Triangulations of non-proper semialgebraic Thom maps

Masahiro Shiota

ABSTRACT. In [S3] I solved the Thom's conjecture that a proper Thom map is triangulable. In this paper I drop the properness condition in the semialgebraic case and, moreover, in the definable case in an o-minimal structure.

1. Introduction

Let r be always a positive integer or ∞ , X and Y subsets of \mathbf{R}^m and \mathbf{R}^n , respectively, and $f: X \to Y$ a C^r map (i.e., f is extended to a C^r map from an open neighborhood of X in \mathbf{R}^m to one of Y in \mathbf{R}^n). A C^r stratification of f is a pair of C^r stratifications $\{X_i\}$ of X and $\{Y_j\}$ of Y such that for each i, the image $f(X_i)$ is included in some Y_j and the restriction map $f|_{X_i}: X_i \to Y_j$ is a C^r submersion. We call also $f: \{X_i\} \to \{Y_j\}$ a C^r stratification of $f: X \to Y$. We call $f: X \to Y$ a Thom C^r map if there exists a Whitney C^r stratification $f: \{X_i\} \to$ $\{Y_j\}$ such that the following condition is satisfied. Let X_i and $X_{i'}$ be strata with $X_{i'} \cap (\overline{X}_i - X_i) = \emptyset$. If $\{a_k\}$ is a sequence of points in X_i converging to a point b of $X_{i'}$ and if the sequence of the tangent spaces $\{T_{a_k}(f|_{X_i})^{-1}(f(a_k))\}$ converges to a space $T \subset \mathbf{R}^m$ in the Grassmannien space $G_{m,m'}$, $m' = \dim(f|_{X_i})^{-1}(f(a_k))$, then $T_b(f|_{X_{i'}})^{-1}(f(b)) \subset T$. We call then $f: \{X_i\} \to \{Y_j\}$ a Thom C^r stratification of $f: X \to Y$. In [S3] I solved the following Thom's conjecture.

THEOREM 1.1. Assume X and Y are closed in \mathbb{R}^m and \mathbb{R}^n , respectively, and $f: X \to Y$ is a proper Thom C^{∞} map. Then there exist homeomorphisms τ and π from X and Y to polyhedra P and Q, respectively, such that $\pi \circ f \circ \tau^{-1} : P \to Q$ is piecewise-linear.

Here a natural question arises. Whether can we drop the properness condition? Indeed, the condition is too strong for some applications. For example, the natural map from a *G*-manifold *M* to its orbit space is a Thom map but not necessarily proper provided the action $G \times M \ni (g, x) \to (gx, x) \in M^2$ is proper (see [**MS**]). In the present paper we give a positive answer in the semialgebraic or definable case. A C^r stratification $f : \{X_i\} \to \{Y_j\}$ of $f : X \to Y$ is called *semialgebraic* (*definable*) if X, Y, f, X_i and Y_j are all semialgebraic (definable, respectively,) and $\{X_i\}$ and $\{Y_j\}$ are finite stratifications.

THEOREM 1.2. Assume X and Y are closed and semialgebraic (definable in an o-minimal structure) in \mathbb{R}^m and \mathbb{R}^n , respectively, and $f: X \to Y$ is a semialgebraic (definable, respectively,) Thom C^1 map. Then there exist finite simplicial complexes K and L and semialgebraic (definable, respectively,) C^0 imbeddings $\tau: X \to |K|$

128

and $\pi: Y \to |L|$ such that $\tau(X)$ and $\pi(Y)$ are unions of some open simplexes of Kand L, respectively, and $\pi \circ f \circ \tau^{-1}: \tau(X) \to \pi(Y)$ is extended to a simplicial map from K to L, where |K| denotes the underlying polyhedron to K.

The theorem does not necessarily hold without the condition that X is closed in \mathbf{R}^m . A counter-example is given by $X = \mathbf{R}^2 - \{(x,y) \in \mathbf{R}^2 : x = 0, y \neq 0\}$, $Y = \mathbf{R}^2$ and f(x,y) = (x,xy). Such f is not triangulable in the weak sense that there exist C^0 imbeddings τ of X and π of Y into some Euclidean space \mathbf{R}^n such that $\overline{\tau(X)}$ is a polyhedron and $\pi \circ f \circ \tau^{-1} : \tau(Y) \to \pi(X)$ is extended to a piecewise-linear map $\theta : \overline{\tau(X)} \to \mathbf{R}^n$ for the following reason. Assume there exist τ and π as required. Then $\overline{\tau(X)}$ is of dimension two and $\theta^{-1}(y)$ is of dimension 0 for each $y \in \overline{\pi(Y)}$ because θ is piecewise-linear and $\theta|_{\tau(X)}$ is injective. Hence a small compact neighborhood U of $\tau(0)$ in $\overline{\tau(X)}$ does not intersect with $\theta^{-1}(\pi(0))$ except at $\tau(0)$. Choose a point (x_1, x_2) in X with $x_2 \neq 0$ so close to 0 that the halfopen segment L with ends $(0, x_2)$ and (x_1, x_2) in X is included in $\tau^{-1}(U)$. Then $\overline{f(L)} - f(L) = \{0\}$ and $\overline{\pi \circ f(L)} - \pi \circ f(L) = \{\pi(0)\}$. Hence $(\overline{\tau(L)} - \tau(L)) \cap U =$ $\{\tau(0)\}$ or $(\overline{\tau(L)} - \tau(L)) \cap U = \emptyset$ since $\theta^{-1}(\pi(0)) = \{\tau(0)\}$ in U. The former case contradicts the definition of L and the fact that τ is a C^0 imbedding, and the latter does the fact that U is compact.

An open problem is whether a Thom C^1 map $f: X \to Y$ is triangulable in this weak sense under the condition that X is closed in \mathbb{R}^n or, equivalently, X is locally compact.

