Triangulations of non-proper semialgebraic Thom maps

Masahiro Shiota

Abstract

In [S3] I solved the Thom's conjecture that a proper Thom map is triangulable. In this paper I drop the properness condition in the semialgebraic case and, moreover, in the definable case in an o-minimal structure.

1. Introduction

Let r be always a positive integer or ∞, X and Y subsets of \mathbf{R}^{m} and \mathbf{R}^{n}, respectively, and $f: X \rightarrow Y$ a C^{r} map (i.e., f is extended to a C^{r} map from an open neighborhood of X in \mathbf{R}^{m} to one of Y in \mathbf{R}^{n}). A C^{r} stratification of f is a pair of C^{r} stratifications $\left\{X_{i}\right\}$ of X and $\left\{Y_{j}\right\}$ of Y such that for each i, the image $f\left(X_{i}\right)$ is included in some Y_{j} and the restriction map $\left.f\right|_{X_{i}}: X_{i} \rightarrow Y_{j}$ is a C^{r} submersion. We call also $f:\left\{X_{i}\right\} \rightarrow\left\{Y_{j}\right\}$ a C^{r} stratification of $f: X \rightarrow Y$. We call $f: X \rightarrow Y$ a Thom C^{r} map if there exists a Whitney C^{r} stratification $f:\left\{X_{i}\right\} \rightarrow$ $\left\{Y_{j}\right\}$ such that the following condition is satisfied. Let X_{i} and $X_{i^{\prime}}$ be strata with $X_{i^{\prime}} \cap\left(\bar{X}_{i}-X_{i}\right)=\emptyset$. If $\left\{a_{k}\right\}$ is a sequence of points in X_{i} converging to a point b of $X_{i^{\prime}}$ and if the sequence of the tangent spaces $\left\{T_{a_{k}}\left(\left.f\right|_{X_{i}}\right)^{-1}\left(f\left(a_{k}\right)\right)\right\}$ converges to a space $T \subset \mathbf{R}^{m}$ in the Grassmannien space $G_{m, m^{\prime}}, m^{\prime}=\operatorname{dim}\left(\left.f\right|_{X_{i}}\right)^{-1}\left(f\left(a_{k}\right)\right)$, then $T_{b}\left(\left.f\right|_{X_{i^{\prime}}}\right)^{-1}(f(b)) \subset T$. We call then $f:\left\{X_{i}\right\} \rightarrow\left\{Y_{j}\right\}$ a Thom C^{r} stratification of $f: X \rightarrow Y$. In [S3] I solved the following Thom's conjecture.

Theorem 1.1. Assume X and Y are closed in \mathbf{R}^{m} and \mathbf{R}^{n}, respectively, and $f: X \rightarrow Y$ is a proper Thom C^{∞} map. Then there exist homeomorphisms τ and π from X and Y to polyhedra P and Q, respectively, such that $\pi \circ f \circ \tau^{-1}: P \rightarrow Q$ is piecewise-linear.

Here a natural question arises. Whether can we drop the properness condition? Indeed, the condition is too strong for some applications. For example, the natural map from a G-manifold M to its orbit space is a Thom map but not necessarily proper provided the action $G \times M \ni(g, x) \rightarrow(g x, x) \in M^{2}$ is proper (see [MS]). In the present paper we give a positive answer in the semialgebraic or definable case. A C^{r} stratification $f:\left\{X_{i}\right\} \rightarrow\left\{Y_{j}\right\}$ of $f: X \rightarrow Y$ is called semialgebraic (definable) if X, Y, f, X_{i} and Y_{j} are all semialgebraic (definable, respectively,) and $\left\{X_{i}\right\}$ and $\left\{Y_{j}\right\}$ are finite stratifications.

Theorem 1.2. Assume X and Y are closed and semialgebraic (definable in an o-minimal structure) in \mathbf{R}^{m} and \mathbf{R}^{n}, respectively, and $f: X \rightarrow Y$ is a semialgebraic (definable, respectively,) Thom C^{1} map. Then there exist finite simplicial complexes K and L and semialgebraic (definable, respectively,) C^{0} imbeddings $\tau: X \rightarrow|K|$
and $\pi: Y \rightarrow|L|$ such that $\tau(X)$ and $\pi(Y)$ are unions of some open simplexes of K and L, respectively, and $\pi \circ f \circ \tau^{-1}: \tau(X) \rightarrow \pi(Y)$ is extended to a simplicial map from K to L, where $|K|$ denotes the underlying polyhedron to K.

The theorem does not necessarily hold without the condition that X is closed in \mathbf{R}^{m}. A counter-example is given by $X=\mathbf{R}^{2}-\left\{(x, y) \in \mathbf{R}^{2}: x=0, y \neq\right.$ $0\}, Y=\mathbf{R}^{2}$ and $f(x, y)=(x, x y)$. Such f is not triangulable in the weak sense that there exist C^{0} imbeddings τ of X and π of Y into some Euclidean space \mathbf{R}^{n} such that $\overline{\tau(X)}$ is a polyhedron and $\pi \circ f \circ \tau^{-1}: \tau(Y) \rightarrow \pi(X)$ is extended to a piecewise-linear map $\theta: \overline{\tau(X)} \rightarrow \mathbf{R}^{n}$ for the following reason. Assume there exist τ and π as required. Then $\overline{\tau(X)}$ is of dimension two and $\theta^{-1}(y)$ is of dimension 0 for each $y \in \overline{\pi(Y)}$ because θ is piecewise-linear and $\left.\theta\right|_{\tau(X)}$ is injective. Hence a small compact neighborhood U of $\tau(0)$ in $\overline{\tau(X)}$ does not intersect with $\theta^{-1}(\pi(0))$ except at $\tau(0)$. Choose a point $\left(x_{1}, x_{2}\right)$ in X with $x_{2} \neq 0$ so close to 0 that the halfopen segment L with ends $\left(0, x_{2}\right)$ and $\left(x_{1}, x_{2}\right)$ in X is included in $\tau^{-1}(U)$. Then $\overline{f(L)}-f(L)=\{0\}$ and $\overline{\pi \circ f(L)}-\pi \circ f(L)=\{\pi(0)\}$. Hence $(\overline{\tau(L)}-\tau(L)) \cap U=$ $\{\tau(0)\}$ or $(\overline{\tau(L)}-\tau(L)) \cap U=\emptyset$ since $\theta^{-1}(\pi(0))=\{\tau(0)\}$ in U. The former case contradicts the definition of L and the fact that τ is a C^{0} imbedding, and the latter does the fact that U is compact.

An open problem is whether a Thom C^{1} map $f: X \rightarrow Y$ is triangulable in this weak sense under the condition that X is closed in \mathbf{R}^{n} or, equivalently, X is locally compact.

2. Tube systems

If r is larger than one, C^{r} tube at a C^{r} submanifold M of \mathbf{R}^{n} is a triple $T=(|T|, \pi, \rho)$, where $|T|$ is an open neighborhood of M in $\mathbf{R}^{n}, \pi:|T| \rightarrow M$ is a submersive C^{r} retraction and ρ is a non-negative C^{r} function on $|T|$ such that $\rho^{-1}(0)=M$ and each point x on M is a unique and non-degenerate critical point of $\left.\rho\right|_{\pi^{-1}(x)}$. We will need to consider a C^{1} tube. Assume M is a C^{1} submanifold of \mathbf{R}^{n}. Let $|T|$ be an open neighborhood of M in $\mathbf{R}^{n}, \pi:|T| \rightarrow M$ a C^{1} map and ρ a C^{1} function on $|T|$. We call $T=(|T|, \pi, \rho)$ a C^{1} tube at M if there exists a C^{1} imbedding τ of $|T|$ into \mathbf{R}^{n} such that $\tau(M)$ is a C^{2} submanifold of \mathbf{R}^{n} and $\tau_{*} T=\left(\tau(|T|), \tau \circ \pi \circ \tau^{-1}, \rho \circ \tau^{-1}\right)$ is a C^{2} tube at $\tau(M)$. (See pages 33-40 in $[\mathbf{S 2}]$, which says the arguments on tube systems in $[\mathbf{G}]$ work in the C^{1} category.) A C^{r} tube system $\left\{T_{j}\right\}$ for a C^{r} stratification $\left\{Y_{j}\right\}$ of a set $Y \subset \mathbf{R}^{n}$ consists of one tube T_{j} at each Y_{j}. We define a C^{r} weak tube system $\left\{T_{j}=\left(\left|T_{j}\right|, \pi_{j}, \rho_{j}\right)\right\}$ for the same $\left\{Y_{j}\right\}$ weakening the conditions on ρ_{j} as follows. Each ρ_{j} is a non-negative C^{0} function on $\left|T_{j}\right|$ with zero set Y_{j}, of class C^{r} on $\left|T_{j}\right|-Y_{j}$ and regular on $Y_{j^{\prime}} \cap \pi_{j}^{-1}(y)-Y_{j}$ for each $y \in Y_{j}$ and $Y_{j^{\prime}}$. Note a C^{r} tube system is a C^{r} weak tube system if $\left\{Y_{j}\right\}$ is a Whitney stratification by Lemma I.1.1, [S2]. In the following arguments we shrink $\left|T_{j}\right|$ many times without mention.

We call a C^{r} (weak) tube system $\left\{T_{j}\right\}$ for $\left\{Y_{j}\right\}$ controlled if for each pair j and j^{\prime} with $\left(\overline{Y_{j^{\prime}}}-Y_{j^{\prime}}\right) \cap Y_{j} \neq \emptyset$,

$$
\pi_{j} \circ \pi_{j^{\prime}}=\pi_{j} \quad \text { and } \quad \rho_{j} \circ \pi_{j^{\prime}}=\rho_{j} \quad \text { on }\left|T_{j}\right| \cap\left|T_{j^{\prime}}\right|
$$

Remember there exists a controlled C^{r} tube system for a Whitney stratification (see $[\mathbf{G}]$ and $[\mathbf{S 2}])$, note if $\left\{T_{j}\right\}$ is such a C^{r} tube system then the map $\left.\left(\pi_{j}, \rho_{j}\right)\right|_{Y_{j^{\prime}} \cap\left|T_{j}\right|}$
is a C^{r} submersion into $Y_{j} \times \mathbf{R}$ because

$$
\left.\left(\pi_{j}, \rho_{j}\right)\right|_{Y_{j^{\prime}} \cap\left|T_{j}\right|} \circ \pi_{j^{\prime}}=\left(\pi_{j}, \rho_{j}\right) \quad \text { on }\left|T_{j}\right| \cap\left|T_{j^{\prime}}\right|,
$$

and if we assume only $\pi_{j} \circ \pi_{j^{\prime}}=\pi_{j}$ on $\left|T_{j}\right| \cap\left|T_{j^{\prime}}\right|$ then $\left.\pi_{j}\right|_{Y_{j^{\prime}} \cap\left|T_{j}\right|}$ is a C^{r} submersion into Y_{j}. In the case of a C^{r} weak tube system $\left.\left(\pi_{j}, \rho_{j}\right)\right|_{Y_{j^{\prime}} \cap\left|T_{j}\right|-Y_{j}}$ is a C^{1} submersion into $Y_{j} \times \mathbf{R}$. Let $f:\left\{X_{i}\right\} \rightarrow\left\{Y_{j}\right\}$ be a C^{r} stratification of a C^{r} map $f: X \rightarrow Y$ between subsets of \mathbf{R}^{m} and \mathbf{R}^{n}, respectively, $\left\{T_{j}^{Y}=\left(\left|Y_{j}^{Y}\right|, \pi_{j}^{Y}, \rho_{j}^{Y}\right)\right\}$ a controlled C^{r} (weak) tube system for $\left\{Y_{j}\right\}$ and $\left\{T_{i}^{X}=\left(\left|T_{i}^{X}\right|, \pi_{i}^{X}, \rho_{i}^{X}\right)\right\}$ a C^{r} (weak) tube system for $\left\{X_{i}\right\}$. We call $\left\{T_{i}^{X}\right\}$ controlled over $\left\{T_{j}^{Y}\right\}$ if the following four conditions are satisfied. Let f be extended to a $C^{r} \operatorname{map} \tilde{f}: \cup_{i}\left|T_{i}^{X}\right| \rightarrow \mathbf{R}^{n}$.
(1) For each (i, j) with $f\left(X_{i}\right) \subset Y_{j}$,

$$
f \circ \pi_{i}^{X}=\pi_{j}^{Y} \circ \tilde{f} \quad \text { on }\left|T_{j}^{X}\right| \cap \tilde{f}^{-1}\left(\left|T_{j}^{Y}\right|\right)
$$

(2) For each j, $\left\{T_{i}^{X}: f\left(X_{i}\right) \subset Y_{j}\right\}$ is a controlled C^{r} (weak) tube system for $\left\{X_{i}: f\left(X_{i}\right) \subset Y_{j}\right\}$.
(3) For each pair i and i^{\prime} with $\left(\overline{X_{i^{\prime}}}-X_{i^{\prime}}\right) \cap X_{i} \neq \emptyset$,

$$
\pi_{i}^{X} \circ \pi_{i^{\prime}}^{X}=\pi_{i}^{X} \quad \text { on }\left|T_{i}^{X}\right| \cap\left|T_{i^{\prime}}^{X}\right| .
$$

(4) For each (i, j) with $f\left(X_{i}\right) \subset Y_{j}$ and $\left(i^{\prime}, j^{\prime}\right)$ with $\left(\overline{X_{i^{\prime}}}-X_{i^{\prime}}\right) \cap X_{i} \neq \emptyset$ and $f\left(X_{i^{\prime}}\right) \subset Y_{j^{\prime}},\left.\left(\pi_{i}^{X}, f\right)\right|_{X_{i^{\prime}} \cap\left|T_{i}^{X}\right|}$ is a C^{r} submersion into the fiber product $X_{i} \times{ }_{\left(f, \pi_{j}^{Y}\right)}$ $\left(Y_{j^{\prime}} \cap\left|T_{j}^{Y}\right|\right)$-the C^{r} manifold $\left\{(x, y) \in X_{i} \times\left(Y_{j^{\prime}} \cap\left|T_{j}^{Y}\right|\right): f(x)=\pi_{j}^{Y}(y)\right\}$.

Note (4) is equivalent to the next condition.
(4) ${ }^{\prime}$ For $(i, j),\left(i^{\prime}, j^{\prime}\right)$ as in (4) and for each $x \in X_{i^{\prime}} \cap\left|T_{i}^{X}\right|$, the germ of $\left.\pi_{i}^{X}\right|_{X_{i^{\prime} \cap f^{-1}(f(x))}}$ at x is a C^{r} submersion onto the germ of $X_{i} \cap f^{-1}\left(\pi_{j}^{Y} \circ f(x)\right)$ at $\pi_{i}^{X}(x)$.

