condition. For Lemma 2, we need to rule out large scale oscillation of
the gradient of a fixed mapping without prescribed boundary condition.
Note that in either cases the best possible we can reach is some partial
rigidity of the gradients.

The tool we use is the Schauder estimates in BMO and Campanato
spaces for linear elliptic systems with constant coefficients. Notice the
ellipticity property of linear subspaces of MN×n without rank-one ma-
trices [2]. Let E = span[A−B]. Then E is a subspace without rank-one
matrices. Let E⊥ be the orthogonal complement of E and PE⊥ be the
orthogonal projection to E⊥, then there is some constant c0 > 0 such
that for any rank-one matrix a ⊗ b, |PE⊥(a ⊗ b)|2 ≥ c0|a|2|b|2, where
a ∈ RN and b ∈ Rn.

Let us recall some basic facts about elliptic system with constant
coefficients [9]:

div Aij
αβDβuj = div F i

α in Ω with F i
α ∈ L∞. (2)

We say that the system satisfy the Legendre-Hadamard strong elliptic-
ity condition if

Aij
αβξαξβηiηj ≥ λ0|ξ|2|η|2, ξ ∈ Rn, η ∈ RN . (3)

We denote by Λ0 > 0 a constant such that Aij
αβξαξβηiηj ≤ Λ0|ξ|2|η|2.
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Example. Let E ⊂ MN×n be a subspace without rank-one matrices.
Then the second order elliptic system div PE⊥Du = div F satisfies (3).
In our case λ0 = 1− λmax, and Λ0 = 1.

Let u ∈ W 1,2 be a weak solution of (2). The following are some
estimates of Du.

(A) Interior Estimate

Let x0 ∈ Ω and 0 < ρ < R such that Bρ(x0) ⊂ BR(x0) ⊂ B̄R(x0) ⊂
Ω, ∫

−
Bρ(x0)

|Du− [Du]x0,ρ|2dx

≤ C

[( ρ

R

)τ
∫
−

BR(x0)

|Du− [Du]x0,R|2dx + [F ]2L2,n(Ω)

]
, (4)

where C = C(n, N, λ0, Λ0) > 0, τ = τ(n,N, λ0, Λ0), 0 < τ < 2, and
[F ]L2,n(Ω) is the Campanato seminorm.

(B) Global Estimate

Under Dirichlet condition u|∂Ω = 0,

‖Du‖BMO(Ω) ≤ C‖F‖L∞ . (5)

We prove Lemma 2 first which depends on the interior estimate (a)
above.

Proof of Lemma 2. Without loss of generality, we may assume that
A = 0, E = span[B]. This can be done by a simple translation in
MN×n. Note that |PE⊥(Du)| ≤ 2ε, hence u ∈ W 1,∞(Ω, RN) is a weak
solution of

div PE⊥(Du) = div F, where F = PE⊥(Du), ‖F‖L∞ ≤ 2ε.

Let V = {x ∈ Ω, Du(x) ∈ B̄ε(B)}. Du(x) ∈ Kε implies that

Du = BχV + H, ‖H‖L∞ ≤ 4ε. (6)

Then (a) implies, for a fixed x0 ∈ Ω and 0 < ρ < R such that B2R(x0) ⊂
Ω,∫
−

Bρ(x0)

|Du−[Du]x0,ρ|2dx

≤ C

[( ρ

R

)τ
∫
−

BR(x0)

|Du− [Du]x0,R|2dx + [F ]2L2,n(Ω)

]
≤ C

( ρ

R

)τ

(|B|+ 2ε)2 + Cε2 ≤ Cε2
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if ρ/R is sufficiently small. Consequently, for every x0 ∈ Ω, there is
a small cubes Q(x0, r) ⊂ Ω centered at x0 with side-length r > 0
depending on x0 and Ω,

‖Du‖2
BMO(Q(x0,r) ≤ Cε2. (7)

By applying the definition of BMO and (3), we have, for each cube
Q ⊂ Q(x0, r) and let

G(Q) =
|Q ∩ V |
|Q|

, then G(Q)(1−G(Q)) ≤ C

|B|2
ε2 <

3

16
,

as long as ε > 0 is small. Hence for Q ⊂ Q(x0, r),

either G(Q) ≤ 1

4
or G(Q) ≥ 3

4
. (8)

Now we use the Intermediate Value Theorem and a density argument
to finish the proof.

Without loss of generality, we assume x0 ∈ Ω is a point of density 1
for V . Then we show that there is no points of density 1 for Ω \ V in
Ω. Since x0 is a point of density 1 for V , there is a cube Q0 ⊂ Q(x0, r)
centered at x0, such that G(Q0) > 3/4. We first show that there is no
point of density 1 for Q0\V in Q0. Otherwise, let x1 ∈ Q0 be an interior
point such that there is some Q1 ⊂ Q0 centered at x1 and satisfies
G(Q1) < 1/4. Then we may construct a continuous family of decreasing
cubes Q(t) in Q0 such that Q(0) = Q0 and Q(1) = Q1. It is then easy
to see that t → G(Q(t)) is a continuous function. By the Intermediate
Value Theorem, there is some cube Q(t0) ⊂ Q0 ⊂ Q(x0, r), such that
G(Q(t0)) = 1/2. This contradicts to (8).