2. Tube systems

If r is larger than one, C^r tube at a C^r submanifold M of \mathbf{R}^n is a triple $T = (|T|, \pi, \rho)$, where |T| is an open neighborhood of M in \mathbf{R}^n , $\pi : |T| \to M$ is a submersive C^r retraction and ρ is a non-negative C^r function on |T| such that $\rho^{-1}(0) = M$ and each point x on M is a unique and non-degenerate critical point of $\rho|_{\pi^{-1}(x)}$. We will need to consider a C^1 tube. Assume M is a C^1 submanifold of \mathbf{R}^n . Let |T| be an open neighborhood of M in \mathbf{R}^n , $\pi : |T| \to M$ a C^1 map and ρ a C^1 function on |T|. We call $T = (|T|, \pi, \rho)$ a C^1 tube at M if there exists a C^1 imbedding τ of |T| into \mathbf{R}^n such that $\tau(M)$ is a C^2 submanifold of \mathbf{R}^n and $\tau_*T = (\tau(|T|), \tau \circ \pi \circ \tau^{-1}, \rho \circ \tau^{-1})$ is a C^2 tube at $\tau(M)$. (See pages 33–40 in [S2], which says the arguments on tube systems in [G] work in the C^1 category.) A C^r tube system $\{T_j\}$ for a C^r stratification $\{Y_j\}$ of a set $Y \subset \mathbf{R}^n$ consists of one tube T_j at each Y_j . We define a C^r weak tube system $\{T_j = (|T_j|, \pi_j, \rho_j)\}$ for the same $\{Y_j\}$ weakening the conditions on ρ_j as follows. Each ρ_j is a non-negative C^0 function on $|T_j|$ with zero set Y_j , of class C^r on $|T_j| - Y_j$ and regular on $Y_{j'} \cap \pi_j^{-1}(y) - Y_j$ for each $y \in Y_j$ and $Y_{j'}$. Note a C^r tube system is a C^r weak tube system if $\{Y_j\}$ is a Whitney stratification by Lemma I.1.1, [S2]. In the following arguments we shrink $|T_i|$ many times without mention.

We call a C^r (weak) tube system $\{T_j\}$ for $\{Y_j\}$ controlled if for each pair j and j' with $(\overline{Y_{j'}} - Y_{j'}) \cap Y_j \neq \emptyset$,

 $\pi_j \circ \pi_{j'} = \pi_j$ and $\rho_j \circ \pi_{j'} = \rho_j$ on $|T_j| \cap |T_{j'}|$.

Remember there exists a controlled C^r tube system for a Whitney stratification (see [**G**] and [**S2**]), note if $\{T_j\}$ is such a C^r tube system then the map $(\pi_j, \rho_j)|_{Y_{i'} \cap |T_j|}$

is a C^r submersion into $Y_j \times \mathbf{R}$ because

$$(\pi_j, \rho_j)|_{Y_{j'} \cap |T_j|} \circ \pi_{j'} = (\pi_j, \rho_j) \text{ on } |T_j| \cap |T_{j'}|,$$

and if we assume only $\pi_j \circ \pi_{j'} = \pi_j$ on $|T_j| \cap |T_{j'}|$ then $\pi_j|_{Y_j' \cap |T_j|}$ is a C^r submersion into Y_j . In the case of a C^r weak tube system $(\pi_j, \rho_j)|_{Y_{j'} \cap |T_j| - Y_j}$ is a C^1 submersion into $Y_j \times \mathbf{R}$. Let $f : \{X_i\} \to \{Y_j\}$ be a C^r stratification of a C^r map $f : X \to Y$ between subsets of \mathbf{R}^m and \mathbf{R}^n , respectively, $\{T_j^Y = (|Y_j^Y|, \pi_j^Y, \rho_j^Y)\}$ a controlled C^r (weak) tube system for $\{Y_j\}$ and $\{T_i^X = (|T_i^X|, \pi_i^X, \rho_i^X)\}$ a C^r (weak) tube system for $\{X_i\}$. We call $\{T_i^X\}$ controlled over $\{T_j^Y\}$ if the following four conditions are satisfied. Let f be extended to a C^r map $\tilde{f} : \bigcup_i |T_i^X| \to \mathbf{R}^n$. (1) For each (i, j) with $f(X_i) \subset Y_j$,

$$f\circ\pi^X_i=\pi^Y_j\circ\tilde{f}\quad\text{on }|T^X_j|\cap\tilde{f}^{-1}(|T^Y_j|).$$

(2) For each j, $\{T_i^X : f(X_i) \subset Y_j\}$ is a controlled C^r (weak) tube system for $\{X_i : f(X_i) \subset Y_j\}$.

(3) For each pair *i* and *i'* with $(\overline{X_{i'}} - X_{i'}) \cap X_i \neq \emptyset$,

$$\pi^X_i\circ\pi^X_{i'}=\pi^X_i\quad\text{on }|T^X_i|\cap|T^X_{i'}|.$$

(4) For each (i, j) with $f(X_i) \subset Y_j$ and (i', j') with $(\overline{X_{i'}} - X_{i'}) \cap X_i \neq \emptyset$ and $f(X_{i'}) \subset Y_{j'}, (\pi_i^X, f)|_{X_{i'} \cap |T_i^X|}$ is a C^r submersion into the fiber product $X_i \times_{(f, \pi_j^Y)} (Y_{j'} \cap |T_j^Y|)$ —the C^r manifold $\{(x, y) \in X_i \times (Y_{j'} \cap |T_j^Y|) : f(x) = \pi_j^Y(y)\}$. Note (4) is equivalent to the next condition.

(4)' For (i, j), (i', j') as in (4) and for each $x \in X_{i'} \cap |T_i^X|$, the germ of $\pi_i^X|_{X_{i'} \cap f^{-1}(f(x))}$ at x is a C^r submersion onto the germ of $X_i \cap f^{-1}(\pi_j^Y \circ f(x))$ at $\pi_i^X(x)$.