This definition of controlledness is stronger than that in [G]. In [G], (4) is not assumed. However, if $f:\left\{X_{i}\right\} \rightarrow\left\{Y_{j}\right\}$ is a Thom map then (4) immediately follows from (1), (2) and (3), and existence of a C^{r} tube system $\left\{T_{i}^{X}\right\}$ for $\left\{X_{i}\right\}$ controlled over a given controlled C^{r} tube system $\left\{T_{j}^{Y}\right\}$ for $\left\{Y_{j}\right\}$ is known (see [G] and [S2]). We shall treat a C^{1} stratification $f:\left\{X_{i}\right\} \rightarrow\left\{Y_{j}\right\}$ of f which is not necessarily a Thom C^{1} stratification but admits a controlled C^{1} tube system $\left\{T_{j}^{Y}\right\}$ for $\left\{Y_{j}\right\}$ and a C^{1} weak tube system $\left\{T_{i}^{X}\right\}$ for $\left\{X_{i}\right\}$ controlled over $\left\{T_{j}^{Y}\right\}$.

In $[\mathbf{S 3}]$ theorem 1.1 is proved in the following more general form.
Theorem 2.1. Let $f:\left\{X_{i}\right\} \rightarrow\left\{Y_{j}\right\}$ be a C^{∞} stratification of a C^{∞} proper map $f: X \rightarrow Y$ between closed subsets of Euclidean spaces. Assume there exist a controlled C^{∞} tube system $\left\{T_{j}^{Y}\right\}$ for $\left\{Y_{j}\right\}$ and a C^{∞} tube system $\left\{T_{i}^{X}\right\}$ for $\left\{X_{i}\right\}$ controlled over $\left\{T_{j}^{Y}\right\}$. Then there exist homeomorphisms τ and π from X and Y to polyhedra P and Q, respectively, closed in some Euclidean spaces such that $\pi \circ f \circ \tau^{-1}: P \rightarrow Q$ is piecewise linear and $\tau\left(\overline{X_{i}}\right)$ and $\pi\left(\overline{Y_{j}}\right)$ are all polyhedra. If $f:\left\{X_{i}\right\} \rightarrow\left\{Y_{j}\right\},\left\{T_{i}^{X}\right\}$ and $\left\{T_{j}^{Y}\right\}$ are semialgebraic or, more generally, definable in an o-minimal structure, then we can choose semialgebraic or definable τ, π, P and Q.
(Note a semialgebraic closed polyhedron in a Euclidean space is semilinear, i.e., is defined by a finite number of equalities and inequalities of linear functions.) Moreover, the proof in [S3] shows the following generalization though we do not repeat its proof.

Theorem 2.2. Let $f:\left\{X_{i}\right\} \rightarrow\left\{Y_{j}\right\}$ be a C^{1} stratification of a C^{1} proper map $f: X \rightarrow Y$ between closed subsets of Euclidean spaces. Let I denote the set of indexes i of X_{i} such that $\left.f\right|_{X_{i}}$ is not injective. Assume there exist a controlled C^{1} tube system $\left\{T_{j}^{Y}\right\}$ for $\left\{Y_{j}\right\}$ and a C^{1} weak tube system $\left\{T_{i}^{X}\right\}$ for $\left\{X_{i}\right\}$ controlled over $\left\{T_{j}^{Y}\right\}$ such that $\left\{T_{i}^{X}: i \in I\right\}$ is a C^{1} tube system for $\left\{X_{i}: i \in I\right\}$. Then the result in theorem 2.1 holds.

We will prove theorem 1.2 by compactifying $f: X \rightarrow Y$ in theorem 1.2 and applying theorem 2.2 to the compctification. There are two unusual problems which we encounter. First the arguments do not work in the C^{2} category and apply the C^{1} category. Secondly we construct $\left\{T_{j}^{Y}: Y_{j} \subset \bar{Y}\right\}$ and $\left\{T_{i}^{X}: X_{i} \subset X\right\}$ by induction on $\operatorname{dim} Y_{j}$ and $\operatorname{dim} X_{i}$ but the induction of construction of $\left\{T_{i}^{X}: X_{i} \subset \bar{X}-X\right\}$ is downward. The two inductions are not independent and we need special conditions (iv) and (ix) for tube systems in the proof below. It is natural to ask whether we can extend f to a Thom map \bar{f}. The answer is negative. To keep the property that f is a Thom map also we use (iv) and (ix).

3. Proof of theorem theorem 1.2

Proof of theorem 1.2. We assume X is non-compact and X and Y are bounded in \mathbf{R}^{m} and \mathbf{R}^{n}, respectively, by replacing \mathbf{R}^{m} and \mathbf{R}^{n} with $(0,1)^{m}$ and $(0,1)^{n}$ respectively. Then $\bar{X}-X$ and $\bar{Y}-Y$ are compact. Let $f:\left\{X_{i}\right\} \rightarrow\left\{Y_{j}\right\}$ be a semialgebraic Thom C^{1} stratification of $f: X \rightarrow Y$. Then we can assume f is extendable to \bar{X}. Apply Theorem II.4.1, $[\mathbf{S} 1]$ to the function on \mathbf{R}^{m} measuring distance from the compact set $\bar{X}-X$. Then we have a non-negative semialgebraic C^{0} function ϕ on \mathbf{R}^{m} such that $\phi^{-1}(0)=\bar{X}-X$ and $\left.\phi\right|_{\mathbf{R}^{m}-(\bar{X}-X)}$ is of class C^{1}. Choose $\epsilon>0 \in \mathbf{R}$ so that ϕ is C^{1} regular on $\phi^{-1}((0, \epsilon])$ and let ϕ^{\prime} be a semialgebraic C^{1} function on \mathbf{R} such that $\phi^{\prime}(0)=0, \phi^{\prime}$ is regular on $(0, \epsilon)$ and $\phi^{\prime}=1$ on $[\epsilon, \infty)$. Set

$$
\Phi(x)=\left(\phi^{\prime} \circ \phi(x), \phi^{\prime} \circ \phi(x) x\right) \quad \text { for } x \in X
$$

Then Φ is a semialgebraic C^{1} imbedding of X into \mathbf{R}^{m+1} such that $\Phi(X)$ is bounded and $\overline{\Phi(X)}-\Phi(X)=\{0\}$. Hence replacing X with $\Phi(X)$ we assume $\bar{X}-X=\{0\}$ from the beginning. Moreover, replace X with the graph of f. Then we suppose X is contained and bounded in $\mathbf{R}^{m} \times \mathbf{R}^{n}, \bar{X}-X \subset\{0\} \times \bar{Y}, f: X \rightarrow Y$ is the restriction of the projection $p: \mathbf{R}^{m} \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ and hence f is extended to a semialgebraic C^{1} map $\bar{f}: \bar{X} \rightarrow \bar{Y}$.

By the same reason we assume $\bar{Y}-\{0\}$. Note then $\left\{Y_{j}, 0\right\}$ is a semialgebraic Whitney C^{1} stratification of \bar{Y}. Let $\left\{T_{j}^{Y}\right\}$ be a controlled semialgebraic C^{1} tube system for $\left\{Y_{j}\right\}$ and $\left\{T_{i}^{X}\right\}$ a semialgebraic C^{1} tube system for $\left\{X_{i}\right\}$ controlled over $\left\{T_{j}^{Y}\right\}$. Assume the set of indexes of Y_{j} does not contain 0 , set $Y_{0}=\{0\}$ and add Y_{0} to $\left\{Y_{j}\right\}$. Then we can assume there is a semialgebraic C^{1} tube $T_{0}^{Y}=\left(\left|T_{0}^{Y}\right|, \pi_{0}^{Y}, \rho_{0}^{Y}\right)$ at Y_{0} such that $\left\{T_{j}^{Y}, T_{0}^{Y}: j \neq 0\right\}$ is controlled for the following reason.

Let $\left|T_{0}^{Y}\right|$ be the closed ball $B(\epsilon)$ with center 0 in \mathbf{R}^{n} and with small radius $\epsilon>0$ (we treat closed balls in place of open balls for simplicity of notation), and set $\pi_{0}^{Y}(y)=0$ and, tentatively, $\rho_{0}^{Y}(y)=|y|^{2}$ for $y \in\left|T_{0}^{Y}\right|$. Then the condition $\rho_{0}^{Y} \circ \pi_{j}^{Y}=\rho_{0}^{Y}$ on $\left|T_{0}^{Y}\right| \cap\left|T_{j}^{Y}\right|$ for $j \neq 0$ does not necessarily hold. For that condition it suffices to find a semialgebraic homeomorphism τ of \mathbf{R}^{n} of class C^{1} outside of

0 and such that $\tau(0)=0, \tau=$ id outside of $B(\epsilon)$ and $\rho_{0}^{Y} \circ \pi_{j}^{Y} \circ \tau^{-1}=\rho_{0}^{Y}$ on $B\left(\epsilon^{\prime}\right) \cap \tau\left(\left|T_{j}^{Y}\right|\right)$ for $j \neq 0$, shrunk $\left|T_{j}^{Y}\right|$ and some $\epsilon^{\prime}>0$.

Let Y_{j} be such that $\operatorname{dim} Y_{j}$ is the smallest in $\left\{Y_{j}: 0 \in \overline{Y_{j}}, j \neq 0\right\}$, and choose ϵ so small that $\left.\rho_{0}^{Y}\right|_{Y_{j} \cap\left|T_{0}^{Y}\right|}$ is C^{1} regular, which implies that $\rho_{0}^{Y-1}\left(\epsilon^{\prime 2}\right)$ is transversal to Y_{j} for any $0<\epsilon^{\prime} \leq \epsilon$. Set $Y_{j}\left(\epsilon^{\prime}\right)=Y_{j} \cap \rho_{0}^{Y-1}\left(\epsilon^{\prime 2}\right)$. We will define a semialgebraic homeomorphism τ_{j} of \mathbf{R}^{n} of class C^{1} outside of 0 such that $\tau_{j}(0)=0, \tau_{j}=\mathrm{id}$ outside of $B(\epsilon)$ and $\rho_{0}^{Y} \circ \pi_{j}^{Y} \circ \tau_{j}^{-1}=\rho_{0}^{Y}$ on $B(\epsilon / 2) \cap \tau_{j}\left(\left|T_{j}^{Y}\right|\right)$ for shrunk $\left|T_{j}^{Y}\right|$. Since the problem is local at Y_{j}, we can assume by Thom's first isotopy lemma (see Theorem II.6.1 and it complement, [S2]) that
$\left|T_{0}^{Y}\right| \cap Y_{j}=Y_{j}(\epsilon) \times\left(0, \epsilon^{2}\right]$, after then, $\left|T_{0}^{Y}\right| \cap\left|T_{j}^{Y}\right|=\cup\left\{y+L_{y}: y \in Y_{j}(\epsilon)\right\} \times\left(0, \epsilon^{2}\right]$ and $\pi_{j}^{Y}(y+z, t)$ and $\rho_{0}^{Y}(y+z, t)$ are of the form $\left(y, \pi_{j}^{Y \prime}(y+z, t)\right)$ and t, respectively, for $y \in Y_{j}(\epsilon)$ and $(z, t) \in L_{y} \times\left(0, \epsilon^{2}\right]$, where L_{y} is a linear subspace of the tangent space $T_{y} \rho_{0}^{Y-1}\left(\epsilon^{2}\right)$ of codimension $=\operatorname{codim} Y_{j}$ in \mathbf{R}^{n} such that the correspondence $Y_{j}(\epsilon) \ni y \rightarrow L_{y} \in G_{n, \operatorname{codim} Y_{j}}$ is semialgebraic and of class C^{1} and $\pi_{j}^{Y \prime}$ is a semialgebraic C^{1} function defined on $\cup\left\{y+L_{y}\right\} \times\left(0, \epsilon^{2}\right]$. For simplicity of notation we write $\cup_{y \in Y_{j}(\epsilon)}\{y\} \times L_{y}$ as $Y_{j}(\epsilon) \times L$. Transform $Y_{j}(\epsilon) \times L \times\left(0, \epsilon^{2}\right]$ by a semialgebraic C^{1} diffeomorphism $(y, z, t) \rightarrow\left(y, z / k t^{k}, t\right)$ for sufficiently large integer k. Then we can assume

$$
\begin{equation*}
\left|\pi_{j}^{Y \prime}(y+z, t)-t\right| \leq \epsilon^{2} / 28 \text { and }\left|\frac{\partial \pi_{j}^{Y \prime}}{\partial t}(y+z, t)-1\right|<1 / 4 \text { for }|z| \leq 1 \tag{0}
\end{equation*}
$$

since

$$
\pi_{j}^{Y^{\prime}}(y, t)=t
$$

Let ξ be a semialgebraic C^{1} function on \mathbf{R} such that $0 \leq \xi \leq 1, \xi=1$ on $(-\infty, 1 / 2), \xi=0$ on $(2 / 3, \infty)$ and $\left|\frac{d \xi}{d t}\right| \leq 7$. Set

$$
\left.\begin{array}{rl}
\tau_{j}(y+z, t)=\left(y+z,\left(1-\xi\left(2 t / \epsilon^{2}\right) \xi(|z|)\right) t\right. & \left.+\xi\left(2 t / \epsilon^{2}\right) \xi(|z|) \pi_{j}^{Y \prime}(y+z, t)\right) \\
& \text { for }(y, z, t)
\end{array}\right) Y_{j}(\epsilon) \times L \times\left(0, \epsilon^{2}\right] .
$$

Then $\tau_{j}=\pi_{j}^{Y}$ if $t \leq \epsilon^{2} / 4$ and $|z| \leq 1 / 2, \tau_{j}=$ id if $t \geq \epsilon^{2} / 3$ or $|z| \geq 2 / 3$ and, moreover, τ_{j} is a diffeomorphism because

$$
\begin{aligned}
& \left|\frac{\partial}{\partial t}\left(\left(1-\xi\left(t / \epsilon^{2}\right) \xi(|z|)\right) t+\xi\left(t / \epsilon^{2}\right) \xi(|z|) \pi_{j}^{Y \prime}(y+z, t)\right)-1\right| \\
& \left.\leq \xi\left(t / \epsilon^{2}\right) \xi(|z|)\left|1-\frac{\partial \pi_{j}^{Y \prime}}{\partial t}(y+z, t)\right|+\left|\frac{d \xi}{d t}\left(t / \epsilon^{2}\right) \xi(|z|)\right| t-\pi_{j}^{Y \prime}(y+z, t) \right\rvert\, / \epsilon^{2} \\
& \leq 1 / 4+1 / 4=1 / 2 \quad \text { for }|z| \leq 1
\end{aligned}
$$

Thus we can assume $\rho_{0}^{Y} \circ \pi_{j}^{Y}=\rho_{0}^{Y}$ on $\left|T_{0}^{Y}\right| \cap\left|T_{j}^{Y}\right|$.
Repeating the same arguments by induction on $\operatorname{dim} Y_{j^{\prime}}$ for all $Y_{j^{\prime}}$ with $0 \in \overline{Y_{j^{\prime}}}$ we obtain the required τ. Here we note only that for j^{\prime} with $\overline{{j^{\prime}}^{\prime}}-Y_{j^{\prime}} \supset Y_{j}$, though $Y_{j^{\prime}}(\epsilon)$ is not compact, (0) can holds. Indeed

$$
\rho_{0}^{Y}=\rho_{0}^{Y} \circ \pi_{j}^{Y} \circ \pi_{j^{\prime}}^{Y}=\rho_{0}^{Y} \circ \pi_{j^{\prime}}^{Y} \quad \text { on }\left|T_{0}^{Y}\right| \cap\left|T_{j}^{Y}\right| \cap\left|T_{j^{\prime}}^{Y}\right| .
$$

Hence when we describe $\pi_{j^{\prime}}^{Y}$ as above there is a semialgebraic neighborhood U of $Y_{j}(\epsilon) \times\left(0, \epsilon^{2}\right]$ in $\overline{Y_{j^{\prime}}(\epsilon)} \times\left(0, \epsilon^{2}\right]$ such that

$$
\pi_{j^{\prime}}^{Y \prime}(y+z, t)=t \quad \text { for }(y, z, t) \in Y_{j^{\prime}}(\epsilon) \times L_{y} \times\left(0, \epsilon^{2}\right] \text { with }(y, t) \in U
$$

In conclusion we assume Y is compact.

