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Abstract

The fundamental solution of the heat equation on Rn is known
as the heat kernel which is also the transition density of a Brownian
motion. Similar statements hold when Rn is replaced by a Lie group.
We briefly demonstrate how the results on Rn concerning the heat
kernel and Brownian motion may be easily transferred to compact Lie
groups using the wrapping map of Dooley and Wildberger.
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1 Introduction
The partial differential equation given on Rn by

∂tu(x, t) = 1
2∆u(x, t), t ∈ R+, x ∈ Rn, (1.1)

where ∆ is the Laplacian, represents the dissipation of heat over a certain
time. The fundamental solution of the associated semigroup et∆/2, known as
the heat kernel, pt is given by a unique, strongly continuous, contraction
semigroup of convolution operators which may be convolved with the initial
data f(x) = u(0, x) to give the solution to the Cauchy problem. That is,

u(x, t) = et∆/2f(x) = (pt ∗ f)(x) =

∫

Rn

pt(x− y)f(y)dy

The heat kernel may also be expressed as the transition density of a
Brownian motion, Bt:

pt(x) = E(Bt), moreover, (pt ∗ f)(x) = E(f(Bt))
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Similar statements hold when Rn is replaced by a Lie group.

In this article we will briefly demonstrate how these results may be trans-
ferred from the Lie algebra (regarded as Rn) to a compact Lie group using
the so-called wrapping map ( [5]). Additionally, we shall provide the mech-
anism that allows one to “wrap" a Brownian motion, and then find the heat
kernel by taking the expectation of the “wrapped" process and applying a
Feynman-Kač type transform. We will also briefly discuss how these results
may be extended to compact symmetric spaces and complex Lie groups. Full
details and proofs can be found in [11].

2 The wrapping map
The wrapping map was devised by Dooley and Wildberger in [5]. Let G be a
compact semisimple Lie group with Lie algebra g. We define the wrapping
map, Φ by

〈Φ(ν), f〉 = 〈ν, jf̃〉 (2.1)

where f ∈ C∞(G), f̃ = f ◦ exp and j the analytic square root of the deter-
minant of the exponential map. We need to place some conditions on ν for
Φ(ν) to be well-defined - this is the case when ν is a distribution of compact
support on g, or jν ∈ L1(g) . We call Φ(ν) the wrap of ν. The principal
result is the wrapping formula, given by

Φ(µ ∗g ν) = Φ(µ) ∗G Φ(ν) (2.2)

This formula originated from their previous work on sums of adjoint or-
bits ( [6]), and can be considered as a global version of the Duflo isomorphism
( [8]). The proof of (2.2) is particularly elegant, using only the Kirillov char-
acter formula and some abelian Fourier analysis. Full details are in [5].

What (2.2) shows us is that problems of convolution of central measures
or distributions on a (non-abelian) compact Lie group can be transferred to
Euclidean convolution of Ad-invariant distributions on g.

Thus, since the solution to the Cauchy problem for the heat equation can
be written as a convolution between the heat kernel and the initial data, we
should be able to wrap the heat kernel on g ∼= Rn to that on G, and transfer
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the corresponding solution of the Cauchy problem.

Given the remarks in section 1, it is clearly of interest also to consider
whether there is a way to wrap Brownian motion to obtain the heat kernel
on G.

3 The wrap of Brownian motion
Critical to wrapping a Brownian motion and the heat kernel from g to G is
how the infinitesimal generator of the respective process and semigroup - the
Laplacian - is affected by wrapping. The Laplacian on g is not quite wrapped
to the Laplacian on G - a quantity that may be interpreted as a “curvature"
term arises. More precisely, we have:

Proposition 3.1. Let G be a compact connected Lie group with Lie algebra
g. Then for any Schwartz function, µ on g

Φ
(
Lg(µ)

)
= (LG + ‖ρ‖2)

(
Φµ

)

where Φ is the wrapping map, Lg is the Laplacian on g (regarded as a Eu-
clidean vector space), ρ the half sum of positive roots, and ‖ · ‖ the norm
given by the Killing form.

LG + ‖ρ‖2 is also known as the shifted Laplacian. We shall refer the
process and semigroup generated by LG +‖ρ‖2 as a shifted Brownian mo-
tion and a shifted heat kernel, respectively.