This definition of controlledness is stronger than that in [**G**]. In [**G**], (4) is not assumed. However, if $f : \{X_i\} \to \{Y_j\}$ is a Thom map then (4) immediately follows from (1), (2) and (3), and existence of a C^r tube system $\{T_i^X\}$ for $\{X_i\}$ controlled over a given controlled C^r tube system $\{T_j^Y\}$ for $\{Y_j\}$ is known (see [**G**] and [**S2**]). We shall treat a C^1 stratification $f : \{X_i\} \to \{Y_j\}$ of f which is not necessarily a Thom C^1 stratification but admits a controlled C^1 tube system $\{T_j^Y\}$ for $\{Y_j\}$ and a C^1 weak tube system $\{T_i^X\}$ for $\{X_i\}$ controlled over $\{T_j^Y\}$.

In [S3] theorem 1.1 is proved in the following more general form.

THEOREM 2.1. Let $f : \{X_i\} \to \{Y_j\}$ be a C^{∞} stratification of a C^{∞} proper map $f : X \to Y$ between closed subsets of Euclidean spaces. Assume there exist a controlled C^{∞} tube system $\{T_j^Y\}$ for $\{Y_j\}$ and a C^{∞} tube system $\{T_i^X\}$ for $\{X_i\}$ controlled over $\{T_j^Y\}$. Then there exist homeomorphisms τ and π from X and Y to polyhedra P and Q, respectively, closed in some Euclidean spaces such that $\pi \circ f \circ \tau^{-1} : P \to Q$ is piecewise linear and $\tau(\overline{X_i})$ and $\pi(\overline{Y_j})$ are all polyhedra. If $f : \{X_i\} \to \{Y_j\}, \{T_i^X\}$ and $\{T_j^Y\}$ are semialgebraic or, more generally, definable in an o-minimal structure, then we can choose semialgebraic or definable τ, π, P and Q.

(Note a semialgebraic closed polyhedron in a Euclidean space is semilinear, i.e., is defined by a finite number of equalities and inequalities of linear functions.) Moreover, the proof in [S3] shows the following generalization though we do not repeat its proof.

130

THEOREM 2.2. Let $f : \{X_i\} \to \{Y_j\}$ be a C^1 stratification of a C^1 proper map $f : X \to Y$ between closed subsets of Euclidean spaces. Let I denote the set of indexes i of X_i such that $f|_{X_i}$ is not injective. Assume there exist a controlled C^1 tube system $\{T_j^Y\}$ for $\{Y_j\}$ and a C^1 weak tube system $\{T_i^X\}$ for $\{X_i\}$ controlled over $\{T_j^Y\}$ such that $\{T_i^X : i \in I\}$ is a C^1 tube system for $\{X_i : i \in I\}$. Then the result in theorem 2.1 holds.

We will prove theorem 1.2 by compactifying $f: X \to Y$ in theorem 1.2 and applying theorem 2.2 to the competification. There are two unusual problems which we encounter. First the arguments do not work in the C^2 category and apply the C^1 category. Secondly we construct $\{T_j^Y: Y_j \subset \overline{Y}\}$ and $\{T_i^X: X_i \subset X\}$ by induction on dim Y_j and dim X_i but the induction of construction of $\{T_i^X: X_i \subset \overline{X} - X\}$ is downward. The two inductions are not independent and we need special conditions (iv) and (ix) for tube systems in the proof below. It is natural to ask whether we can extend f to a Thom map \overline{f} . The answer is negative. To keep the property that f is a Thom map also we use (iv) and (ix).

3. Proof of theorem 1.2

Proof of theorem 1.2. We assume X is non-compact and X and Y are bounded in \mathbf{R}^m and \mathbf{R}^n , respectively, by replacing \mathbf{R}^m and \mathbf{R}^n with $(0, 1)^m$ and $(0, 1)^n$ respectively. Then $\overline{X} - X$ and $\overline{Y} - Y$ are compact. Let $f : \{X_i\} \to \{Y_j\}$ be a semialgebraic Thom C^1 stratification of $f : X \to Y$. Then we can assume f is extendable to \overline{X} . Apply Theorem II.4.1, [**S1**] to the function on \mathbf{R}^m measuring distance from the compact set $\overline{X} - X$. Then we have a non-negative semialgebraic C^0 function ϕ on \mathbf{R}^m such that $\phi^{-1}(0) = \overline{X} - X$ and $\phi|_{\mathbf{R}^m - (\overline{X} - X)}$ is of class C^1 . Choose $\epsilon > 0 \in \mathbf{R}$ so that ϕ is C^1 regular on $\phi^{-1}((0, \epsilon])$ and let ϕ' be a semialgebraic C^1 function on \mathbf{R} such that $\phi'(0) = 0$, ϕ' is regular on $(0, \epsilon)$ and $\phi' = 1$ on $[\epsilon, \infty)$. Set

$$\Phi(x) = (\phi' \circ \phi(x), \phi' \circ \phi(x)x) \quad \text{for } x \in X.$$

Then Φ is a semialgebraic C^1 imbedding of X into \mathbf{R}^{m+1} such that $\Phi(X)$ is bounded and $\overline{\Phi(X)} - \Phi(X) = \{0\}$. Hence replacing X with $\Phi(X)$ we assume $\overline{X} - X = \{0\}$ from the beginning. Moreover, replace X with the graph of f. Then we suppose X is contained and bounded in $\mathbf{R}^m \times \mathbf{R}^n$, $\overline{X} - X \subset \{0\} \times \overline{Y}$, $f : X \to Y$ is the restriction of the projection $p : \mathbf{R}^m \times \mathbf{R}^n \to \mathbf{R}^n$ and hence f is extended to a semialgebraic C^1 map $\overline{f} : \overline{X} \to \overline{Y}$.

By the same reason we assume $\overline{Y} - \{0\}$. Note then $\{Y_j, 0\}$ is a semialgebraic Whitney C^1 stratification of \overline{Y} . Let $\{T_j^Y\}$ be a controlled semialgebraic C^1 tube system for $\{Y_j\}$ and $\{T_i^X\}$ a semialgebraic C^1 tube system for $\{X_i\}$ controlled over $\{T_j^Y\}$. Assume the set of indexes of Y_j does not contain 0, set $Y_0 = \{0\}$ and add Y_0 to $\{Y_j\}$. Then we can assume there is a semialgebraic C^1 tube $T_0^Y = (|T_0^Y|, \pi_0^Y, \rho_0^Y)$ at Y_0 such that $\{T_j^Y, T_0^Y : j \neq 0\}$ is controlled for the following reason.