If $f:\left\{X_{i}\right\} \rightarrow\left\{Y_{j}\right\}$ is extended to a Thom C^{1} stratification of $\bar{f}: \bar{X} \rightarrow Y$, then theorem 1.2 follows from theorem 1.1 in the C^{1} case. However, such extension does not always exist. Instead we will find a semialgebraic C^{1} stratification \bar{f} : $\left\{X_{i^{\prime}}^{\prime}\right\} \rightarrow\left\{Y_{j^{\prime}}^{\prime}\right\}$ of \bar{f}, a controlled semialgebraic C^{1} tube system $\left\{T_{j^{\prime}}^{Y \prime}\right\}$ for $\left\{Y_{j^{\prime}}^{\prime}\right\}$ and a semialgebraic C^{1} weak tube system $\left\{T_{i^{\prime}}^{X \prime}\right\}$ for $\left\{X_{i^{\prime}}^{\prime}\right\}$ controlled over $\left\{T_{j^{\prime}}^{Y \prime}\right\}$ such that $\left.\left\{X_{i^{\prime}}^{\prime}\right\}\right|_{X}$ and $\left.\left\{Y_{j^{\prime}}^{\prime}\right\}\right|_{Y}$ are substratifications of $\left\{X_{i}\right\}$ and $\left\{Y_{j}\right\}$. Here $\left\{Y_{j^{\prime}}^{\prime}\right\}$ is a Whitney stratification but $\left\{X_{i^{\prime}}^{\prime}\right\}$ is not necessarily so.

Set $Z=\bar{X}-X$, which is compact. Note $Z=\{0\} \times \bar{f}(Z)$ and $\left.\bar{f}\right|_{Z}$ is a homeomorphism onto $\bar{f}(Z)$. Let $\left\{Y_{j^{\prime}}^{\prime}\right\}$ be a semialgebraic Whitney C^{1} substratification of $\left\{Y_{j}\right\}$ such that each stratum is connected, $\bar{f}(Z)$ is a union of some Y_{j}^{\prime} 's and $\left\{X_{i},\{0\} \times\left(Y_{j^{\prime}}^{\prime} \cap \bar{f}(Z)\right)\right\}$ is a Whitney C^{1} stratification of \bar{X}, which is constructed in the same way as the canonical semialgebraic C^{ω} stratification of a semialgebraic set since $\bar{f}(Z)$ is closed in Y. Note $\left\{Y_{j^{\prime}}^{\prime}\right\}$ satisfies the frontier condition. Set

$$
\left\{X_{i^{\prime}}^{\prime}\right\}=\left\{X_{i} \cap \bar{f}^{-1}\left(Y_{j^{\prime}}^{\prime}\right), Z \cap\{0\} \times Y_{j^{\prime}}^{\prime}\right\}
$$

Then $\left\{X_{i^{\prime}}^{\prime}\right\}$ is a semialgebraic (not necessarily Whitney) C^{1} stratification of \bar{X}; $\left\{X_{i^{\prime}}^{\prime} \cap X\right\}$ is a substratification of $\left\{X_{i}\right\} ; \bar{f}:\left\{X_{i^{\prime}}^{\prime}\right\} \rightarrow\left\{Y_{j^{\prime}}^{\prime}\right\}$ is a C^{1} stratification of \bar{f}; we can choose $\left\{Y_{j^{\prime}}^{\prime}\right\}$ so that for each $Y_{j^{\prime}}^{\prime},\left\{X_{i^{\prime}}^{\prime}: \bar{f}\left(X_{i^{\prime}}^{\prime}\right)=Y_{j^{\prime}}^{\prime}\right\}$ is a Whitney C^{1} stratification for the following reason.

Assume $Y_{j^{\prime}}^{\prime} \not \subset \bar{f}(Z)$. Then $Y_{j^{\prime}}^{\prime} \cap \bar{f}(Z)=\emptyset$ and there is Y_{j} including $Y_{j^{\prime}}^{\prime}$. By definition of $\left\{X_{i^{\prime}}^{\prime}\right\}$,

$$
\left\{X_{i^{\prime}}^{\prime}: \bar{f}\left(X_{i^{\prime}}^{\prime}\right)=Y_{j^{\prime}}^{\prime}\right\}=\left\{X_{i} \cap f^{-1}\left(Y_{j^{\prime}}^{\prime}\right)\right\}
$$

Therefore the assertion follows from the fact that given a Whitney C^{r} stratification $\left\{M_{1}, M_{2}\right\}$, a C^{r} map g from $M_{1} \cup M_{2}$ to a C^{r} manifold N such that $\left.g\right|_{M_{1}}$ and $\left.g\right|_{M_{2}}$ are C^{r} submersions into N and a C^{r} submanifold N_{1} of N then $\left\{M_{1} \cap g^{-1}\left(N_{1}\right), M_{2} \cap\right.$ $\left.g^{-1}\left(N_{1}\right)\right\}$ is a Whitney C^{r} stratification.

Next assume $Y_{j^{\prime}}^{\prime} \subset \bar{f}(Z)$, and let $X_{i_{1}^{\prime}}^{\prime}$ and $X_{i_{2}^{\prime}}^{\prime}$ be such that $\bar{f}\left(X_{i_{k}^{\prime}}^{\prime}\right)=Y_{j^{\prime}}^{\prime}, k=$ 1,2 , and $\left(\overline{X_{i_{1}^{\prime}}^{\prime}}-X_{i_{1}^{\prime}}^{\prime}\right) \cap X_{i_{2}^{\prime}}^{\prime} \neq \emptyset$. Then we need to see ($X_{i_{1}^{\prime}}^{\prime}, X_{i_{2}^{\prime}}^{\prime}$) can satisfy the Whitney condition. Since $\left.\bar{f}\right|_{Z}$ is injective, there are only two possible cases to consider: $X_{i_{k}^{\prime}}^{\prime}=X_{i_{k}} \cap \bar{f}^{-1}\left(Y_{j^{\prime}}^{\prime}\right), k=1,2$, for some i_{1} and i_{2} or $X_{i_{1}^{\prime}}^{\prime}=X_{i_{1}} \cap \bar{f}^{-1}\left(Y_{j^{\prime}}^{\prime}\right)$ and $X_{i_{2}^{\prime}}^{\prime}=\{0\} \times Y_{j^{\prime}}^{\prime}$. In the former case there is j such that $Y_{j^{\prime}}^{\prime} \subset Y_{j}$. Hence the Whitney condition is satisfied by the same reason as in the case of $Y_{j^{\prime}}^{\prime} \not \subset \bar{f}(Z)$. Consider the latter case. If $\left\{X_{i_{1}^{\prime}}^{\prime},\{0\} \times Y_{j^{\prime}}^{\prime}\right\}$ is not a Whitney stratification, let $Y_{j^{\prime}}^{\prime \prime}$ denote the subset of $Y_{j^{\prime}}^{\prime}$ consisting of y such that $\left(X_{i_{1}}^{\prime},\{0\} \times Y_{j^{\prime}}^{\prime}\right)$ does not satisfy the Whitney condition at $(0, y)$. Then $Y_{j^{\prime}}^{\prime \prime}$ and hence $\overline{Y_{j^{\prime}}^{\prime \prime}}$ are semialgebraic and of dimension smaller that $\operatorname{dim} Y_{j^{\prime}}^{\prime}$. Divide $Y_{j^{\prime}}^{\prime}$ to $\left\{Y_{j^{\prime}}^{\prime}-\overline{Y_{j^{\prime}}^{\prime \prime}}, \overline{Y_{j^{\prime}}^{\prime \prime}}\right\}$ and substratify $\left\{Y_{j^{\prime}}^{\prime} \cap\right.$ $\bar{f}(Z)\}$ by downward induction on dimension of $Y_{j^{\prime}}^{\prime}$ so that the above conditions on $\left\{Y_{j^{\prime}}^{\prime}\right\}$ are kept and $Y_{j^{\prime}}^{\prime \prime}=\emptyset$. Then $\left\{X_{i_{1}^{\prime}}^{\prime},\{0\} \times Y_{j^{\prime}}^{\prime}\right\}$ becomes a Whitney stratification.

Now we define a controlled semialgebraic C^{1} tube system $\left\{T_{j^{\prime}}^{Y \prime}=\left(\left|T_{j^{\prime}}^{Y \prime}\right|, \pi_{j^{\prime}}^{Y \prime}, \rho_{j^{\prime}}^{Y \prime}\right)\right\}$ for $\left\{Y_{j^{\prime}}^{\prime}\right\}$. For simplicity of notation, assume $\operatorname{dim} Y_{j}=j$ gathering strata of the same dimension. For each j, set

$$
J_{j}= \begin{cases}\left\{j^{\prime}: Y_{j^{\prime}}^{\prime} \subset Y_{j},\right\} & \text { if } j \geq 0 \\ \emptyset & \text { if } j=-1\end{cases}
$$

We define $\left\{T_{j^{\prime}}^{Y \prime}: j^{\prime} \in J_{j}\right\}$ by induction on j. Fix a non-negative integer j_{0}, and assume we have constructed a controlled semialgebraic C^{1} tube system $\left\{T_{j^{\prime}}^{Y \prime}: j^{\prime} \in\right.$ $\left.J_{j}, j<j_{0}\right\}$ so that $T_{j^{\prime}}^{Y \prime}=\left.T_{j_{1}}^{Y}\right|_{\left|T_{j^{\prime}}{ }^{\prime}\right|}$ for $j^{\prime} \in J_{j_{1}}, j_{1}<j_{0}$, with $\operatorname{dim} Y_{j^{\prime}}^{\prime}=j_{1}$,
$(*)_{Y}$

$$
\pi_{j^{\prime}}^{Y \prime} \circ \pi_{j}^{Y}=\pi_{j^{\prime}}^{Y \prime} \quad \text { on }\left|T_{j^{\prime}}^{Y \prime}\right| \cap\left|T_{j}^{Y}\right| \text { for } j^{\prime} \text { and } j \text { with } Y_{j^{\prime}}^{\prime} \subset \overline{Y_{j}},
$$

$(* *)_{Y} \quad \rho_{j^{\prime}}^{Y \prime} \circ \pi_{j}^{Y}=\rho_{j^{\prime}}^{Y \prime} \quad$ on $\left|T_{j^{\prime}}^{Y}\right| \cap\left|T_{j}^{Y}\right|$ for $j^{\prime} \in J_{j_{1}}$ and j with $j_{1}<j$,
$\pi_{j^{\prime}}^{Y \prime}$ are of class C^{1} and $\rho_{j^{\prime}}^{Y \prime}$ are of class C^{1} on $\left|T_{j^{\prime}}^{Y}\right|-Y_{j^{\prime}}^{\prime}$. For the conditions of the first and $(* *)_{Y}$ we need to proceed in the C^{1} category because there does not necessarily exist such $\left\{T_{j^{\prime}}^{Y}\right\}$ of class C^{2} even if $\left\{T_{j}^{Y}\right\}$ is of class C^{2}.

We wil define a semialgebraic C^{1} tube system $\left\{T_{j^{\prime}}^{Y \prime}: j^{\prime} \in J_{j_{0}}\right\}$ for $\left\{Y_{j^{\prime}}^{\prime}: j^{\prime} \in\right.$ $\left.J_{j_{0}}\right\}$. For the time being, let $\left\{T_{j^{\prime}}^{Y \prime}: j^{\prime} \in J_{j_{0}}\right\}$ be a semialgebraic C^{1} tube system for $\left\{Y_{j^{\prime}}^{\prime}: j^{\prime} \in J_{j_{0}}\right\}$ such that $\left\{T_{j^{\prime}}^{Y^{\prime}}: j^{\prime} \in J_{j}, j \leq j_{0}\right\}$ is controlled (Lemma II.6.10, [S2] states only the case where $\cup_{j^{\prime} \in J_{j_{0}}} Y_{j^{\prime}}^{\prime}$ is compact but its proof works in the general case. We omit the details.) We modify $\left\{T_{j^{\prime}}^{Y \prime}: j^{\prime} \in J_{j_{0}}\right\}$ so that the conditions are satisfied. Let $j^{\prime} \in J_{j_{0}}$.

