Wrapping Brownian motion and heat
kernels on compact Lie groups
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Abstract

The fundamental solution of the heat equation on R™ is known
as the heat kernel which is also the transition density of a Brownian
motion. Similar statements hold when R"™ is replaced by a Lie group.
We briefly demonstrate how the results on R™ concerning the heat
kernel and Brownian motion may be easily transferred to compact Lie
groups using the wrapping map of Dooley and Wildberger.
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1 Introduction
The partial differential equation given on R" by

Oyu(z,t) = 3Au(z, 1), te R, x e R", (1.1)

where A is the Laplacian, represents the dissipation of heat over a certain
time. The fundamental solution of the associated semigroup e**/2, known as
the heat kernel, p; is given by a unique, strongly continuous, contraction
semigroup of convolution operators which may be convolved with the initial
data f(x) = u(0, ) to give the solution to the Cauchy problem. That is,

n

ul(et) = 52 f(z) = (p+ f)(x) = / Pl — y)f(y)dy

The heat kernel may also be expressed as the transition density of a
Brownian motion, B;:

pi(x) =E(By),  moreover, (p* f)(x) =E(f(B))
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Similar statements hold when R" is replaced by a Lie group.

In this article we will briefly demonstrate how these results may be trans-
ferred from the Lie algebra (regarded as R") to a compact Lie group using
the so-called wrapping map ( [5]). Additionally, we shall provide the mech-
anism that allows one to “wrap" a Brownian motion, and then find the heat
kernel by taking the expectation of the “wrapped" process and applying a
Feynman-Kac type transform. We will also briefly discuss how these results
may be extended to compact symmetric spaces and complex Lie groups. Full
details and proofs can be found in [11].

2 The wrapping map

The wrapping map was devised by Dooley and Wildberger in [5]. Let G be a
compact semisimple Lie group with Lie algebra g. We define the wrapping
map, ¢ by 5

@), f) = i) (2.1)

where f € C®(G), f = foexp and j the analytic square root of the deter-
minant of the exponential map. We need to place some conditions on v for
®(v) to be well-defined - this is the case when v is a distribution of compact
support on g, or jv € L'(g) . We call ®(v) the wrap of v. The principal
result is the wrapping formula, given by

D1 #g ) = () 6 D) (2.2)

This formula originated from their previous work on sums of adjoint or-
bits ( [6]), and can be considered as a global version of the Duflo isomorphism
([8]). The proof of (2.2) is particularly elegant, using only the Kirillov char-
acter formula and some abelian Fourier analysis. Full details are in [5].

What (2.2) shows us is that problems of convolution of central measures
or distributions on a (non-abelian) compact Lie group can be transferred to
Euclidean convolution of Ad-invariant distributions on g.

Thus, since the solution to the Cauchy problem for the heat equation can

be written as a convolution between the heat kernel and the initial data, we
should be able to wrap the heat kernel on g = R" to that on GG, and transfer
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the corresponding solution of the Cauchy problem.

Given the remarks in section 1, it is clearly of interest also to consider
whether there is a way to wrap Brownian motion to obtain the heat kernel

on G.

3 The wrap of Brownian motion

Critical to wrapping a Brownian motion and the heat kernel from g to G is
how the infinitesimal generator of the respective process and semigroup - the
Laplacian - is affected by wrapping. The Laplacian on g is not quite wrapped
to the Laplacian on G - a quantity that may be interpreted as a “curvature"
term arises. More precisely, we have:

Proposition 3.1. Let G be a compact connected Lie group with Lie algebra
g. Then for any Schwartz function, p on g

O(Lg(p)) = (Lo + [lpl*) (Pp)

where © is the wrapping map, Ly is the Laplacian on g (regarded as a Eu-
clidean vector space), p the half sum of positive roots, and || - || the norm
given by the Killing form.

Lg + ||p]|? is also known as the shifted Laplacian. We shall refer the
process and semigroup generated by Lg +||p||* as a shifted Brownian mo-
tion and a shifted heat kernel, respectively.

The actual mechanics of wrapping Brownian motion are not immediately
obvious, since the natural objects for the wrapping map to act on are distri-
butions.

The wrapping map is a homomorphism from the algebra of Ad-invariant
distributions on C'*°(g) to the algebra of central distributions on C*°(G), de-
fined by ¢ +— @t where ¢ : f — j.f o exp.

We “wrap Brownian motion” in an analogous way by considering the map-
ping ¢ in the context of It6 stochastic differential equations.
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Very briefly, we may construct a Brownian motion ({;):>o on g (regarded
as the Lie group R") as the solution to the Stratonovich S.D.E.:

dctzza—jodBt(), Co=0 (3.1)
i=1 v

This is really just a shorthand for the “full" Ito S.D.E.:

—~ [* Oh D i [FO°h
be)=h0+ Y [ Fr@an? <1y [ Tacm 62
i=1 ! i=1 g

where h € Cj°(R"). Likewise, we define our shifted Brownian motion on G
as the solution to the S.D.E.:

& = Xi(&)odB + YplPadt, & =c. (3.3)
=1

where (X Z)n

., 1s an orthonormal basis of the Lie algebra, or in “full" form:

&) = 10+3 [ anes? +33 [ xen@a o [ e

(3.4)
where f € C°(G). To “wrap of Brownian motion" we replace f € C*(G)
with j.f oexp € C°(g), and let j.f oexp = h € C§°(g). This can be shown

to be
B — (' Oh W 1 [FOPh
e =0+ [ grean + 13 [ s

which is (3.2). Thus we have

Proposition 3.2. Let (; be a Brownian motion on g = R". The wrap of (;

is a Brownian motion on G with a potential of ||p||*, which we will call &.
That s,