Let $|T_0^Y|$ be the closed ball $B(\epsilon)$ with center 0 in \mathbf{R}^n and with small radius $\epsilon > 0$ (we treat closed balls in place of open balls for simplicity of notation), and set $\pi_0^Y(y) = 0$ and, tentatively, $\rho_0^Y(y) = |y|^2$ for $y \in |T_0^Y|$. Then the condition $\rho_0^Y \circ \pi_j^Y = \rho_0^Y$ on $|T_0^Y| \cap |T_j^Y|$ for $j \neq 0$ does not necessarily hold. For that condition it suffices to find a semialgebraic homeomorphism τ of \mathbf{R}^n of class C^1 outside of

0 and such that $\tau(0) = 0$, $\tau = id$ outside of $B(\epsilon)$ and $\rho_0^Y \circ \pi_j^Y \circ \tau^{-1} = \rho_0^Y$ on $B(\epsilon') \cap \tau(|T_j^Y|)$ for $j \neq 0$, shrunk $|T_j^Y|$ and some $\epsilon' > 0$.

Let Y_j be such that dim Y_j is the smallest in $\{Y_j : 0 \in \overline{Y_j}, j \neq 0\}$, and choose ϵ so small that $\rho_0^Y|_{Y_j \cap |T_0^Y|}$ is C^1 regular, which implies that $\rho_0^{Y-1}(\epsilon'^2)$ is transversal to Y_j for any $0 < \epsilon' \le \epsilon$. Set $Y_j(\epsilon') = Y_j \cap \rho_0^{Y^{-1}}(\epsilon'^2)$. We will define a semialgebraic homeomorphism τ_j of \mathbf{R}^n of class C^1 outside of 0 such that $\tau_j(0) = 0$, $\tau_j = \mathrm{id}$ outside of $B(\epsilon)$ and $\rho_0^Y \circ \pi_j^Y \circ \tau_j^{-1} = \rho_0^Y$ on $B(\epsilon/2) \cap \tau_j(|T_j^Y|)$ for shrunk $|T_j^Y|$. Since the problem is local at Y_j , we can assume by Thom's first isotopy lemma (see Theorem II.6.1 and it complement, [S2]) that

 $|T_0^Y| \cap Y_j = Y_j(\epsilon) \times (0, \epsilon^2]$, after then, $|T_0^Y| \cap |T_j^Y| = \bigcup \{y + L_y : y \in Y_j(\epsilon)\} \times (0, \epsilon^2]$ and $\pi_j^Y(y+z,t)$ and $\rho_0^Y(y+z,t)$ are of the form $(y,\pi_j^{Y\prime}(y+z,t))$ and t, respectively, for $y \in Y_j(\epsilon)$ and $(z,t) \in L_y \times (0, \epsilon^2]$, where L_y is a linear subspace of the tangent space $T_y \rho_0^{Y-1}(\epsilon^2)$ of codimension = codim Y_j in \mathbf{R}^n such that the correspondence $Y_j(\epsilon) \ni y \to L_y \in G_{n,\operatorname{codim} Y_j}$ is semialgebraic and of class C^1 and $\pi_j^{Y'}$ is a semialgebraic C^1 function defined on $\cup \{y + L_y\} \times (0, \epsilon^2]$. For simplicity of notation we write $\bigcup_{y \in Y_j(\epsilon)} \{y\} \times L_y$ as $Y_j(\epsilon) \times L$. Transform $Y_j(\epsilon) \times L \times (0, \epsilon^2)$ by a semialgebraic C^1 diffeomorphism $(y, z, t) \to (y, z/kt^k, t)$ for sufficiently large integer k. Then we can assume

(0)
$$|\pi_{j}^{Y'}(y+z,t)-t| \le \epsilon^{2}/28$$
 and $|\frac{\partial \pi_{j}^{Y'}}{\partial t}(y+z,t)-1| < 1/4$ for $|z| \le 1$
since $\pi_{j}^{Y'}(y,t) = t.$

since

Let
$$\xi$$
 be a semialgebraic C^1 function on **R** such that $0 \leq \xi \leq 1$, $\xi = 1$ on $(-\infty, 1/2)$, $\xi = 0$ on $(2/3, \infty)$ and $\left|\frac{d\xi}{dt}\right| \leq 7$. Set

$$\begin{aligned} \tau_j(y+z,t) &= (y+z, (1-\xi(2t/\epsilon^2)\xi(|z|))t + \xi(2t/\epsilon^2)\xi(|z|)\pi_j^{Y'}(y+z,t)) \\ & \text{for } (y,z,t) \in Y_j(\epsilon) \times L \times (0,\,\epsilon^2]. \end{aligned}$$

Then $\tau_j = \pi_j^Y$ if $t \le \epsilon^2/4$ and $|z| \le 1/2$, $\tau_j = \text{id}$ if $t \ge \epsilon^2/3$ or $|z| \ge 2/3$ and, moreover, τ_j is a diffeomorphism because

$$\begin{aligned} &|\frac{\partial}{\partial t} \left((1 - \xi(t/\epsilon^2)\xi(|z|))t + \xi(t/\epsilon^2)\xi(|z|)\pi_j^{Y'}(y+z,t) \right) - 1| \\ &\leq \xi(t/\epsilon^2)\xi(|z|)|1 - \frac{\partial \pi_j^{Y'}}{\partial t}(y+z,t)| + |\frac{d\xi}{dt}(t/\epsilon^2)\xi(|z|)|t - \pi_j^{Y'}(y+z,t)|/\epsilon^2 \\ &\leq 1/4 + 1/4 = 1/2 \quad \text{for } |z| \leq 1. \end{aligned}$$

Thus we can assume $\rho_0^Y \circ \pi_i^Y = \rho_0^Y$ on $|T_0^Y| \cap |T_i^Y|$.