Restrict $\pi_{j^{\prime}}^{Y \prime}$ and $\rho_{j^{\prime}}^{Y \prime}$ to $Y_{j_{0}}$ for $j^{\prime} \in J_{j_{0}}$ and define afresh them outside of $Y_{j_{0}}$ as follows. Let $\pi_{j^{\prime}}^{Y \prime}$ and $\rho_{j^{\prime}}^{Y \prime}, j^{\prime} \in J_{j_{0}}$, now denote the restrictions. If $\operatorname{dim} Y_{j^{\prime}}^{\prime}=j_{0}$, we should set $T_{j^{\prime} \prime}^{Y \prime}=\left.T_{j_{0}}^{Y}\right|_{\mid T_{j^{\prime}}^{Y} \text { 生。 }}$. Then $(*)_{Y}$ and $(* *)_{Y}$ are satisfied because $\left\{Y_{j}^{Y}\right\}$ is controlled. Assume $\operatorname{dim} Y_{j^{\prime}}^{\prime}<j_{0}$ and hence $j_{0}>0$. In this case, define the extension of $\pi_{j^{\prime}}^{Y \prime}$ to $\left|T_{j^{\prime}}^{Y \prime}\right|$ to be $\pi_{j^{\prime}}^{Y \prime} \circ \pi_{j_{0}}^{Y}$, and keep the same notation $\pi_{j^{\prime}}^{Y \prime}$ for the extension. Then by controlledness of $\left\{T_{j}^{Y}\right\},(*)_{Y}$ holds for any j with $Y_{j^{\prime}}^{\prime} \subset \overline{Y_{J}}$. The problem is how to extend $\rho_{j^{\prime}}^{Y \prime}$.

As the problem is local at $Y_{j^{\prime}}^{\prime}$ (see II.1.1, $[\mathbf{S 2}]$), considering semialgebraic tubular neighborhoods of $Y_{j^{\prime}}^{\prime}$ and $Y_{j_{0}}$ we can assume for each $y \in Y_{j^{\prime}}^{\prime}, \pi_{j^{\prime}}^{Y \prime-1}(y), \pi_{j^{\prime}}^{Y \prime-1}(y) \cap$ $Y_{j_{0}}$ and $\pi_{j_{0}}^{Y-1}(y)$ are of the form $y+L_{y}, y+L_{0, y}$ and $y+L_{0, y}^{\perp}$, where L_{y} and $L_{0, y}$ are linear subspaces of \mathbf{R}^{n} with $L_{y} \supset L_{0, y}$ and $L_{0, y}^{\perp}$ is the orthocomplement of $L_{0, y}$ with respect to L_{y}, and $\left.\pi_{j_{0}}^{Y}\right|_{\pi_{j^{\prime}}^{Y,-1}(y)}: \pi_{j^{\prime}}^{Y \prime-1}(y) \longrightarrow \pi_{j^{\prime}}^{Y \prime-1}(y) \cap Y_{j_{0}}$ is induced by the orthogonal projection of L_{y} to $L_{0, y}$ and

$$
\rho_{j_{0}}^{Y}\left(y+z_{1}+z_{2}\right)=\left|z_{2}\right|^{2} \text { for }\left(y, z_{1}, z_{2}\right) \in Y_{j^{\prime}}^{\prime} \times L_{0, y} \times L_{0, y}^{\perp}
$$

where $Y_{j^{\prime}}^{\prime} \times L_{0, y} \times L_{0, y}^{\perp}$ denotes $\cup_{y \in Y_{j^{\prime}}^{\prime}}\{y\} \times L_{0, y} \times L_{0, y}^{\perp}$.
Set $\quad \rho_{j^{\prime}}^{Y \prime \prime}\left(y+z_{1}+z_{2}\right)=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2} \quad$ for $\left(y, z_{1}, z_{2}\right) \in Y_{j^{\prime}}^{\prime} \times L_{0, y} \times L_{0, y}^{\perp}$.
Then $\left(\left|T_{j^{\prime}}^{Y \prime}\right|, \pi_{j^{\prime}}^{Y{ }^{\prime}}, \rho_{j^{\prime}}^{Y \prime \prime}\right)$ is a semialgebraic C^{1} tube at $Y_{j^{\prime}}^{\prime}$ but not always satisfy the condition $\rho_{j^{\prime}}^{Y \prime \prime} \circ \pi_{j_{0}}^{Y}=\rho_{j^{\prime}}^{Y \prime \prime}$. We need to modify $\rho_{j^{\prime}}^{Y \prime \prime}$ so that the equality holds on a neighborhood of $Y_{j_{0}}-Y_{j^{\prime}}^{\prime}$. Let ξ be a semialgebraic C^{1} function on \mathbf{R} such that $\xi=1$ on $(-\infty, 1], \xi=0$ on $[2, \infty)$ and $d \xi / d t \leq 0$. Set

$$
\eta_{j^{\prime}}\left(z_{1}, z_{2}\right)= \begin{cases}\xi\left(\frac{\left|z_{2}\right|}{\left|z_{1}\right|^{2}}\right) \frac{\left|z_{1}\right|}{\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)^{1 / 2}}+1-\xi\left(\frac{\left|z_{2}\right|}{\left|z_{1}\right|^{2}}\right) & \text { for }\left(z_{1}, z_{2}\right) \in\left(L_{0, y}-\{0\}\right) \times L_{0, y}^{\perp} \\ 1 & \text { for }\left(z_{1}, z_{2}\right) \in\{0\} \times L_{0, y}^{\perp}\end{cases}
$$

and define a semialgebraic map $\tau_{j^{\prime}}$ between $\left|T_{j^{\prime}}^{Y}\right|$ by

$$
\tau_{j^{\prime}}\left(y+z_{1}+z_{2}\right)=y+\eta_{j^{\prime}}\left(z_{1}, z_{2}\right) z_{1}+\eta_{j^{\prime}}\left(z_{1}, z_{2}\right) z_{2} \quad \text { for }\left(y, z_{1}, z_{2}\right) \in Y_{j^{\prime}}^{\prime} \times L_{0, y} \times L_{0, y}^{\perp}
$$

Then $\pi_{j^{\prime}}^{Y \prime} \circ \tau_{j^{\prime}}=\pi_{j^{\prime}}^{Y \prime} ;$

$$
\tau_{j^{\prime}}=\mathrm{id} \quad \text { on }\left\{y+z_{1}+z_{2}:\left|z_{2}\right| \geq 2\left|z_{1}\right|^{2}\right\}
$$

$\tau_{j^{\prime}}\left(y+z_{1}+z_{2}\right)=y+\frac{\left|z_{1}\right|}{\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)^{1 / 2}} z_{1}+\frac{\left|z_{1}\right|}{\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)^{1 / 2}} z_{2}$

$$
\text { for }\left(y, z_{1}, z_{2}\right) \in Y_{j^{\prime}}^{\prime} \times L_{0, y} \times L_{0, y}^{\perp} \text { with }\left|z_{2}\right| \leq\left|z_{1}\right|^{2} \text {; }
$$

$(* * *)_{Y} \quad \rho_{j^{\prime}}^{Y \prime \prime} \circ \tau_{j^{\prime}}\left(y+z_{1}+z_{2}\right)=\left|z_{1}\right|^{2} \quad$ for the same $\left(y, z_{1}, z_{2}\right) ;$
for each line l in $\{y\} \times L_{0, y} \times L_{0, y}^{\perp}$ passing through 0 parameterized by $t \in \mathbf{R}$ as $z_{1}=z_{1}(t)$ and $z_{2}=z_{2}(t)$ so that $\left|z_{1}(t)\right|=|t|$ and $\left|z_{2}(t)\right|=a|t|$ for $a \geq 0 \in \mathbf{R}$,

$$
\begin{gathered}
\tau_{j^{\prime}}(l)=l \\
\left|\tau_{j^{\prime}}\left(y+z_{1}(t)+z_{2}(t)\right)-y\right|=\eta_{j^{\prime}}\left(z_{1}(t),\right. \\
\left., z_{2}(t)\right)\left(\left|z_{1}(t)\right|^{2}+\left|z_{2}(t)\right|^{2}\right)^{1 / 2} \\
=\xi\left(\frac{a}{|t|}\right)|t|+\left(1-\xi\left(\frac{a}{|t|}\right)\right)\left(1+a^{2}\right)^{1 / 2}|t|
\end{gathered}
$$

hence by easy calculations we see if a is sufficiently small then $\left.\tau_{j^{\prime}}\right|_{l}$ is a C^{1} diffeomorphism of l and, therefore by the above equality $\tau_{j^{\prime}}=\mathrm{id}$ on $\left\{\left|z_{2}\right| \geq 2\left|z_{1}\right|^{2}\right\}$ shrinking $\left|T_{j^{\prime}}^{Y{ }^{\prime}}\right|$ we can assume $\tau_{j^{\prime}}$ is a homeomorphism and its restriction to $\left|T_{j^{\prime}}^{Y}\right|-Y_{j^{\prime}}^{\prime}$ is a C^{1} diffeomorphism; moreover, if we set $\rho_{j^{\prime}}^{Y \prime}=\rho_{j^{\prime}}^{Y \prime \prime} \circ \tau_{j^{\prime}}$ and $T_{j^{\prime}}^{Y \prime}=\left(\left|T_{j^{\prime}}^{Y \prime}\right|, \pi_{j^{\prime}}^{Y \prime}, \rho_{j^{\prime}}^{Y}\right)$ for all $j^{\prime} \in J_{j_{0}}$ with $\operatorname{dim} Y_{j^{\prime}}^{\prime}<j_{0}$ then $\left\{T_{j_{1}^{\prime}}^{Y^{\prime}}: j_{1}^{\prime} \in J_{j_{1}}, j_{1} \leq j_{0}\right\}$ is a controlled semialgebraic C^{1} tube system. Indeed, for $j_{1}^{\prime} \in J_{j_{0}}$ and j_{2}^{\prime} with $\left(\overline{Y_{j_{1}^{\prime}}^{\prime}}-Y_{j_{1}^{\prime}}^{\prime}\right) \cap Y_{j_{2}^{\prime}}^{\prime} \neq \emptyset$, the following equalities folds on $\left|T_{j_{1}^{\prime}}^{Y{ }^{\prime}}\right| \cap\left|T_{j_{2}^{\prime}}^{Y{ }^{\prime}}\right|$

$$
\begin{aligned}
& \pi_{j_{2}^{\prime}}^{Y \prime} \circ \pi_{j_{1}^{\prime}}^{Y \prime}=\pi_{j_{2}^{\prime}}^{Y \prime} \circ \pi_{j_{1}^{\prime}}^{Y \prime} \circ \pi_{j_{0}}^{Y} \quad \text { by definition of } \pi_{j_{1}^{\prime}}^{Y \prime} \\
& =\pi_{j_{2}^{\prime}}^{Y \prime} \circ \pi_{j_{0}}^{Y} \quad \text { by controlledness of }\left\{\left.T_{j^{\prime}}^{Y \prime}\right|_{y_{0}}: j^{\prime} \in J_{j}, j \leq j_{0}\right\}
\end{aligned}
$$

$=\pi_{j_{2}^{\prime}}^{Y \prime}$ by definition of $\pi_{j_{2}^{\prime}}^{Y \prime}$ in the case of $j_{2}^{\prime} \in J_{j_{0}}$ and by $(*)_{Y}$ in the other case.
In the same way we see by $(* *)_{Y}$ and $(* * *)_{Y}$

$$
\rho_{j_{2}^{\prime}}^{Y \prime} \circ \pi_{j_{1}^{\prime}}^{Y \prime}=\rho_{j_{2}^{\prime}}^{Y \prime} \quad \text { on }\left|T_{j_{1}^{\prime}}^{Y \prime}\right| \cap\left|T_{j_{2}^{\prime}}^{Y \prime}\right| .
$$

Hence it remains to show $\tau_{j^{\prime}}$ is a C^{1} diffeomorphism.
It is easy to show $\tau_{j^{\prime}}$ is differentiable at $Y_{j^{\prime}}^{\prime}$ and its differential $d \tau_{j^{\prime} a}$ at each point a of $Y_{j^{\prime}}^{\prime}$ is equal to the identity map. Hence we only need to show the map $\left|T_{j^{\prime}}^{Y}\right| \ni a \rightarrow d \tau_{j^{\prime} a} \in G L\left(\mathbf{R}^{n}\right)$ is of class C^{0}. As the problem is local at each point of $Y_{j^{\prime}}^{\prime}$ we suppose

$$
Y_{j^{\prime}}^{\prime}=\mathbf{R}^{n^{\prime}} \times\{0\} \times\{0\}, Y_{j_{0}}=\mathbf{R}^{n^{\prime}} \times \mathbf{R}^{n_{1}} \times\{0\},\left|T_{j^{\prime}}^{Y \prime}\right|=\left|T_{j_{0}}^{Y}\right|=\mathbf{R}^{n^{\prime}} \times \mathbf{R}^{n_{1}} \times \mathbf{R}^{n_{2}}
$$

and $\pi_{j_{0}}^{Y}$ and $\pi_{j^{\prime}}^{Y \prime}$ are the projections of $\mathbf{R}^{n^{\prime}} \times \mathbf{R}^{n_{1}} \times \mathbf{R}^{n_{2}}$ to $\mathbf{R}^{n^{\prime}} \times \mathbf{R}^{n_{1}} \times\{0\}$ and $\mathbf{R}^{n^{\prime}} \times\{0\} \times\{0\}$ respectively. Then it suffices to see the differential at $\left(z_{01}, z_{02}\right)$ of the
$\operatorname{map} \mathbf{R}^{n_{1}} \times \mathbf{R}^{n_{2}} \ni\left(z_{1}, z_{2}\right) \rightarrow\left(\eta_{j^{\prime}}\left(z_{1}, z_{2}\right) z_{1}, \eta_{j^{\prime}}\left(z_{1}, z_{2}\right) z_{2}\right) \in \mathbf{R}^{n_{1}} \times \mathbf{R}^{n_{2}}$ converges to the identity map as $\left(z_{01}, z_{02}\right) \rightarrow(0,0)$. That is,

$$
\begin{aligned}
& d\left(\frac{\xi\left(\frac{\left|z_{2}\right|}{\left|z_{1}\right|^{2}}\right)\left(\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)^{1 / 2}-\left|z_{1}\right|\right) z_{i}}{\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)^{1 / 2}}\right)_{\left(z_{01}, z_{02}\right)}= \\
& d\left(\frac{\xi\left(\frac{\left|z_{2}\right|}{\left|z_{1}\right|^{2}}\right)\left|z_{2}\right|^{2} z_{i}}{\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)^{1 / 2}\left(\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)^{1 / 2}+\left|z_{1}\right|\right)}\right)_{\left(z_{01}, z_{02}\right)} \longrightarrow 0
\end{aligned}
$$

as $\left(z_{01}, z_{02}\right) \rightarrow(0,0)$ with $\left|z_{2}\right| \leq 2\left|z_{1}\right|^{2}, i=1,2$, since $\eta_{j^{\prime}}\left(z_{1}, z_{2}\right)=1$ for $\left(z_{1}, z_{2}\right)$ with $\left|z_{2}\right| \geq 2\left|z_{1}\right|^{2}$. That is easy to check. We omit the details.