The actual mechanics of wrapping Brownian motion are not immediately
obvious, since the natural objects for the wrapping map to act on are distri-
butions.

The wrapping map is a homomorphism from the algebra of Ad-invariant
distributions on C∞(g) to the algebra of central distributions on C∞(G), de-
fined by ϕ )→ ϕι where ι : f )→ j.f ◦ exp.

We “wrap Brownian motion” in an analogous way by considering the map-
ping ι in the context of Itô stochastic differential equations.
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Very briefly, we may construct a Brownian motion (ζt)t≥0 on g (regarded
as the Lie group Rn) as the solution to the Stratonovich S.D.E.:

dζt =
n∑

i=1

∂ζt

∂xi
◦ dB(i)

t , ζ0 = 0 (3.1)

This is really just a shorthand for the “full" Itô S.D.E.:

h(ζt) = h(0) +
n∑

i=1

∫ t

0

∂h

∂xi
(ζt)dB(i)

t + 1
2

n∑

i=1

∫ t

0

∂2h

∂x2
i

(ζt)dt (3.2)

where h ∈ C∞
0 (Rn). Likewise, we define our shifted Brownian motion on G

as the solution to the S.D.E.:

dξt =
n∑

i=1

Xi(ξt) ◦ dB(i)
t + 1

2‖ρ‖
2ξtdt, ξ0 = e. (3.3)

where
(
Xi

)n

i=1
is an orthonormal basis of the Lie algebra, or in “full" form:

f(ξt) = f(e)+
n∑

i=1

∫ t

0

(Xif)(ξt)dB(i)
t + 1

2

n∑

i=1

∫ t

0

(X2
i f)(ξt)dt+ 1

2‖ρ‖
2

∫ t

0

f(ξt)dt

(3.4)
where f ∈ C∞(G). To “wrap of Brownian motion" we replace f ∈ C∞(G)
with j.f ◦ exp ∈ C∞

c (g), and let j.f ◦ exp = h ∈ C∞
0 (g). This can be shown

to be

h(ζt) = h(0) +
n∑

i=1

∫ t

0

∂h

∂xi
(ζs)dB(i)

t + 1
2

n∑

i=1

∫ t

0

∂2h

∂x2
i

(ζs)ds

which is (3.2). Thus we have

Proposition 3.2. Let ζt be a Brownian motion on g ∼= Rn. The wrap of ζt

is a Brownian motion on G with a potential of ‖ρ‖2, which we will call ξt.
That is,

Φ(ζt) = ξt

We may now take expectations of each side to find the law of Brownian
motion - the heat kernel - on G:
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Theorem 3.1. Suppose ξt is the wrap of the Brownian motion on g, ζt. Then
the law of ξt may be found by wrapping the law of Brownian motion on its
Lie algebra. That is,

EX(j.f ◦ exp(ζt)) = Eexp X(f(ξt))

which in law is given by

Φ(pt)(exp H) = qρ
t (g)

where pt(x) is the heat kernel on g = Rn, and qρ
t (g) is the heat kernel corre-

sponding to the shifted Laplacian on G

The Feynman-Kač theorem can be used to deal with the potential term
‖ρ‖2 to obtain a standard Brownian motion and heat kernel on G. We omit
the details, which will be presented in [11].

4 The wrap of the heat kernel
Let pt(x) be the heat kernel on Rn, given by

pt(x) = (2πt)−n/2e−
‖x‖2
2t , t ∈ R+, x ∈ Rn. (4.1)

and qt(g) is the heat kernel on G, given by

qt(g) =
∑

λ∈Λ+

dλχλ(g)e−(‖λ+ρ‖2−‖ρ‖2)t/2, t ∈ R+, g ∈ G. (4.2)

We write the shifted heat kernel on G as qρ
t (g), which is given by

qρ
t (g) =

∑

λ∈Λ+

dλχλ(g)e−‖λ+ρ‖2t/2, t ∈ R+, g ∈ G. (4.3)

Firstly, let’s compute Φ(ν). When ν is suitably nice, it has been shown
in [5] we can compute Φ(ν) as a sum over closed geodesics. Let t be the Lie
algebra of the maximal torus, T , and let Γ be the integer lattice in t, where
Γ = {H ∈ t : exp(H) = e}. We thus have:

Φ(ν)(exp H) =
∑

γ∈Γ

(ν

j

)
(H + γ), ∀H ∈ t (4.4)
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or secondly, as sum over highest weights Λ+:

Φ(ν)(exp H) =
∑

λ∈Λ+

dλν
∧(λ + ρ)χλ(g), ∀H ∈ t (4.5)

which follows since it can be shown that Φ∧(ν) = ν∧(λ+ρ) (see [5]). Equating
these is the Poisson summation formula for a compact Lie group.