Repeating the same arguments by induction on dim $Y_{j'}$ for all $Y_{j'}$ with $0 \in \overline{Y_{j'}}$ we obtain the required τ . Here we note only that for j' with $\overline{Y_{j'}} - Y_{j'} \supset Y_j$, though $Y_{j'}(\epsilon)$ is not compact, (0) can holds. Indeed

$$\rho_0^Y = \rho_0^Y \circ \pi_j^Y \circ \pi_{j'}^Y = \rho_0^Y \circ \pi_{j'}^Y \quad \text{on } |T_0^Y| \cap |T_j^Y| \cap |T_{j'}^Y|.$$

Hence when we describe $\pi_{i'}^Y$ as above there is a semialgebraic neighborhood U of $Y_{j}(\epsilon) \times (0, \epsilon^{2}]$ in $\overline{Y_{j'}(\epsilon)} \times (0, \epsilon^{2}]$ such that

$$\pi_{j'}^{Y'}(y+z,t) = t \quad \text{for } (y,z,t) \in Y_{j'}(\epsilon) \times L_y \times (0,\,\epsilon^2] \text{ with } (y,t) \in U.$$

In conclusion we assume Y is compact.

132

If $f : \{X_i\} \to \{Y_j\}$ is extended to a Thom C^1 stratification of $\overline{f} : \overline{X} \to Y$, then theorem 1.2 follows from theorem 1.1 in the C^1 case. However, such extension does not always exist. Instead we will find a semialgebraic C^1 stratification $\overline{f} :$ $\{X'_{i'}\} \to \{Y'_{j'}\}$ of \overline{f} , a controlled semialgebraic C^1 tube system $\{T^{Y'}_{j'}\}$ for $\{Y'_{j'}\}$ and a semialgebraic C^1 weak tube system $\{T^{X'}_{i'}\}$ for $\{X'_{i'}\}$ controlled over $\{T^{Y'}_{j'}\}$ such that $\{X'_{i'}\}|_X$ and $\{Y'_{j'}\}|_Y$ are substratifications of $\{X_i\}$ and $\{Y_j\}$. Here $\{Y'_{j'}\}$ is a Whitney stratification but $\{X'_{i'}\}$ is not necessarily so.

Set $Z = \overline{X} - X$, which is compact. Note $Z = \{0\} \times \overline{f}(Z)$ and $\overline{f}|_Z$ is a homeomorphism onto $\overline{f}(Z)$. Let $\{Y'_{j'}\}$ be a semialgebraic Whitney C^1 substratification of $\{Y_j\}$ such that each stratum is connected, $\overline{f}(Z)$ is a union of some $Y'_{j'}$'s and $\{X_i, \{0\} \times (Y'_{j'} \cap \overline{f}(Z))\}$ is a Whitney C^1 stratification of \overline{X} , which is constructed in the same way as the canonical semialgebraic C^{ω} stratification of a semialgebraic set since $\overline{f}(Z)$ is closed in Y. Note $\{Y'_{j'}\}$ satisfies the frontier condition. Set

$$\{X'_{i'}\} = \{X_i \cap \overline{f}^{-1}(Y'_{j'}), Z \cap \{0\} \times Y'_{j'}\}.$$

Then $\{X'_{i'}\}$ is a semialgebraic (not necessarily Whitney) C^1 stratification of \overline{X} ; $\{X'_{i'} \cap X\}$ is a substratification of $\{X_i\}$; $\overline{f} : \{X'_{i'}\} \to \{Y'_{j'}\}$ is a C^1 stratification of \overline{f} ; we can choose $\{Y'_{j'}\}$ so that for each $Y'_{j'}$, $\{X'_{i'} : \overline{f}(X'_{i'}) = Y'_{j'}\}$ is a Whitney C^1 stratification for the following reason.

Assume $Y'_{j'} \not\subset \overline{f}(Z)$. Then $Y'_{j'} \cap \overline{f}(Z) = \emptyset$ and there is Y_j including $Y'_{j'}$. By definition of $\{X'_{i'}\}$,

$$\{X'_{i'}: \overline{f}(X'_{i'}) = Y'_{j'}\} = \{X_i \cap f^{-1}(Y'_{j'})\}.$$

Therefore the assertion follows from the fact that given a Whitney C^r stratification $\{M_1, M_2\}$, a C^r map g from $M_1 \cup M_2$ to a C^r manifold N such that $g|_{M_1}$ and $g|_{M_2}$ are C^r submersions into N and a C^r submanifold N_1 of N then $\{M_1 \cap g^{-1}(N_1), M_2 \cap g^{-1}(N_1)\}$ is a Whitney C^r stratification.

Next assume $Y'_{j'} \subset \overline{f}(Z)$, and let X'_{i_1} and X'_{i_2} be such that $\overline{f}(X'_{i_k}) = Y'_{j'}$, k = 1, 2, and $(\overline{X'_{i_1}} - X'_{i_1}) \cap X'_{i_2} \neq \emptyset$. Then we need to see (X'_{i_1}, X'_{i_2}) can satisfy the Whitney condition. Since $\overline{f}|_Z$ is injective, there are only two possible cases to consider: $X'_{i_k} = X_{i_k} \cap \overline{f}^{-1}(Y'_{j'})$, k = 1, 2, for some i_1 and i_2 or $X'_{i_1} = X_{i_1} \cap \overline{f}^{-1}(Y'_{j'})$ and $X'_{i_2} = \{0\} \times Y'_{j'}$. In the former case there is j such that $Y'_{j'} \subset Y_j$. Hence the Whitney condition is satisfied by the same reason as in the case of $Y'_{j'} \not\subset \overline{f}(Z)$. Consider the latter case. If $\{X'_{i_1}, \{0\} \times Y'_{j'}\}$ is not a Whitney stratification, let $Y''_{j'}$ denote the subset of $Y'_{j'}$ consisting of y such that $(X'_{i_1}, \{0\} \times Y'_{j'})$ does not satisfy the Whitney condition at (0, y). Then $Y''_{j'}$ and hence $\overline{Y''_{j'}}$ are semialgebraic and of dimension smaller that dim $Y'_{j'}$. Divide $Y'_{j'}$ to $\{Y'_{j'} - \overline{Y''_{j'}}, \overline{Y''_{j'}}\}$ and substratify $\{Y'_{j'} \cap \overline{f}(Z)\}$ by downward induction on dimension of $Y'_{j'}$ becomes a Whitney stratification.