Thus we obtain semialgebraic C^{1} tubes $T_{j^{\prime}}^{Y \prime}$ for all $j^{\prime} \in J_{j_{0}}$. The other requirements in the induction hypothesis are satisfied as follows. By definition of $T_{j^{\prime}}^{Y \prime}$,

$$
T_{j^{\prime}}^{Y \prime}=\left.T_{j_{0}}^{Y}\right|_{\left|T_{j^{\prime}}^{Y}\right|} \quad \text { for } j^{\prime} \in J_{j_{0}} \text { with } \operatorname{dim} Y_{j^{\prime}}^{\prime}=j_{0}
$$

by controlledness of $\left\{T_{j}^{Y}\right\}$ and by definition of $T_{j^{\prime}}^{Y \prime}$, for j^{\prime} and j with $Y_{j^{\prime}}^{\prime} \subset \overline{Y_{j}}, j^{\prime} \in$ $J_{j_{0}}$ and $j \geq j_{0}$,
$(*)_{Y} \quad \pi_{j^{\prime}}^{Y \prime} \circ \pi_{j}^{Y}=\pi_{j^{\prime}}^{Y \prime} \circ \pi_{j_{0}}^{Y} \circ \pi_{j}^{Y}=\pi_{j^{\prime}}^{Y \prime} \circ \pi_{j_{0}}^{Y}=\pi_{j^{\prime}}^{Y \prime} \quad$ on $\left|T_{j^{\prime}}^{Y \prime}\right| \cap\left|T_{j}^{Y}\right| ;$
$(* *)_{Y}$ holds for j^{\prime} and j with $j^{\prime} \in J_{j_{0}}$ and $j>j_{0}$ for the following reason.
That is clear if $\operatorname{dim} Y_{j^{\prime}}^{\prime}=j_{0}$. Hence assume $\operatorname{dim} Y_{j^{\prime}}^{\prime}<j_{0}$ and use the above coordinate system $Y_{j^{\prime}}^{\prime} \times L_{0, y} \times L_{0, y}^{\perp}$. Then

$$
\begin{aligned}
& \rho_{j^{\prime}}^{Y \prime}\left(y+z_{1}+z_{2}\right)=\rho_{j^{\prime}}^{Y \prime \prime} \circ \tau_{j^{\prime}}\left(y+z_{1}+z_{2}\right)=\eta_{j^{\prime}}^{2}\left(z_{1}, z_{2}\right)\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right) \\
& \text { for }\left(y, z_{1}, z_{2}\right) \in Y_{j^{\prime}}^{\prime} \times L_{0, y} \times L_{0, y}^{\perp}
\end{aligned}
$$

and $\eta_{j^{\prime}}\left(z_{1}, z_{2}\right)$ depends on only $\left|z_{1}\right|$ and $\left|z_{2}\right|$. Hence if we set

$$
\begin{gathered}
\pi_{j}^{Y}\left(y+z_{1}+z_{2}\right)=\pi_{j 1}^{Y}\left(y+z_{1}+z_{2}\right)+\pi_{j 2}^{Y}\left(y+z_{1}+z_{2}\right)+\pi_{j 3}^{Y}\left(y+z_{1}+z_{2}\right), \\
\pi_{j 1}^{Y}\left(y+z_{1}+z_{2}\right) \in Y_{j^{\prime}}^{\prime}, \pi_{j 2}^{Y}\left(y+z_{1}+z_{2}\right) \in L_{0, y}, \pi_{j 3}^{Y}\left(y+z_{1}+z_{2}\right) \in L_{0, y}^{\perp} .
\end{gathered}
$$

then it suffices to see

$$
\pi_{j 2}^{Y}\left(y+z_{1}+z_{2}\right)=z_{1} \quad \text { and } \quad\left|\pi_{j 3}^{Y}\left(y+z_{1}+z_{2}\right)\right|=\left|z_{2}\right|
$$

By controlledness of $\left\{T_{j}^{Y}\right\}$ we have $\pi_{j_{0}}^{Y} \circ \pi_{j}^{Y}=\pi_{j_{0}}^{Y}$. Hence by the equation $\pi_{j_{0}}^{Y}(y+$ $\left.z_{1}+z_{2}\right)=y+z_{1}$, the former equality holds. The latter also follows from the equations $\rho_{j_{0}}^{Y} \circ \pi_{j}^{Y}=\rho_{j_{0}}^{Y}$ and $\rho_{j_{0}}^{Y}\left(y+z_{1}+z_{2}\right)=\left|z_{2}\right|^{2}$.

Hence by induction we have a controlled semialgebraic C^{1} tube system $\left\{T_{j^{\prime}}^{Y^{\prime}}\right\}$ for $\left\{Y_{j^{\prime}}^{\prime}\right\}$ such that $T_{j^{\prime}}^{Y \prime}=\left.T_{j}^{Y}\right|_{\left|T_{j^{\prime}}{ }^{\prime}\right|}$ for $j^{\prime} \in J_{j}$ with $\operatorname{dim} Y_{j^{\prime}}^{\prime}=j,(*)_{Y}$ for j^{\prime} and j with $Y_{j^{\prime}}^{\prime} \subset \overline{Y_{j}}$ and $(* *)_{Y}$ for $j^{\prime} \in J_{j_{1}}$ and j with $j_{1}<j$.

Next we define $\left\{T_{i^{\prime}}^{X^{\prime}}\right\}$ by induction as $\left\{T_{j^{\prime}}^{Y^{\prime}}\right\}$. Consider all $X_{i^{\prime}}^{\prime}$ included in X and forget $X_{i^{\prime}}^{\prime}$ outside of X. We change the set of indexes of X_{i}. For non-negative integers i_{0} and j_{0}, let $X_{i_{0}, j_{0}}$ denote the union of X_{i} 's such that $\operatorname{dim} X_{i}=i_{0}$ and $f\left(X_{i}\right) \subset Y_{j_{0}}$, i.e., $\operatorname{dim} f\left(X_{i}\right)=j_{0}$, naturally define $T_{i, j}^{X}=\left(\left|T_{i, j}^{X}\right|, \pi_{i, j}^{X}, \rho_{i, j}^{X}\right)$ and continue to define $\left\{X_{i^{\prime}}^{\prime}\right\}$ to be $\left\{X_{i, j} \cap p^{-1}\left(Y_{j^{\prime}}^{\prime}\right), Z \cap\{0\} \times Y_{j^{\prime}}^{\prime}\right\}$. Then $\operatorname{dim} X_{i, j}=i$ and $\left.f\right|_{X_{i, j}}$ is a map to Y_{j}. Let I_{i} denote the set of indexes of $X_{i^{\prime}}^{\prime}$ such that $X_{i^{\prime}}^{\prime}$ is included in $X_{i, j}$ for some j. Note $X=\cup\left\{X_{i^{\prime}}^{\prime}: i^{\prime} \in I_{i}\right.$ for some $\left.i\right\}$. Fix a non-negative integer i_{0}, and assume there exists a semialgebraic C^{1} tube system
$\left\{T_{i^{\prime}}^{X \prime}=\left(\left|T_{i^{\prime}}^{X \prime}\right|, \pi_{i^{\prime}}^{X \prime}, \rho_{i^{\prime}}^{X \prime}\right): i^{\prime} \in I_{i}, i<i_{0}\right\}$ for $\left\{X_{i^{\prime}}^{\prime}: i^{\prime} \in I_{i}, i<i_{0}\right\}$ such that the following four conditions are satisfied, which are, except (iv), similar to the conditions (1), (2) and (3) in section 2.
(i) For i, i^{\prime} and j^{\prime} with $i<i_{0}, i^{\prime} \in I_{i}$ and $f\left(X_{i^{\prime}}^{\prime}\right)=Y_{j^{\prime}}^{\prime}$,

$$
f \circ \pi_{i^{\prime}}^{X \prime}=\pi_{j^{\prime}}^{Y \prime} \circ p \quad \text { on }\left|T_{i^{\prime}}^{X \prime}\right| \cap p^{-1}\left(\left|T_{j^{\prime}}^{Y \prime}\right|\right) .
$$

(ii) For each $j^{\prime},\left\{T_{i^{\prime}}^{X \prime}: f\left(X_{i^{\prime}}^{\prime}\right)=Y_{j^{\prime}}^{\prime}, i^{\prime} \in I_{i}, i<i_{0}\right\}$ is a controlled semialgebraic C^{1} tube system for $\left\{X_{i^{\prime}}^{\prime}: f\left(X_{i^{\prime}}^{\prime}\right)=Y_{j^{\prime}}^{\prime}, i^{\prime} \in I_{i}, i<i_{0}\right\}$.
(iii) For $i_{k}, i_{k}^{\prime}, k=1,2,3, i_{4}$ and j_{4} with $i_{k}<i_{0}, i_{k}^{\prime} \in I_{i_{k}}, k=1,2,3, X_{i_{1}^{\prime}}^{\prime} \cap\left(\overline{X_{i_{2}^{\prime}}^{\prime}}-\right.$ $\left.X_{i_{2}^{\prime}}^{\prime}\right) \neq \emptyset$ and $X_{i_{3}^{\prime}}^{\prime} \subset \overline{X_{i_{4}, j_{4}}}$,

$$
\begin{aligned}
\pi_{i_{1}^{\prime}}^{X \prime} \circ \pi_{i_{2}^{\prime}}^{X \prime} & =\pi_{i_{1}^{\prime \prime}}^{X \prime} \\
\pi_{i_{3}^{\prime}}^{X \prime} \circ \pi_{i_{4}, j_{4}}^{X}=\pi_{i_{3}^{\prime}}^{X \prime} & \text { on }\left|T_{i_{1}^{i_{3}^{\prime}}}^{X \prime}\right| \cap\left|T_{i_{2}^{\prime}}^{X \prime}\right| \cap\left|T_{i_{4}, j_{4}}^{X}\right|,
\end{aligned}
$$

if $i_{3}<i_{4}$ moreover, then

$$
\rho_{i_{3}^{\prime}}^{X \prime} \circ \pi_{i_{4}, j_{4}}^{X}=\rho_{i_{3}^{\prime}}^{X \prime} \quad \text { on }\left|T_{i_{3}^{\prime}}^{X \prime}\right| \cap\left|T_{i_{4}, j_{4}}^{X}\right| .
$$

(iv) For i, i^{\prime} and j with $i<i_{0}, i^{\prime} \in I_{i}$ and $\operatorname{dim} X_{i^{\prime}}^{\prime}=i$,

$$
T_{i^{\prime}}^{X \prime}=\left.T_{i, j}^{X}\right|_{\left|T_{i^{\prime}}{ }^{\prime \prime}\right|} .
$$

Then we need to define $\left\{T_{i^{\prime}}^{X \prime}: i^{\prime} \in I_{i_{0}}\right\}$ so that the induction process works. Before that we note a fact.
(v) Given $i_{k}, i_{k}^{\prime}, j_{k}^{\prime}, k=1,2$, with $i_{k}<i_{0}, i_{k}^{\prime} \in I_{i_{k}}, k=1,2, X_{i_{1}^{\prime}}^{\prime} \cap\left(\overline{X_{i_{2}^{\prime}}^{\prime}}-X_{i_{2}^{\prime}}^{\prime}\right) \neq \emptyset$, $Y_{j_{1}^{\prime}}^{\prime} \subset \overline{Y_{j_{2}^{\prime}}^{\prime}}-Y_{j_{2}^{\prime}}^{\prime}$ and $f\left(X_{i_{k}^{\prime}}^{\prime}\right)=Y_{j_{k}^{\prime}}^{\prime}, k=1,2$, then the restriction of the map $\left(\pi_{i_{1}^{\prime}}^{X \prime}, f\right)$ to $X_{i_{2}^{\prime}}^{\prime} \cap\left|T_{i_{1}^{\prime}}^{X \prime}\right|$ is a C^{1} submersion into the fiber product $X_{i_{1}^{\prime}}^{\prime} \times_{\left(f, \pi_{j_{1}^{\prime}}^{Y}\right)}\left(Y_{j_{2}^{\prime}}^{\prime} \cap\left|T_{j_{1}^{\prime}}^{Y \prime}\right|\right)$.