(I)(Ct) =&

We may now take expectations of each side to find the law of Brownian
motion - the heat kernel - on G:
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Theorem 3.1. Suppose & is the wrap of the Brownian motion on g, (;. Then
the law of & may be found by wrapping the law of Brownian motion on its
Lie algebra. That 1s,

Ex(j.f oexp((r)) = Eexp x (f (&)

which in law is given by

D(pe)(exp H) = qf (9)

where py(x) is the heat kernel on g = R™, and ¢/ (g) is the heat kernel corre-
sponding to the shifted Laplacian on G

The Feynman-Kac¢ theorem can be used to deal with the potential term
lpll? to obtain a standard Brownian motion and heat kernel on G. We omit
the details, which will be presented in [11].

4 The wrap of the heat kernel

Let p;(z) be the heat kernel on R", given by

l1[|2

pe(z) = (2mt) 2™ 2 teR", xe R" (4.1)

and ¢,(g) is the heat kernel on G, given by

a(g) = dixa(g)e el =lel®er2, teR* geG. (4.2)
AEAT

We write the shifted heat kernel on G as ¢/ (g), which is given by
@(9) = > doxa(g)e M2 e RY geG. (4.3)
AeAt

Firstly, let’s compute ®(r). When v is suitably nice, it has been shown
in [5] we can compute ®(r) as a sum over closed geodesics. Let t be the Lie
algebra of the maximal torus, 7', and let I' be the integer lattice in t, where
I'={H et : exp(H)=e}. We thus have:

O(v)(exp H) = Z(?) (H+7), VHet (4.4)

yel’
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or secondly, as sum over highest weights A™:

O(v)(exp H) = Y dy"(A+p)xalg), VH €t (4.5)

AEAT

which follows since it can be shown that ®"(v) = v"(A+p) (see [5]). Equating
these is the Poisson summation formula for a compact Lie group.

From the above section, the law of & may be found by wrapping the law
of Brownian motion on its Lie algebra. We put p; = v to find the law of the
shifted Brownian motion on G:

Op)(exp H) = Y dye M2y (1) (4.6)
AEAT
_ nll2 1
L el P aa— 47
(2rt) ; J(H +n) (4.7)

for all H € t. The first expression follows since p,(¢) = e~ I€1°4/2,

5 Generalisations

The wrapping formula needs some modification to hold for general (compact)
symmetric spaces X, equipped with tangent space p, with maximal abelian
subalgebra a. This modification is

(p#pe v) = B(p) *x ©(v) (5.1)

where the convolution product on p is “twisted" by a certain function e, which
originates in the work of Rouviére [12]. See also [2], [3].

It is well-known in the physics literature that the “sum over classical
paths" does not hold for general compact symmetric spaces ( [1], [7]). That
is, performing a similar summation to (4.7) to find the heat kernel:

7GZH(%)(HjL’y), VH € a

does not yield the (shifted) heat kernel on X. The underlying reason can
be easily seen from (5.1) in that we have a twisted convolution on p, which
interferes with wrapping the heat convolution semigroup:

Qtrs = @t *x s = P(pr) *x P(ps) = P(pt *p.e Ps)
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which is not equal to ®(p;1s). It does turn out that we can recover from
this situation as the e-function and the j-function are somewhat related.
Basically, we need to consider the heat kernel with potentials like j~*L,j on
p. Even for the 2-sphere this turns out to be difficult - the potential in this
case is ]

7z cosec?(H)

We have also been able to extend our methods on wrapping Brownian
motion and heat kernels to some spaces where we know the wrapping formula
holds. A nice example are the complex Lie groups. Instead of having to deal
with a maximal torus T", as in the case of a compact Lie group, the subgroup
corresponding to the Cartan subalgebra is (R™)", so instead of summing over
a lattice, we just “bend" the heat kernel from g to G' by dividing by j, that
is,

D(pi)(exp H) = (2mt) "2 _exp(~|H/2t),  Hea
J(H)

We can also wrap other processes - the key is to find how its infinitesimal

generator (call it L) wraps, that is,

B(Lg(w)) = (Lg + C) (Pu)

6 Further directions

e [ am currently proving the wrapping formula for other Lie groups. Once
it is then known how to wrap a function, the heat kernel should then
be able to be computed. However, this is by no means straightforward
- in the case of SL(2,R), the elements are conjugate to a choice of two
abelian subgroups, isomorphic to T and R*. Do we “wrap" or “bend"?
Probably both in some suitable fashion.

e Wrapping the solutions of other P.D.E.’s. In particular, any phenomena
associated to them. For example with the wave equation, what does it
mean to “wrap" Huygens’ principle? I should mention that it was for
(odd dimensional) compact Lie groups, complex Lie groups, and the
symmetric spaces G/K, G complex, that Helgason was able to show
that Huygens’ principle holds when the shifted Laplacian is used ( [10]).
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e We would also like to know the LP — L9 bounds for a wrapped function.

For example, for what p and ¢ do we have ||®(u)|, < [Jull, 7 These
could then be applied to obtain L” bounds of solutions of P.D.E.’s on
Lie groups. Currently, this is only known when p = ¢ = 1.

These bounds could also be used to examine other behaviour such as
convergence of Fourier transforms - if we used the ball multiplier, then
in the case of compact Lie groups, our formula for ® corresponds to the
W-invariant polygonal regions of positive weights typically considered
for the convergence of Fourier series on compact Lie groups.
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