Now we define a controlled semialgebraic C^1 tube system $\{T_{j'}^{Y'} = (|T_{j'}^{Y'}|, \pi_{j'}^{Y'}, \rho_{j'}^{Y'})\}$ for $\{Y'_{j'}\}$. For simplicity of notation, assume dim $Y_j = j$ gathering strata of the same dimension. For each j, set

$$J_j = \begin{cases} \{j': Y'_{j'} \subset Y_j, \} & \text{if } j \ge 0, \\ \emptyset & \text{if } j = -1. \end{cases}$$

We define $\{T_{j'}^{Y'}: j' \in J_j\}$ by induction on j. Fix a non-negative integer j_0 , and assume we have constructed a controlled semialgebraic C^1 tube system $\{T_{j'}^{Y'}: j' \in J_j, j < j_0\}$ so that $T_{j'}^{Y'} = T_{j_1}^{Y}|_{|T_{i'}^{Y'}|}$ for $j' \in J_{j_1}, j_1 < j_0$, with dim $Y'_{j'} = j_1$,

$$(\ast)_Y \qquad \quad \pi_{j'}^{Y\prime} \circ \pi_j^Y = \pi_{j'}^{Y\prime} \quad \text{on } |T_{j'}^{Y\prime}| \cap |T_j^Y| \text{ for } j' \text{ and } j \text{ with } Y_{j'}' \subset \overline{Y_j},$$

$$(**)_Y \qquad \rho_{j'}^{Y'} \circ \pi_j^Y = \rho_{j'}^{Y'} \quad \text{on } |T_{j'}^{Y'}| \cap |T_j^Y| \text{ for } j' \in J_{j_1} \text{ and } j \text{ with } j_1 < j,$$

 $\pi_{j'}^{Y'}$ are of class C^1 and $\rho_{j'}^{Y'}$ are of class C^1 on $|T_{j'}^{Y'}| - Y'_{j'}$. For the conditions of the first and $(**)_Y$ we need to proceed in the C^1 category because there does not necessarily exist such $\{T_{j'}^{Y'}\}$ of class C^2 even if $\{T_j^Y\}$ is of class C^2 .

We wild efine a semialgebraic C^1 tube system $\{T_{j'}^{Y'}: j' \in J_{j_0}\}$ for $\{Y'_{j'}: j' \in J_{j_0}\}$. For the time being, let $\{T_{j'}^{Y'}: j' \in J_{j_0}\}$ be a semialgebraic C^1 tube system for $\{Y'_{j'}: j' \in J_{j_0}\}$ such that $\{T_{j'}^{Y'}: j' \in J_j, j \leq j_0\}$ is controlled (Lemma II.6.10, **[S2**] states only the case where $\bigcup_{j' \in J_{j_0}} Y'_{j'}$ is compact but its proof works in the general case. We omit the details.) We modify $\{T_{j'}^{Y'}: j' \in J_{j_0}\}$ so that the conditions are satisfied. Let $j' \in J_{j_0}$.

Restrict $\pi_{j'}^{Y'}$ and $\rho_{j'}^{Y'}$ to Y_{j_0} for $j' \in J_{j_0}$ and define afresh them outside of Y_{j_0} as follows. Let $\pi_{j'}^{Y'}$ and $\rho_{j'}^{Y'}$, $j' \in J_{j_0}$, now denote the restrictions. If dim $Y'_{j'} = j_0$, we should set $T_{j'}^{Y'} = T_{j_0}^{Y}|_{|T_{j'}^{Y'}|}$. Then $(*)_Y$ and $(**)_Y$ are satisfied because $\{Y_j^Y\}$ is controlled. Assume dim $Y'_{j'} < j_0$ and hence $j_0 > 0$. In this case, define the extension of $\pi_{j'}^{Y'}$ to $|T_{j'}^{Y'}|$ to be $\pi_{j'}^{Y'} \circ \pi_{j_0}^Y$, and keep the same notation $\pi_{j'}^{Y'}$ for the extension. Then by controlledness of $\{T_j^Y\}$, $(*)_Y$ holds for any j with $Y'_{j'} \subset \overline{Y_J}$. The problem is how to extend $\rho_{j'}^{Y'}$.

As the problem is local at $Y'_{j'}$ (see II.1.1, **[S2]**), considering semialgebraic tubular neighborhoods of $Y'_{j'}$ and Y_{j_0} we can assume for each $y \in Y'_{j'}, \pi^{Y'-1}_{j'}(y), \pi^{Y'-1}_{j'}(y) \cap$ Y_{j_0} and $\pi^{Y-1}_{j_0}(y)$ are of the form $y + L_y$, $y + L_{0,y}$ and $y + L^{\perp}_{0,y}$, where L_y and $L_{0,y}$ are linear subspaces of \mathbf{R}^n with $L_y \supset L_{0,y}$ and $L^{\perp}_{0,y}$ is the orthocomplement of $L_{0,y}$ with respect to L_y , and $\pi^Y_{j_0}|_{\pi^{Y'-1}_{j'}(y)} : \pi^{Y'-1}_{j'}(y) \longrightarrow \pi^{Y'-1}_{j'}(y) \cap Y_{j_0}$ is induced by the orthogonal projection of L_y to $L_{0,y}$ and

$$\rho_{j_0}^Y(y+z_1+z_2) = |z_2|^2 \text{ for } (y,z_1,z_2) \in Y'_{j'} \times L_{0,y} \times L_{0,y}^{\perp},$$

where $Y'_{j'} \times L_{0,y} \times L_{0,y}^{\perp}$ denotes $\cup_{y \in Y'_{j'}} \{y\} \times L_{0,y} \times L_{0,y}^{\perp}$.