The reason is the following.
Case where $X_{i_{k}^{\prime}}^{\prime} \subset X_{i_{k}, j_{k}}, k=1,2$, for some $j_{1} \neq j_{2}$. The condition (4) in section 2 is shown to be equivalent to (4)'. Now also similar equivalence holds. Hence it suffices to see for each $x \in X_{i_{2}^{\prime}}^{\prime} \cap\left|T_{i_{1}^{\prime}}^{X \prime}\right|$, the germ of $\left.\pi_{i_{1}^{\prime}}^{X \prime}\right|_{X_{i_{2}^{\prime}}^{\prime} \cap f-1(f(x))}$ at x is a C^{1} submersion onto the germ of $X_{i_{1}^{\prime}}^{\prime} \cap f^{-1}\left(\pi_{j_{1}^{\prime}}^{Y \prime} \circ f(x)\right)$ at $\pi_{i_{1}^{\prime}}^{X^{\prime}}(x)$. We have four properties.

$$
\begin{aligned}
& X_{i_{2}^{\prime}}^{\prime} \cap f^{-1}(f(x))=X_{i_{2}, j_{2}} \cap f^{-1}(f(x)) \quad \text { by definition of }\left\{X_{i^{\prime}}^{\prime}\right\} ; \\
& X_{i_{1}^{\prime}}^{\prime} \cap f^{-1}\left(\pi_{j_{1}^{\prime}}^{Y \prime} \circ f(x)\right)=X_{i_{1}^{\prime}}^{\prime} \cap f^{-1}\left(f \circ \pi_{i_{1}^{\prime}}^{X \prime}(x)\right) \quad \text { by (i) } \\
& \quad=X_{i_{1}, j_{1}} \cap f^{-1}\left(f \circ \pi_{i_{1}^{\prime}}^{\prime \prime}(x)\right) \quad \text { by definition of }\left\{X_{i^{\prime}}^{\prime}\right\} ;
\end{aligned}
$$

by (4)' the germ of $\left.\pi_{i_{1}, j_{1}}^{X}\right|_{X_{i_{2}, j_{2}} \cap f^{-1}(f(x))}$ at x is a C^{1} submersion onto the germ of $X_{i_{1}, j_{1}} \cap f^{-1}\left(f \circ \pi_{i_{1}, j_{1}}^{X}(x)\right)$ at $\pi_{i_{1}, j_{1}}^{X}(x)$; by (iii)

$$
\pi_{i_{1}^{\prime}}^{X \prime} \circ \pi_{i_{1}, j_{1}}^{X}=\pi_{i_{1}^{\prime}}^{X \prime} \quad \text { on }\left|T_{i_{1}^{\prime}}^{X \prime}\right| \cap\left|T_{i_{1}, j_{1}}^{X}\right|
$$

Hence we only need to see the germ of $\left.\pi_{i_{1}^{\prime}}^{X \prime}\right|_{X_{i_{1}, j_{1}} \cap f^{-1}\left(f \circ \pi_{i_{1}, j_{1}}^{X}(x)\right)}$ at $\pi_{i_{1}, j_{1}}^{X}(x)$ is a C^{1} submersion onto the germ of $X_{i_{1}^{\prime}}^{\prime} \cap f^{-1}\left(f \circ \pi_{i_{1}^{\prime}}^{X \prime}(x)\right)$ at $\pi_{i_{1}^{\prime}}^{X \prime}(x)$. That is clear by (i) because $\left.f\right|_{X_{i_{1}, j_{1}}}: X_{i_{1}, j_{1}} \rightarrow Y_{j_{1}}$ is a C^{1} submersion onto a union of some connected components of $Y_{j_{1}}$ and $f \circ \pi_{i_{1}, j_{1}}^{X}(x)$ and $f \circ \pi_{i_{1}^{\prime}}^{X \prime}(x)$ are contained in the same connected component.

Note we use the hypothesis $X_{i_{k}^{\prime}}^{\prime} \subset X_{i_{k}, j_{k}}, k=1,2, j_{1} \neq j_{2}$ in the above arguments for only the property that the germ of $\left.\pi_{i_{1}, j_{1}}^{X}\right|_{X_{i_{2}, j_{2}} \cap f^{-1}(f(x))}$ is a C^{1} submersion into $X_{i_{1}, j_{1}} \cap f^{-1}\left(f \circ \pi_{i_{1}, j_{1}}^{X}(x)\right)$.

Case where $i_{1} \neq i_{2}$ and $X_{i_{k}^{\prime}}^{\prime} \subset X_{i_{k}, j_{k}}, k=1,2$, for some j_{1}. In this case also the above property holds because $f \circ \pi_{i_{1}, j_{1}}^{X}=f$ on $X_{i_{2}, j_{1}} \cap\left|T_{i_{1}, j_{1}}^{X}\right|$ and $\pi_{i_{1}, j_{1}}^{X}\left|X_{i_{2}, j_{1}} \cap\right| T_{i_{1}, j_{1}}^{X} \mid$ is a C^{1} submersion into $X_{i_{1}, j_{1}}$.

Case where $i_{1}=i_{2}$ and hence $X_{i_{k}^{\prime}}^{\prime} \subset X_{i_{1}, j_{1}}, k=1,2$, for some j_{1}. In this case the reason is simply $\left.\pi_{i_{1}, j_{1}}^{X}\right|_{X_{i_{1}, j_{1}}}=\mathrm{id}$.

Thus (v) is proved. Now we define $\left\{T_{i^{\prime}}^{X \prime}: i^{\prime} \in I_{i_{0}}\right\}$. For that it suffices to consider separately $\left\{X_{i^{\prime}}^{\prime}: X_{i^{\prime}}^{\prime} \subset X_{i_{0}, j}\right\}$ for each j. Hence we assume all $X_{i^{\prime}}^{\prime}$ with $i^{\prime} \in I_{i_{0}}$ are included in one $X_{i_{0} . j_{0}}$ for some j_{0} and, moreover, $f\left(X_{i_{0}, j_{0}}\right)=Y_{j_{0}}$ for simplicity of notation. Then as shown below we have a semialgebraic C^{1} tube system $\left\{T_{i^{\prime}}^{X \prime}=\left(\left|T_{i^{\prime}}^{X \prime}\right|, \pi_{i^{\prime}}^{X \prime}, \rho_{i^{\prime}}^{X \prime}\right): i^{\prime} \in I_{0}\right\}$ for $\left\{X_{i^{\prime}}^{\prime}: i^{\prime} \in I_{0}\right\}$ such that (vi) for i^{\prime} and j^{\prime} with $i^{\prime} \in I_{i_{0}}$ and $f\left(X_{i^{\prime}}^{\prime}\right)=Y_{j^{\prime}}^{\prime}$,

$$
f \circ \pi_{i^{\prime}}^{X \prime}=\pi_{j^{\prime}}^{Y \prime} \circ p \quad \text { on }\left|T_{i^{\prime}}^{X \prime}\right| \cap p^{-1}\left(\left|T_{j^{\prime}}^{Y \prime}\right|\right) ;
$$

(vii) for $j^{\prime} \in J_{j_{0}},\left\{T_{i^{\prime}}^{X^{\prime}}: f\left(X_{i^{\prime}}^{\prime}\right)=Y_{j^{\prime}}^{\prime}, i^{\prime} \in I_{i_{1}}, i_{1} \leq i_{0}\right\}$ is a controlled semialgebraic C^{1} tube system for $\left\{X_{i^{\prime}}^{\prime}: f\left(X_{i^{\prime}}^{\prime}\right)=Y_{j^{\prime}}^{\prime}, i^{\prime} \in I_{i_{1}}, i_{1} \leq i_{0}\right\}$;
(viii) for $i_{1}, i_{k}^{\prime}, k=1,2,3, i_{4}$ and j_{4} with $i_{1} \leq i_{0}, i_{1}^{\prime} \in I_{i_{1}}, i_{2}^{\prime}, i_{3}^{\prime} \in I_{i_{0}}, X_{i_{1}^{\prime}}^{\prime} \cap\left(\overline{X_{i_{2}^{\prime}}^{\prime}}-\right.$ $\left.X_{i_{2}}^{\prime}\right) \neq \emptyset$ and $X_{i_{3}^{\prime}}^{\prime} \subset \overline{X_{i_{4}, j_{4}}}$,

$$
\begin{aligned}
\pi_{i_{1}^{\prime}}^{X \prime} \circ \pi_{i_{2}^{\prime}}^{X \prime} & =\pi_{i_{1}^{\prime}}^{X \prime} \\
\pi_{i_{3}^{\prime}}^{X \prime} \circ \pi_{i_{4}, j_{4}}^{X}=\pi_{i_{3}^{\prime}}^{X \prime} & \text { on }\left|T_{i_{1}^{\prime}}^{X \prime}\right| \cap\left|T_{i_{3}^{\prime}}^{X \prime}\right| \cap\left|T_{i_{4}, j_{4}}^{X}\right|,
\end{aligned}
$$

if $i_{0}<i_{4}$ then

$$
\rho_{i_{3}^{\prime}}^{X \prime} \circ \pi_{i_{4}, j_{4}}^{X}=\rho_{i_{3}^{\prime}}^{X \prime} \quad \text { on }\left|T_{i_{3}^{\prime}}^{X \prime}\right| \cap\left|T_{i_{4}, j_{4}}^{X}\right| ;
$$

(ix) for $i^{\prime} \in I_{i_{0}}$ with $\operatorname{dim} X_{i^{\prime}}^{\prime}=i_{0}$,

$$
T_{i^{\prime}}^{X \prime}=\left.T_{i_{0}, j_{0}}^{X}\right|_{\left|T_{i^{\prime}}{ }^{\prime}\right|} .
$$

We construct $\left\{T_{i^{\prime}}^{X \prime}: i^{\prime} \in I_{0}\right\}$ as follows. First we define $T_{i^{\prime}}^{X \prime}$ on $\left|T_{i^{\prime}}^{X \prime}\right| \cap$ $X_{i_{0}, j_{0}}, i^{\prime} \in I_{i_{0}}$, so that (vi), (vii) and the first equality in (viii) are satisfied by the usual arguments of lift of a tube system (see [1], Lemma II.6.1, [4] and its proof). Secondly, extend $\pi_{i^{\prime}}^{X \prime}$ to $\left|T_{i^{\prime}}^{X \prime}\right|$ using $\pi_{i_{0}, j_{0}}^{X}$ as in the above construction of $\pi_{j^{\prime}}^{Y \prime}$. Then $\pi_{i^{\prime}}^{X \prime}$ are of class $C^{1} ;(\mathrm{vi})$ holds because for i^{\prime} and j^{\prime} with $i^{\prime} \in I_{i_{0}}$ and $f\left(X_{i^{\prime}}^{\prime}\right)=Y_{j^{\prime}}^{\prime}$,

$$
\begin{aligned}
& f \circ \pi_{i^{\prime}}^{X \prime} \stackrel{\text { definition of } \pi_{i^{\prime}}^{X^{\prime}}}{=} f \circ \pi_{i^{\prime}}^{X \prime} \circ \pi_{i_{0}, j_{0}}^{X} \stackrel{\left(\text { vi) on }\left|T_{i^{\prime}}^{X \prime}\right| \cap X_{i_{0}, j_{0}}\right.}{=} \pi_{j^{\prime}}^{Y \prime} \circ f \circ \pi_{i_{0}, j_{0}}^{X} \\
& \quad(1) \text { in section } 2 \\
& = \\
& \pi_{j^{\prime}}^{Y \prime} \circ \pi_{j_{0}}^{Y} \circ p \stackrel{(* *) Y}{=} \pi_{j^{\prime}}^{Y^{\prime}} \circ p \quad \text { on }\left|T_{i^{\prime}}^{X \prime}\right| \cap p^{-1}\left(\left|T_{j^{\prime}}^{Y \prime}\right|\right)
\end{aligned}
$$

the first equality in (viii) for $i_{1}=i_{0}$ follows from definition of the extension; that for $i_{1}<i_{0}$ does from the second equality in (iii); the second in (viii) does from definition of the extension and the equality $\pi_{i_{0}, j_{0}}^{X} \circ \pi_{i_{4}, j_{4}}^{X}=\pi_{i_{0}, j_{0}}^{X}$; trivially $\pi_{i^{\prime}}^{X \prime}=\pi_{i_{0}, j_{0}}^{X}$ for $i^{\prime} \in I_{i_{0}}$ with $\operatorname{dim} X_{i^{\prime}}^{\prime}=i_{0}$. Thirdly, extend $\rho_{i^{\prime}}^{X \prime}$ to $\left|T_{i^{\prime}}^{X \prime}\right|$ in the same way as $\rho_{j^{\prime}}^{Y \prime}$. Then $\left\{T_{i^{\prime}}^{X \prime}: i^{\prime} \in I_{i_{0}}\right\}$ is a semialgebraic C^{1} tube system for $\left\{X_{i^{\prime}}^{\prime}: i^{\prime} \in I_{i_{0}}\right\} ;$ (vii) holds because for i_{0}^{\prime} and $i_{1}^{\prime} \in I_{i_{1}}$ with $i_{0}^{\prime} \in I_{i_{0}}, i_{1}<i_{0}$ and $f\left(X_{i_{0}^{\prime}}^{\prime}\right)=f\left(X_{i_{1}^{\prime}}^{\prime}\right)$,

$$
\rho_{i_{1}^{\prime}}^{X \prime} \circ \pi_{i_{0}^{\prime}}^{X \prime}=\rho_{i_{1}^{\prime}}^{X \prime} \circ \pi_{i_{0}^{\prime}}^{X \prime} \circ \pi_{i_{0}, j_{0}}^{X} \quad \text { by definition of } \pi_{i_{0}^{\prime}}^{X \prime}
$$

$$
\begin{aligned}
& =\rho_{i_{1}^{\prime}}^{X \prime} \circ \pi_{i_{0}, j_{0}}^{X} \quad \text { by (vii) on } X_{i_{0}, j_{0}} \\
= & \rho_{i_{1}^{\prime}}^{\prime \prime} \quad \text { by the third equality in (iii); }
\end{aligned}
$$

the extensions are chosen so that the third equality in (viii) and (ix) are satisfied, which completes construction of a semialgebraic C^{1} tube system $\left\{T_{i^{\prime}}^{X \prime}: i^{\prime} \in I_{i_{0}}\right\}$ and hence by induction that of $\left\{T_{i^{\prime}}^{X \prime}: X_{i^{\prime}}^{\prime} \subset X\right\}$ with (i), (ii), the first equality in (iii) and (v) for any i_{0}, i.e., controlled over $\left\{T_{j^{\prime}}^{Y^{\prime}}\right\}$.