Since Ω is arcwise connected, for each x ∈ Ω, there is a piecewise
affine curve γ : [0, 1] → Ω, such that dist(γ, ∂Ω) = δ0 > 0, γ(0) = x0,
γ(1) = x. If we choose r > 0 sufficiently small and let Q(t) be the cube
centered at γ(t) with radius 0 < r < δ0, we may claim that (8) holds
for Q ⊂ Q(t), 0 ≤ t ≤ 1. Then it is easy to see that x is not a point of
density 1 for Ω \ V , hence Du(x) ∈ Bε(B) a.e. �

Proof of Lemma 1. We may assume A = 0 as before and supp ν ⊂ Kε

and ν̄ = X ∈ B̄ε(0). Let X+Duj generates ν with uj ∈ W 1,∞
0 bounded.

Define

Fj =

{
PE⊥(Duj), if |PE⊥(Duj)| ≤ 4ε,

0, otherwise,

where E = span[B]. Solving div PE⊥(Dvj) = div Fj in D, vj|∂D = 0,

‖Dvj‖BMO(D) ≤ Cε, ‖Duj −Dvj‖L2 → 0 (9)
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Let Wj = {x ∈ D, dist(Dvj, K) ≥ 4ε} so |Wj| → 0 and let Vj =
{x ∈ D, |Dvj − B| < 4ε}, then Dvj = BχVj

+ DvjχWj
+ O(ε). Let

Gj(Q) = |Vj ∩Q|/|Q|, then (9) implies

Gj(Q)(1−Gj(Q)) ≤ Cε2 + C

∫
−

Q

(1 + |Dvj|2)χWj
dx. (10)

Also notice that
∫

D
Dvjdx = 0 which implies Gj(D) ≤ Cε < 1/4 for

large j.
Our aim is to show that |Vj| → 0 so that dist2(X + Dvj, B̄ε) → 0 in

L1, hence ν supp B̄ε(0). Now we use a slightly different argument as in
the proof of Lemma 1 by using

∫
Wj

(1 + |Dvj|2)dy to bound |Vj|.
For each point x ∈ D of density 1 for Vj, there exists a cube Q ⊂ D

centered at x such that Gj(Q) > 3/4. Note that Gj(D) < 1/4, we can
then prove that there is an open cube Qx containing Q in D such that
Gj(Qx) = 1/2 which maximize the left hand side of (10). If we further
require that 1/4− Cε2 := γ > 0, then from (10),

γ|Qx| = |Qx|
(

1

4
− Cε2

)
≤ C

∫
Qx

(1 + |Dvj|2)χWj
dy. (11)

Clearly {Qx} is a covering of the points of density 1 for Vj by open
cubes. By Besicovitch’s covering lemma (see e.g. [8]), it is then easy
to prove that

γ|Vj| ≤ C

∫
Wj

(1 + |Dvj|2)dy → 0.

Therefore |Vj| → 0 so that supp ν ⊂ B̄ε(0). �

Theorem 1 can be generalized to any finite sets contained in a sub-
space without rank-one matrices [19]. For a finite set K = {Ai} ⊂
MN×n, we define the diameter of K dK = max{|Ai − Aj|, i 6= j}, and
the smallest distance gK = min{|Ai − Aj|, i 6= j}.
Theorem 2. Suppose E ⊂ MN×n be a linear subspace without rank-

one matrices. Let K = {Ai} ⊂ E be a finite subset. Let

λE = min{|PE⊥(a⊗ b)|2, a ∈ RN , b ∈ Rn, |a| = |b| = 1},
1

µE

= inf
|a|=|b|=1

|PE(a⊗ b)|2

|PE⊥(a⊗ b)|2
=

1− λE

λE

.

Then there exists an estimate of ε > 0 depending on dK, gK, λE, µE,
n and N , such that uj ⇀ u in W 1,1,

∫
Ω

dist(Duj, Kε) → 0 implies, up
to a subsequence, for some fixed Ai0 ∈ K,

lim
j→∞

∫
Ω

dist(Duj, B̄ε(Ai0)) → 0.
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Remark 1. Theorem 2 was proved in [19] by using S. Müller’s im-
proved approximation lemma for sequences of gradients approximating
a compact set [14]. In the special case of Theorem 1, we may avoid us-
ing this result, instead, establishing Lemma 1 directly form the global
estimate for the Dirichlet problem.

Remark 2. For the incompatible multi-elastic well structure K =⋃m
i=1 SO(2)Hi with Hi positive definite, the theory for linear elliptic

system still works provided that the wells are sufficiently ‘flat’ [20].

Remark 3. For the two well structure K = SO(n) ∪ SO(n)H, it
is known [12, 16] that under a technical assumption on H, the com-
pactness result holds, that is, if dist2(Duj, K) → 0 in L1, then there
exists some A ∈ K, such that Duj → A a.e. A nonlinear elliptic
system is involved. However, I do not know any interior BMO es-
timates for the elliptic system div A(Du) = div f , u|∂Ω = 0, where
c|Y |2 ≤ DA(X)Y Y ≤ C|Y |2, ‖f‖L∞ ≤ ε?

As remarked in [12], if H = λI with λ > 0, λ 6= 1, and I being
the identity matrix, one may simply use the n-Laplace operator to
study convergent sequences of gradients to K, that is, div |Du|n−2Du =
div F. However, even for this explicit system, I do not know any BMO
estimate of the weak solutions in W 1,n given that ‖F‖L∞ is small.
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