Set
$$\rho_{j'}^{Y''}(y+z_1+z_2) = |z_1|^2 + |z_2|^2$$
 for $(y,z_1,z_2) \in Y'_{j'} \times L_{0,y} \times L_{0,y}^{\perp}$.

Then $(|T_{j'}^{Y'}|, \pi_{j'}^{Y'}, \rho_{j''}^{Y''})$ is a semialgebraic C^1 tube at $Y'_{j'}$ but not always satisfy the condition $\rho_{j''}^{Y''} \circ \pi_{j_0}^{Y} = \rho_{j''}^{Y''}$. We need to modify $\rho_{j''}^{Y''}$ so that the equality holds on a neighborhood of $Y_{j_0} - Y'_{j'}$. Let ξ be a semialgebraic C^1 function on \mathbf{R} such that $\xi = 1$ on $(-\infty, 1], \ \xi = 0$ on $[2, \infty)$ and $d\xi/dt \leq 0$. Set

$$\eta_{j'}(z_1, z_2) = \begin{cases} \xi(\frac{|z_2|}{|z_1|^2}) \frac{|z_1|}{(|z_1|^2 + |z_2|^2)^{1/2}} + 1 - \xi(\frac{|z_2|}{|z_1|^2}) & \text{for } (z_1, z_2) \in (L_{0,y} - \{0\}) \times L_{0,y}^{\perp} \\ 1 & \text{for } (z_1, z_2) \in \{0\} \times L_{0,y}^{\perp}, \end{cases}$$

and define a semialgebraic map $\tau_{j'}$ between $|T_{j'}^{Y'}|$ by

$$\tau_{j'}(y+z_1+z_2) = y + \eta_{j'}(z_1, z_2)z_1 + \eta_{j'}(z_1, z_2)z_2 \quad \text{for } (y, z_1, z_2) \in Y'_{j'} \times L_{0,y} \times L_{0,y'}^{\perp}$$

Then
$$\pi_{j'}^{Y'} \circ \tau_{j'} = \pi_{j'}^{Y'}$$
;
 $\tau_{j'} = \text{id} \quad \text{on } \{y + z_1 + z_2 : |z_2| \ge 2|z_1|^2\}$;
 $\tau_{j'}(y + z_1 + z_2) = y + \frac{|z_1|}{(|z_1|^2 + |z_2|^2)^{1/2}} z_1 + \frac{|z_1|}{(|z_1|^2 + |z_2|^2)^{1/2}} z_2$
for $(y, z_1, z_2) \in Y_{j'}' \times L_{0,y} \times L_{0,y}^{\perp}$ with $|z_2| \le |z_1|^2$;
 $(* * *)_Y \qquad \rho_{j'}^{Y''} \circ \tau_{j'}(y + z_1 + z_2) = |z_1|^2$ for the same (y, z_1, z_2) ;

for each line l in $\{y\} \times L_{0,y} \times L_{0,y}^{\perp}$ passing through 0 parameterized by $t \in \mathbf{R}$ as $z_1 = z_1(t)$ and $z_2 = z_2(t)$ so that $|z_1(t)| = |t|$ and $|z_2(t)| = a|t|$ for $a \ge 0 \in \mathbf{R}$,

 $\tau_{i'}(l) = l,$

$$\begin{aligned} |\tau_{j'}(y+z_1(t)+z_2(t))-y| &= \eta_{j'}(z_1(t),z_2(t))(|z_1(t)|^2+|z_2(t)|^2)^{1/2} \\ &= \xi(\frac{a}{|t|})|t| + (1-\xi(\frac{a}{|t|}))(1+a^2)^{1/2}|t|, \end{aligned}$$

hence by easy calculations we see if a is sufficiently small then $\tau_{j'}|_l$ is a C^1 diffeomorphism of l and, therefore by the above equality $\tau_{j'} = \text{id on } \{|z_2| \ge 2|z_1|^2\}$ shrinking $|T_{j'}^{Y'}|$ we can assume $\tau_{j'}$ is a homeomorphism and its restriction to $|T_{j'}^{Y'}| - Y'_{j'}$ is a C^1 diffeomorphism; moreover, if we set $\rho_{j'}^{Y'} = \rho_{j''}^{Y''} \circ \tau_{j'}$ and $T_{j'}^{Y'} = (|T_{j'}^{Y'}|, \pi_{j'}^{Y'}, \rho_{j'}^{Y'})$ for all $j' \in J_{j_0}$ with dim $Y'_{j'} < j_0$ then $\{T_{j'_1}^{Y'} : j'_1 \in J_{j_1}, j_1 \le j_0\}$ is a controlled semi-algebraic C^1 tube system. Indeed, for $j'_1 \in J_{j_0}$ and j'_2 with $(\overline{Y'_{j_1}} - Y'_{j_1}) \cap Y'_{j_2} \ne \emptyset$, the following equalities folds on $|T_{j'_1}^{Y'}| \cap |T_{j'_2}^{Y'}|$

$$\begin{split} &\pi_{j'_{2}}^{Y'} \circ \pi_{j'_{1}}^{Y'} = \pi_{j'_{2}}^{Y'} \circ \pi_{j'_{1}}^{Y'} \circ \pi_{j_{0}}^{Y} \quad \text{by definition of } \pi_{j'_{1}}^{Y'} \\ &= \pi_{j'_{2}}^{Y'} \circ \pi_{j_{0}}^{Y} \quad \text{by controlledness of } \{T_{j'}^{Y'}|_{Y_{j_{0}}} : j' \in J_{j}, \, j \leq j_{0} \} \end{split}$$

 $=\pi_{j'_2}^{Y'}$ by definition of $\pi_{j'_2}^{Y'}$ in the case of $j'_2 \in J_{j_0}$ and by $(*)_Y$ in the other case. In the same way we see by $(**)_Y$ and $(***)_Y$

$$\rho_{j'_2}^{Y\prime} \circ \pi_{j'_1}^{Y\prime} = \rho_{j'_2}^{Y\prime} \quad \text{on } |T_{j'_1}^{Y\prime}| \cap |T_{j'_2}^{Y\prime}|.$$

Hence it remains to show $\tau_{j'}$ is a C^1 diffeomorphism.