It remains only to consider $X_{i^{\prime}}^{\prime}$ in Z, i.e., the case where $X_{i^{\prime}}^{\prime}$ is of the form $\{0\} \times Y_{j^{\prime}}^{\prime}$ for some j^{\prime}. Set $\partial I=\left\{i^{\prime}: X_{i^{\prime}}^{\prime} \subset Z\right\}$. Obviously, we set

$$
\pi_{i^{\prime}}^{X \prime}(x)=\left(0, \pi_{j^{\prime}}^{Y \prime} \circ p(x)\right) \quad \text { for } x \in\left|T_{i^{\prime}}^{X \prime}\right|, i^{\prime} \in \partial I \text { and } j^{\prime} \text { with } X_{i^{\prime}}^{\prime}=\{0\} \times Y_{j^{\prime}}^{\prime},
$$

where $\left|T_{i^{\prime}}^{X \prime}\right|$ is a small semialgebraic neighborhood of $X_{i^{\prime}}^{\prime}$ in $\mathbf{R}^{m} \times \mathbf{R}^{n}$. Then (i) for $i^{\prime} \in \partial I$ is clear; the first equality in (iii) for $i_{1}^{\prime} \in \partial I$ holds because

$$
\begin{gathered}
\pi_{i_{1}^{\prime}}^{X \prime} \circ \pi_{i_{2}^{\prime}}^{X \prime}(x) \stackrel{\text { definition of } \pi_{i_{1}^{\prime}}^{X \prime}}{=}\left(0, \pi_{j_{1}^{\prime}}^{Y \prime} \circ p \circ \pi_{i_{2}^{\prime}}^{X \prime}(x)\right) \stackrel{(\mathrm{i})}{=}\left(0, \pi_{j_{1}^{\prime}}^{Y \prime} \circ \pi_{j_{2}^{\prime}}^{Y \prime} \circ p(x)\right) \\
\stackrel{\text { controlledness of }\left\{T_{j^{\prime}}^{Y \prime}\right\}}{=}\left(0, \pi_{j_{1}^{\prime}}^{Y \prime} \circ p(x)\right)=\pi_{i_{1}^{\prime}}^{X^{\prime}}(x) \quad \text { for } x \in\left|T_{i_{1}^{\prime}}^{X \prime}\right| \cap\left|T_{i_{2}^{\prime}}^{X \prime}\right|
\end{gathered}
$$

where j_{1}^{\prime} and j_{2}^{\prime} are such that $f\left(X_{i_{k}^{\prime}}^{\prime}\right)=Y_{j_{k}^{\prime}}^{\prime}, k=1,2 ;(\mathrm{v})$ for $i_{1}^{\prime} \in \partial I$ is clear, to be precise, for $i_{1}^{\prime} \in \partial I, i_{2}^{\prime}, j_{1}^{\prime}$ and j_{2}^{\prime} with $X_{i_{1}^{\prime}}^{\prime} \cap\left(\overline{X_{i_{2}}^{\prime}}-X_{i_{2}^{\prime}}^{\prime}\right) \neq \emptyset, Y_{j_{1}^{\prime}}^{\prime} \subset \overline{Y_{j_{2}^{\prime}}^{\prime}}-Y_{j_{2}^{\prime}}^{\prime}$ and $p\left(X_{i_{k}^{\prime}}^{\prime}\right)=Y_{j_{k}^{\prime}}^{\prime}, k=1,2$, the restriction of the map $\left(\pi_{i_{1}^{\prime}}^{X \prime}, p\right)$ to $X_{i_{2}^{\prime}}^{\prime} \cap\left|T_{i_{1}^{\prime}}^{X \prime}\right|$ is a C^{1} submersion into $X_{i_{1}^{\prime}}^{\prime} \times_{\left(p, \pi_{\left.j_{1}^{\prime}\right)}^{Y}\right.}\left(Y_{j_{2}^{\prime}}^{\prime} \cap\left|T_{j_{1}^{\prime}}^{Y}\right|\right)$ because $\left.p\right|_{X_{i_{1}^{\prime}}^{\prime}}: X_{i_{1}^{\prime}}^{\prime} \rightarrow Y_{j_{1}^{\prime}}^{\prime}$ is a C^{1} diffeomorphism and $\left.p\right|_{X_{i_{2}^{\prime}}^{\prime}}: X_{i_{2}^{\prime}}^{\prime} \rightarrow Y_{j_{2}^{\prime}}^{\prime}$ is a C^{1} submersion.

We want to define $\left\{\rho_{i^{\prime}}^{X \prime}: i^{\prime} \in \partial I\right\}$ so that $\left\{T_{i^{\prime}}^{X \prime}=\left(\left|T_{i^{\prime}}^{X \prime}\right|, \pi_{i^{\prime}}^{X \prime}, \rho_{i^{\prime}}^{X \prime}\right): i^{\prime} \in \partial I\right\}$ is a semialgebraic C^{1} weak tube system and for each $j^{\prime},\left\{T_{i^{\prime}}^{X \prime}: f\left(X_{i^{\prime}}^{\prime}\right)=Y_{j^{\prime}}^{\prime}\right\}$ is controlled. We proceed by double induction. Let $d \geq 0 \in \mathbf{Z}$, and assume $\rho_{i^{\prime}}^{X \prime}$ are already defined if $\operatorname{dim} X_{i^{\prime}}^{\prime}>d$. We need to construct $\rho_{i^{\prime}}^{X \prime}$ for $i^{\prime} \in \partial I$ with $\operatorname{dim} X_{i^{\prime}}^{\prime}=d$. As the problem is local at such $X_{i^{\prime}}^{\prime}$, assume there exists only one $i_{0}^{\prime} \in \partial I$ with $\operatorname{dim} X_{i_{0}^{\prime}}^{\prime}=d$. Set $I^{\prime}=\left\{i^{\prime}: X_{i_{0}^{\prime}}^{\prime} \subset \overline{X_{i^{\prime}}^{\prime}}-X_{i^{\prime}}^{\prime}\right\}$ and $Y_{j_{0}^{\prime}}^{\prime}=p\left(X_{i_{0}^{\prime}}^{\prime}\right)$.

For the moment we construct a non-negative semialgebraic C^{0} function $\rho_{i_{0}^{\prime}, d}^{X \prime}$ on $\left|T_{i_{0}^{\prime}}^{X \prime}\right|$ with zero set $X_{i_{0}^{\prime}}^{\prime}$ which is of class C^{1} on $\left|T_{i_{0}^{\prime}}^{X \prime}\right|-X_{i_{0}^{\prime}}^{\prime}$ and such that $\left\{T_{i_{0}^{\prime}, d}^{X \prime}, T_{i^{\prime}}^{X \prime}: i^{\prime} \in I^{\prime}, p\left(X_{i^{\prime}}^{\prime}\right)=Y_{j_{0}^{\prime}}^{\prime}\right\}$ is controlled, i.e.,

$$
\rho_{i_{0}^{\prime}, d}^{X \prime} \circ \pi_{i^{\prime}}^{X \prime}=\rho_{i_{0}^{\prime}, d}^{X \prime} \quad \text { on }\left|T_{i_{0}^{\prime}}^{X \prime}\right| \cap\left|T_{i^{\prime}}^{X \prime}\right| \text { for } i^{\prime} \in I^{\prime} \text { with } p\left(X_{i^{\prime}}^{\prime}\right)=Y_{j_{0}^{\prime}}^{\prime},
$$

where $d=1+\# I^{\prime}$ and $T_{i_{0}^{\prime}, d}^{X \prime}=\left(\left|T_{i_{0}^{\prime}}^{X \prime}\right|, \pi_{i_{0}^{\prime}}^{X \prime}, \rho_{i_{0}^{\prime}, d}^{X \prime}\right)$. (Namely we forget the condition that $\left.\rho_{i_{0}^{\prime}, d}^{X \prime}\right|_{X_{i^{\prime}}^{\prime} \cap \pi_{i_{0}^{\prime}}^{X \prime-1}(x)-X_{i_{0}^{\prime}}^{\prime}}$ is C^{1} regular for each x and any $i^{\prime} \in I^{\prime}$.) Order elements of I^{\prime} as $\left\{i_{1}^{\prime}, \ldots, i_{d-1}^{\prime}\right\}$ so that $\operatorname{dim} X_{i_{1}^{\prime}}^{\prime} \leq \cdots \leq \operatorname{dim} X_{i_{d-1}^{\prime}}^{\prime}$.

Let $k \in \mathbf{Z}$ with $0 \leq k<d-1$. As the second induction, assume we have a non-negative semialgebraic C^{0} function $\rho_{i_{0}^{\prime}, k}^{X \prime}$ defined on $\left|T_{i_{0}^{\prime}}^{X \prime}\right| \cap\left(\left|T_{i_{1}^{\prime}}^{X \prime}\right| \cup \cdots \cup\left|T_{i_{k}^{\prime}}^{X \prime}\right|\right)$ such that $\rho_{i_{0}^{\prime}, k}^{X \prime-1}(0)=X_{i_{0}^{\prime}}^{\prime}, \rho_{i_{0}^{\prime}, k}^{X \prime}$ is of class C^{1} outside of $X_{i_{0}^{\prime}}^{\prime}$ and $\left\{T_{i_{0}^{\prime}, k}^{X \prime}, T_{i^{\prime}}^{X \prime}: i^{\prime} \in\right.$ $\left.I^{\prime}, p\left(X_{i^{\prime}}^{\prime}\right)=Y_{j_{0}^{\prime}}^{\prime}\right\}$ is controlled, i.e.,
$\rho_{i_{0}^{\prime}, k}^{X \prime} \circ \pi_{i^{\prime}}^{X \prime}=\rho_{i_{0}^{\prime}, k}^{X \prime} \quad$ on $\left|T_{i_{0}^{\prime}}^{X \prime}\right| \cap\left(\left|T_{i_{1}^{\prime}}^{X \prime}\right| \cup \cdots \cup\left|T_{i_{k}^{\prime}}^{X \prime}\right|\right) \cap\left|T_{i^{\prime}}^{X \prime}\right|$ for $i^{\prime} \in I^{\prime}$ with $p\left(X_{i^{\prime}}^{\prime}\right)=Y_{j_{0}^{\prime}}^{\prime}$,
where $T_{i_{0}^{\prime}, k}^{X \prime}=\left(\left|T_{i_{0}^{\prime}}^{X \prime}\right|, \pi_{i_{0}^{\prime}}^{X \prime}, \rho_{i_{0}^{\prime}, k}^{X \prime}\right)$. Then we need to define $\rho_{i_{0}^{\prime}, k+1}^{X \prime}$. Let $\tilde{\rho}_{i_{0}^{\prime}, k}^{X \prime}$ be any non-negative semialgebraic C^{0} extension of $\left.\rho_{i_{0}^{\prime}, k}^{X \prime}\right|_{T_{i_{0}^{\prime}}^{X \prime} \mid \cap\left(\left|T_{i_{1}^{\prime}}^{X}\right| \cup \ldots \cup\left|T_{i_{k}^{\prime}}^{X}\right|\right) \cap X_{i_{k+1}^{\prime}}^{\prime}}$ to $\left|T_{i_{0}^{\prime}}^{X \prime}\right| \cap X_{i_{k+1}^{\prime}}^{\prime}$ with zero set $X_{i_{0}^{\prime}}^{\prime}$, let V be an open semialgebraic neighborhood of $X_{i_{1}^{\prime}}^{\prime} \cup \cdots \cup X_{i_{k}^{\prime}}^{\prime}$ in $X_{i_{1}^{\prime}}^{\prime} \cup \cdots \cup X_{i_{k+1}^{\prime}}^{\prime} \quad$ whose closure is included in $\left|T_{i_{1}^{\prime}}^{X \prime}\right| \cup \cdots \cup\left|T_{i_{k}^{\prime}}^{X \prime}\right|$, approximate $\left.\tilde{\rho}_{i_{0}^{\prime}, k}^{X \prime}\right|_{\left|T_{i_{0}^{\prime}}^{X}\right| \cap X_{i_{k+1}^{\prime}}^{\prime}}-V$ by a non-negative semialgebraic C^{0} function $\tilde{\tilde{\rho}}_{i_{0}^{\prime}, k}^{X \prime}$ in the uniform C^{0} topology so that $\tilde{\tilde{\rho}}_{i_{0}^{\prime}, k}^{X \prime-1}(0)=X_{i_{0}^{\prime}}^{\prime}$, and $\tilde{\tilde{\rho}}_{i_{0}^{\prime}, k}^{X \prime}$ is of class C^{1} outside of $X_{i_{0}^{\prime}}^{\prime}$ (Theorem II.4.1, [3]), let ξ be a semialgebraic C^{1} function on $\left|T_{i_{0}^{\prime}}^{X \prime}\right| \cap X_{i_{k+1}^{\prime}}^{\prime}$ such that $0 \leq \xi \leq 1, \xi=0$ on $\left|T_{i_{0}^{\prime}}^{X \prime}\right| \cap X_{i_{k+1}^{\prime}}^{\prime} \cap V$ and $\xi=1$ on $\left|T_{i_{0}^{\prime}}^{X \prime}\right| \cap X_{i_{k+1}^{\prime}}^{\prime}-$ $\left|T_{i_{1}^{\prime}}^{X \prime}\right|-\cdots\left|T_{i_{k}^{\prime}}^{X \prime}\right|$, and set

$$
\hat{\rho}_{i_{0}^{\prime}, k}^{X \prime}(x)=\xi(x) \tilde{\tilde{\rho}}_{i_{0}^{\prime}, k}^{X \prime}(x)+(1-\xi(x)) \rho_{i_{0}^{\prime}, k}^{X \prime}(x) \quad \text { for } x \in\left|T_{i_{0}^{\prime}}^{X \prime}\right| \cap X_{i_{k+1}^{\prime}}^{\prime} .
$$

Then $\hat{\rho}_{i_{0}^{\prime}, k}^{X \prime}$ is a non-negative semialgebraic C^{0} extension of $\left.\rho_{i_{0}^{\prime}, k}^{X \prime}\right|_{\left|T_{i_{0}^{\prime}}^{X}\right| \cap V \cap X_{i_{k+1}^{\prime}}^{\prime}}$ to $\left|T_{i_{0}^{\prime}}^{X \prime}\right| \cap X_{i_{k+1}^{\prime}}^{\prime}$ with zero set $X_{i_{0}^{\prime}}^{\prime}$ and of class C^{1} outside of $X_{i_{0}^{\prime}}^{\prime}$. If $p\left(X_{i_{k+1}^{\prime}}^{\prime}\right) \neq Y_{j_{0}^{\prime}}^{\prime}$, we continue to extend $\hat{\rho}_{i_{0}^{\prime}, k}^{X \prime}$, to the required $\hat{\rho}_{i_{0}^{\prime}, k+1}^{X \prime}:\left|T_{i_{0}^{\prime}}^{X \prime}\right| \cap\left(\left|T_{i_{1}^{\prime}}^{X \prime}\right| \cup \cdots \cup\left|T_{i_{k+1}^{\prime}}^{X \prime}\right|\right) \rightarrow \mathbf{R}$ shrinking $\left|T_{i_{1}^{\prime}}^{X \prime}\right|, \ldots,\left|T_{i_{k}^{\prime}}^{X \prime}\right|$ and using a partition of unity in the same way so that $\rho_{i_{0}^{\prime}, k+1}^{X \prime}=\rho_{i_{0}^{\prime}, k}^{X \prime}$ on $\left|T_{i_{0}^{\prime}}^{X^{\prime}}\right| \cap\left(\left|T_{i_{1}^{\prime}}^{X \prime}\right| \cup \cdots \cup\left|T_{i_{k}^{\prime}}^{X \prime}\right|\right)$. Otherwise, set

$$
\rho_{i_{0}^{\prime}, k+1}^{X \prime}= \begin{cases}\rho_{i_{0}^{\prime}, k}^{X \prime} & \text { on }\left|T_{i_{0}^{\prime}}^{X \prime}\right| \cap\left(\left|T_{i_{1}^{\prime}}^{X \prime}\right| \cup \cdots \cup\left|T_{i_{k}^{\prime}}^{X \prime}\right|\right) \\ \hat{\rho}_{i_{0}^{\prime}, k}^{\prime \prime} \circ \pi_{i_{0}^{\prime}, k+1}^{X \prime} & \text { on }\left|T_{i_{0}^{\prime}}^{X}\right| \cap\left|T_{i_{k+1}^{\prime}}^{X_{k}^{\prime \prime}}\right|,\end{cases}
$$

which is well-defined because

$$
\begin{aligned}
& \hat{\rho}_{i_{0}^{\prime}, k}^{X \prime} \circ \pi_{i_{0}^{\prime}, k+1}^{X \prime}=\rho_{i_{0}^{\prime}, k}^{X \prime} \circ \pi_{i_{0}^{\prime}, k+1}^{X \prime} \quad \text { by definition of } \hat{\rho}_{i_{0}^{\prime}, k}^{X \prime} \\
& =\rho_{i_{0}^{\prime}, k}^{X \prime} \quad \text { by controlledness of }\left\{T_{i_{0}^{\prime}, k}^{X \prime}, T_{i^{\prime}}^{X \prime}: i^{\prime} \in I^{\prime}, p\left(X_{i^{\prime}}^{\prime}\right)=Y_{j_{0}^{\prime}}^{\prime}\right\} \\
& \quad \text { on }\left|T_{i_{0}^{\prime}}^{X \prime}\right| \cap\left(\left|T_{i_{1}^{\prime}}^{X \prime}\right| \cup \cdots \cup\left|T_{i_{k}^{\prime}}^{X \prime}\right|\right) \cap\left|T_{i_{k+1}^{\prime}}^{X \prime}\right| \text { for shrunk }\left|T_{i_{1}^{\prime}}^{X \prime}\right|, \ldots,\left|T_{i_{k}^{\prime}}^{X \prime}\right| .
\end{aligned}
$$