From the above section, the law of ξt may be found by wrapping the law
of Brownian motion on its Lie algebra. We put pt = ν to find the law of the
shifted Brownian motion on G:

Φ(pt)(exp H) =
∑

λ∈Λ+

dλ e−‖λ+ρ‖2t/2χλ(H) (4.6)

= (2πt)−d/2
∑

n∈Γ

e
−‖H+n‖2

2t
1

j(H + n)
(4.7)

for all H ∈ t. The first expression follows since p̂t(ξ) = e−‖ξ‖
2t/2.

5 Generalisations
The wrapping formula needs some modification to hold for general (compact)
symmetric spaces X, equipped with tangent space p, with maximal abelian
subalgebra a. This modification is

Φ(µ ∗p,e ν) = Φ(µ) ∗X Φ(ν) (5.1)

where the convolution product on p is “twisted" by a certain function e, which
originates in the work of Rouvière [12]. See also [2], [3].

It is well-known in the physics literature that the “sum over classical
paths" does not hold for general compact symmetric spaces ( [1], [7]). That
is, performing a similar summation to (4.7) to find the heat kernel:

∑

γ∈Γ+

(pt

j

)
(H + γ), ∀H ∈ a

does not yield the (shifted) heat kernel on X. The underlying reason can
be easily seen from (5.1) in that we have a twisted convolution on p, which
interferes with wrapping the heat convolution semigroup:

qt+s = qt ∗X qs = Φ(pt) ∗X Φ(ps) = Φ(pt ∗p,e ps)
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which is not equal to Φ(pt+s). It does turn out that we can recover from
this situation as the e-function and the j-function are somewhat related.
Basically, we need to consider the heat kernel with potentials like j−1Lpj on
p. Even for the 2-sphere this turns out to be difficult - the potential in this
case is

1

H2
− cosec2(H)

We have also been able to extend our methods on wrapping Brownian
motion and heat kernels to some spaces where we know the wrapping formula
holds. A nice example are the complex Lie groups. Instead of having to deal
with a maximal torus Tn, as in the case of a compact Lie group, the subgroup
corresponding to the Cartan subalgebra is (R+)n, so instead of summing over
a lattice, we just “bend" the heat kernel from g to G by dividing by j, that
is,

Φ(pt)(exp H) = (2πt)−n/2 1

j(H)
exp(−|H|2/2t), H ∈ a

We can also wrap other processes - the key is to find how its infinitesimal
generator (call it Lg) wraps, that is,

Φ
(
Lg(u)

)
= (LG + C)

(
Φu

)

6 Further directions
• I am currently proving the wrapping formula for other Lie groups. Once

it is then known how to wrap a function, the heat kernel should then
be able to be computed. However, this is by no means straightforward
- in the case of SL(2,R), the elements are conjugate to a choice of two
abelian subgroups, isomorphic to T and R+. Do we “wrap" or “bend"?
Probably both in some suitable fashion.

• Wrapping the solutions of other P.D.E.’s. In particular, any phenomena
associated to them. For example with the wave equation, what does it
mean to “wrap" Huygens’ principle? I should mention that it was for
(odd dimensional) compact Lie groups, complex Lie groups, and the
symmetric spaces G/K, G complex, that Helgason was able to show
that Huygens’ principle holds when the shifted Laplacian is used ( [10]).
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• We would also like to know the Lp−Lq bounds for a wrapped function.
For example, for what p and q do we have ‖Φ(u)‖p ≤ ‖u‖q ? These
could then be applied to obtain Lp bounds of solutions of P.D.E.’s on
Lie groups. Currently, this is only known when p = q = 1.

• These bounds could also be used to examine other behaviour such as
convergence of Fourier transforms - if we used the ball multiplier, then
in the case of compact Lie groups, our formula for Φ corresponds to the
W -invariant polygonal regions of positive weights typically considered
for the convergence of Fourier series on compact Lie groups.
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