Then clearly $\rho_{i_{0}^{\prime}, k+1}^{X \prime-1}(0)=X_{i_{0}^{\prime}}^{\prime}, \rho_{i_{0}^{\prime}, k+1}^{X \prime}$ is of class C^{1} outside of $X_{i_{0}^{\prime}}^{\prime}$ and
$\rho_{i_{0}^{\prime}, k+1}^{X \prime} \circ \pi_{i^{\prime}}^{X \prime}=\rho_{i_{0}^{\prime}, k+1}^{X \prime}$ on $\left|T_{i_{0}^{\prime}}^{X \prime}\right| \cap\left(\left|T_{i_{1}^{\prime}}^{X \prime}\right| \cup \cdots \cup\left|T_{i_{k+1}^{\prime}}^{X \prime}\right|\right) \cap\left|T_{i^{\prime}}^{X \prime}\right|$ for $i^{\prime} \in I^{\prime}$ with $p\left(X_{i^{\prime}}^{\prime}\right)=Y_{j_{0}^{\prime}}^{\prime}$
as follows. It suffices to consider only the case where $\overline{X_{i^{\prime}}^{\prime}}-X_{i^{\prime}}^{\prime} \supset X_{i_{k+1}^{\prime}}^{\prime}$ and $p\left(X_{i^{\prime}}^{\prime}\right)=p\left(X_{i_{k+1}^{\prime}}^{\prime}\right)=Y_{j_{0}^{\prime}}^{\prime}$ and the equation on $\left|T_{i_{0}^{\prime}}^{X \prime}\right| \cap\left|T_{i_{k+1}^{\prime}}^{X \prime}\right| \cap\left|T_{i^{\prime}}^{X \prime}\right|$. We have

$$
\begin{aligned}
& \rho_{i_{0}^{\prime}, k+1}^{X \prime} \circ \pi_{i^{\prime}}^{X \prime}=\hat{\rho}_{i_{0}^{\prime}, k}^{X \prime} \circ \pi_{i_{k+1}^{\prime}}^{X \prime} \circ \pi_{i^{\prime}}^{X \prime} \quad \text { by definition of } \rho_{i_{0}^{\prime}, k+1}^{X \prime} \\
& \quad=\hat{\rho}_{i_{0}^{\prime}, k}^{\prime \prime} \circ \pi_{i_{k+1}^{\prime}}^{X \prime} \quad \text { by the first equation in (iii) } \\
& =\rho_{i_{0}^{\prime}, k+1}^{X \prime} \quad \text { by definition of } \rho_{i_{0}^{\prime}, k+1}^{X \prime} \quad \text { on }\left|T_{i_{0}^{\prime}}^{X \prime}\right| \cap\left|T_{i_{k+1}^{\prime}}^{X \prime}\right| \cap\left|T_{i^{\prime}}^{X \prime}\right| .
\end{aligned}
$$

Thus by the second induction we obtain $\rho_{i_{0}^{\prime}, d-1}^{X \prime}:\left|T_{i_{0}^{\prime}}^{X \prime}\right| \cap\left(\left|T_{i_{1}^{\prime}}^{X \prime}\right| \cup \cdots \cup\left|T_{i^{\prime}, d-1}^{X \prime}\right|\right) \rightarrow \mathbf{R}$.
It remains only to extend $\rho_{i_{0}^{\prime}, d-1}^{X \prime}$ to a non-negative semialgebraic C^{0} function $\rho_{i_{0}^{\prime}, d}^{X \prime}$ on $\left|T_{i_{0}^{\prime}}^{X \prime}\right|$ with zero set $X_{i_{0}^{\prime}}^{\prime}$ and of class C^{1} outside of $X_{i_{0}^{\prime}}^{\prime}$. However we have already carried out such a sort of extension by using a partition of unity ξ.

We need to solve the problem of C^{1} regularity of $\left.\rho_{i_{0}^{\prime}, d^{\prime}}^{X}\right|_{i_{i^{\prime}}^{\prime} \cap \pi_{i_{0}^{\prime}}^{X \prime-1}(x)-X_{i_{0}^{\prime}}^{\prime}}$. For each $x \in X_{i_{0}^{\prime}}^{\prime}$, the restriction of $\rho_{i_{0}^{\prime}, d}^{X \prime}$ to $X_{i^{\prime}}^{\prime} \cap \pi_{i_{0}^{\prime}}^{X \prime-1}(x) \cap \rho_{i_{0}^{\prime}, d}^{X \prime-1}\left(\left(0, \delta_{x}\right)\right)$ is C^{1} regular
for some $\delta_{x}>0 \in \mathbf{R}$ and any $i^{\prime} \in I^{\prime}$. Here we can choose δ_{x} so that the function $X_{i_{0}^{\prime}}^{\prime} \ni x \rightarrow \delta_{x} \in \mathbf{R}$ is semialgebraic (but not necessarily continuous). Then there exists a semialgebraic closed subset $X_{i_{0}^{\prime}}^{\prime \prime}$ of $X_{i_{0}^{\prime}}^{\prime}$ of smaller dimension such that each point x in $X_{i_{0}^{\prime}}^{\prime}-X_{i_{0}^{\prime}}^{\prime \prime}$ has a neighborhood in $X_{i_{0}^{\prime}}^{\prime}$ where δ_{x} is larger than a positive number. Hence if we replace $X_{i_{0}^{\prime}}^{\prime}$ with $X_{i_{0}^{\prime}}^{\prime}-X_{i_{0}^{\prime}}^{\prime \prime}$, i.e., $Y_{j_{0}^{\prime}}^{\prime}$ with $Y_{j_{0}^{\prime}}^{\prime}-p\left(X_{i_{0}^{\prime}}^{\prime \prime}\right)$ and shrink $\left|T_{i_{0}^{\prime}}^{X \prime}\right|$ then the C^{1} regularity holds. Thus we obtain the required $\rho_{i_{0}^{\prime}}^{X \prime}$ though $X_{i_{0}^{\prime}}^{\prime}$ is shrunk to $X_{i_{0}^{\prime}}^{\prime}-X_{i_{0}^{\prime}}^{\prime \prime}$.

The shrinking is admissible as follows. Substratify $\left\{Y_{j^{\prime}}^{\prime} \cap p\left(\overline{X_{i_{0}^{\prime}}^{\prime \prime}}\right), Y_{j^{\prime}}^{\prime}-p\left(\overline{X_{i_{0}^{\prime \prime}}^{\prime \prime}}\right)\right\}$ to a Whitney semialgebraic C^{1} stratification $\left\{Y_{j^{\prime \prime}}^{\prime \prime}\right\}$ such that $\left\{Y_{j^{\prime}}^{\prime}-p\left(\overline{X_{i_{0}^{\prime}}^{\prime \prime}}\right)\right\}=$ $\left\{Y_{j^{\prime \prime}}^{\prime \prime}-p\left(\overline{X_{i_{0}^{\prime}}^{\prime \prime}}\right)\right\}$, set $\left\{X_{i^{\prime \prime}}^{\prime \prime}\right\}=\left\{X_{i, j} \cap p^{-1}\left(Y_{j^{\prime \prime}}^{\prime \prime}\right), Z \cap\{0\} \times Y_{j^{\prime \prime}}^{\prime \prime}\right\}$, which implies $\left\{X_{i^{\prime}}^{\prime}-p^{-1}\left(p\left(\overline{X_{i_{0}^{\prime}}^{\prime \prime}}\right)\right)\right\}=\left\{X_{i^{\prime \prime}}^{\prime \prime}-p^{-1}\left(p\left(\overline{X_{i_{0}^{\prime}}^{\prime \prime}}\right)\right)\right\}$, and repeat all the above arguments to $\bar{f}:\left\{X_{i^{\prime \prime}}^{\prime \prime}\right\} \rightarrow\left\{Y_{j^{\prime \prime}}^{\prime \prime}\right\}$. Then we obtain a semialgebraic C^{1} tube system $\left\{T_{j^{\prime \prime}}^{Y / \prime}\right\}$ for $\left\{Y_{j^{\prime \prime}}^{\prime \prime}\right\}$ and a semialgebraic C^{1} tube system $\left\{T_{i^{\prime \prime}}^{X \prime \prime}: X_{i^{\prime \prime}}^{\prime \prime} \subset X\right\}$ for $\left\{X_{i^{\prime \prime}}^{\prime \prime} \subset\right.$ $X\}$ controlled over $\left\{T_{j^{\prime \prime}}^{Y \prime \prime}\right\}$ such that $\left\{T_{j^{\prime \prime}}^{Y \prime \prime}: Y_{j^{\prime \prime}}^{\prime \prime} \cap p\left(\overline{X_{i_{0}^{\prime}}^{\prime \prime}}\right)=\emptyset\right\}$ and $\left\{T_{i^{\prime \prime}}^{X \prime \prime}\right.$: $\left.X_{i^{\prime \prime}}^{\prime \prime} \subset X, \quad X_{i^{\prime \prime}}^{\prime \prime} \cap p^{-1}\left(p\left(\overline{X_{i_{0}^{\prime}}^{\prime \prime}}\right)\right)=\emptyset\right\}$ are equal to $\left\{\left.T_{j^{\prime}}^{Y \prime}\right|_{\left|T_{j^{\prime}}^{Y}\right|-\pi_{j^{\prime}}^{Y \prime-1}\left(p\left(\overline{X_{i}^{\prime \prime}}\right)\right.}\right\}$ and $\left\{\left.T_{i^{\prime}}^{X \prime}\right|_{\left|T_{i^{\prime}}^{X^{\prime}}\right|-\pi_{i^{\prime}}^{X \prime-1}\left(p^{-1}\left(p\left(\overline{X_{i}^{\prime \prime}}\right)\right)\right)}\right\}$, respectively, by (iv) and (ix), where the domains of the latter two tube systems are shrunk. Moreover we continue construction of $\rho_{i^{\prime \prime}}^{X \prime \prime}$ for $X^{\prime \prime} \subset Z$. Since $\left\{X_{i^{\prime \prime}}^{\prime \prime} \subset Z: \operatorname{dim} X_{i^{\prime \prime}}^{\prime \prime}>d\right\}=\left\{X_{i^{\prime}}^{\prime} \subset Z: \operatorname{dim} X_{i^{\prime}}^{\prime}>d\right\}$ and $\left\{X_{i^{\prime \prime}}^{\prime \prime} \subset Z: \operatorname{dim} X_{i^{\prime \prime}}^{\prime \prime}=d\right\}=\left\{X_{i_{0}^{\prime}}^{\prime}-X_{i_{0}^{\prime}}^{\prime \prime}\right\}$ we choose $\rho_{i^{\prime}}^{X \prime}$ as $\rho_{i^{\prime \prime}}^{X \prime \prime}$ for $X_{i^{\prime \prime}}^{\prime \prime} \subset Z$ with $\operatorname{dim} X_{i^{\prime \prime}}^{\prime \prime}>d$ and $\left.\rho_{i_{0}^{\prime}}^{X \prime}\right|_{\left|T_{i^{\prime \prime}}^{X \prime \prime}\right|}$ as $\rho_{i^{\prime \prime}}^{X \prime \prime}$ for $X_{i^{\prime \prime}}^{\prime \prime} \subset Z$ with $\operatorname{dim} X_{i^{\prime \prime}}^{\prime \prime}=d$. Hence we can assume $X_{i_{0}^{\prime}}^{\prime \prime}=\emptyset$ from the beginning, which completes the construction of $\rho_{i_{0}^{\prime}}^{X \prime}$ and hence of the required $\left\{\rho_{i^{\prime}}^{X \prime}: i^{\prime} \in \partial I\right\}$ by induction.

Thus $\bar{f}:\left\{X_{i^{\prime}}^{\prime}\right\} \rightarrow\left\{Y_{j^{\prime}}^{\prime}\right\},\left\{T_{i^{\prime}}^{X \prime}\right\}$ and $\left\{T_{j^{\prime}}^{Y \prime}\right\}$ satisfy the conditions in theorem 2.2. Hence theorem 1.2 follows.

Bibliography

[G] C. G. Gibson et al, Topological stability of smooth mappings, Lecture Notes in Math., 552, Springer, 1976.
[MS] M. Murayama and M. Shiota, Triangulation of the map of a G-manifold to its orbit space, to appear.
[S1] M. Shiota, Nash manifolds, Lecture Notes in Math., 1269, Springer-Verlag, 1987.
\qquad , Geometry of subanalytic and semialgebraic sets, Progress in Math., 150, Birkhäuser, 1997.
[S3] \qquad , Thom's conjecture on triangulations of maps, Topology, 39 (2000), 383-399.

Graduate School of Mathematics
Nagoya University
Chikusa, Nagoya, 464-8602, Japan
E-mail: shiota@math.nagoya-u.ac.jp