It is easy to show $\tau_{j'}$ is differentiable at $Y'_{j'}$ and its differential $d\tau_{j'a}$ at each point a of $Y'_{j'}$ is equal to the identity map. Hence we only need to show the map $|T^{Y'}_{j'}| \ni a \to d\tau_{j'a} \in GL(\mathbf{R}^n)$ is of class C^0 . As the problem is local at each point of $Y'_{j'}$ we suppose

$$Y'_{j'} = \mathbf{R}^{n'} \times \{0\} \times \{0\}, \ Y_{j_0} = \mathbf{R}^{n'} \times \mathbf{R}^{n_1} \times \{0\}, \ |T_{j'}^{Y'}| = |T_{j_0}^Y| = \mathbf{R}^{n'} \times \mathbf{R}^{n_1} \times \mathbf{R}^{n_2}$$

and $\pi_{j_0}^Y$ and $\pi_{j'}^{Y'}$ are the projections of $\mathbf{R}^{n'} \times \mathbf{R}^{n_1} \times \mathbf{R}^{n_2}$ to $\mathbf{R}^{n'} \times \mathbf{R}^{n_1} \times \{0\}$ and $\mathbf{R}^{n'} \times \{0\} \times \{0\}$ respectively. Then it suffices to see the differential at (z_{01}, z_{02}) of the

134

map $\mathbf{R}^{n_1} \times \mathbf{R}^{n_2} \ni (z_1, z_2) \rightarrow (\eta_{j'}(z_1, z_2)z_1, \eta_{j'}(z_1, z_2)z_2) \in \mathbf{R}^{n_1} \times \mathbf{R}^{n_2}$ converges to the identity map as $(z_{01}, z_{02}) \rightarrow (0, 0)$. That is,

$$d\left(\frac{\xi(\frac{|z_2|}{|z_1|^2})((|z_1|^2+|z_2|^2)^{1/2}-|z_1|)z_i}{(|z_1|^2+|z_2|^2)^{1/2}}\right)_{(z_{01},z_{02})} = d\left(\frac{\xi(\frac{|z_2|}{|z_1|^2})|z_2|^2z_i}{(|z_1|^2+|z_2|^2)^{1/2}((|z_1|^2+|z_2|^2)^{1/2}+|z_1|)}\right)_{(z_{01},z_{02})} \longrightarrow 0$$

as $(z_{01}, z_{02}) \to (0, 0)$ with $|z_2| \leq 2|z_1|^2$, i = 1, 2, since $\eta_{j'}(z_1, z_2) = 1$ for (z_1, z_2) with $|z_2| \geq 2|z_1|^2$. That is easy to check. We omit the details.

Thus we obtain semialgebraic C^1 tubes $T_{j'}^{Y'}$ for all $j' \in J_{j_0}$. The other requirements in the induction hypothesis are satisfied as follows. By definition of $T_{j'}^{Y'}$,

$$T_{j'}^{Y'} = T_{j_0}^{Y}|_{|T_{j'}^{Y'}|}$$
 for $j' \in J_{j_0}$ with dim $Y_{j'}' = j_0$;

by controlledness of $\{T_j^Y\}$ and by definition of $T_{j'}^{Y'}$, for j' and j with $Y'_{j'} \subset \overline{Y_j}$, $j' \in J_{j_0}$ and $j \ge j_0$,

$$\begin{aligned} (*)_Y & \pi_{j'}^{Y'} \circ \pi_j^Y = \pi_{j'}^{Y'} \circ \pi_{j_0}^Y \circ \pi_j^Y = \pi_{j'}^{Y'} \circ \pi_{j_0}^Y = \pi_{j'}^{Y'} & \text{on } |T_{j'}^{Y'}| \cap |T_j^Y|; \\ (**)_Y \text{ holds for } j' \text{ and } j \text{ with } j' \in J_{j_0} \text{ and } j > j_0 \text{ for the following reason.} \end{aligned}$$

That is clear if dim $Y'_{j'} = j_0$. Hence assume dim $Y'_{j'} < j_0$ and use the above coordinate system $Y'_{j'} \times L_{0,y} \times L_{0,y}^1$. Then

$$\rho_{j'}^{Y'}(y+z_1+z_2) = \rho_{j'}^{Y''} \circ \tau_{j'}(y+z_1+z_2) = \eta_{j'}^2(z_1,z_2)(|z_1|^2+|z_2|^2)$$

for $(y,z_1,z_2) \in Y_{j'}' \times L_{0,y} \times L_{0,y}^{\perp}$

and $\eta_{j'}(z_1, z_2)$ depends on only $|z_1|$ and $|z_2|$. Hence if we set

$$\pi_j^Y(y+z_1+z_2) = \pi_{j1}^Y(y+z_1+z_2) + \pi_{j2}^Y(y+z_1+z_2) + \pi_{j3}^Y(y+z_1+z_2),$$

 $\pi_{j1}^Y(y+z_1+z_2) \in Y'_{j'}, \ \pi_{j2}^Y(y+z_1+z_2) \in L_{0,y}, \ \pi_{j3}^Y(y+z_1+z_2) \in L_{0,y}^{\perp}.$ then it suffices to see

$$\pi_{j2}^{Y}(y+z_1+z_2) = z_1$$
 and $|\pi_{j3}^{Y}(y+z_1+z_2)| = |z_2|.$

By controlledness of $\{T_j^Y\}$ we have $\pi_{j_0}^Y \circ \pi_j^Y = \pi_{j_0}^Y$. Hence by the equation $\pi_{j_0}^Y(y + z_1 + z_2) = y + z_1$, the former equality holds. The latter also follows from the equations $\rho_{j_0}^Y \circ \pi_j^Y = \rho_{j_0}^Y$ and $\rho_{j_0}^Y(y + z_1 + z_2) = |z_2|^2$. Hence by induction we have a controlled semialgebraic C^1 tube system $\{T_{j'}^{Y'}\}$

Hence by induction we have a controlled semialgebraic C^1 tube system $\{T_{j'}^{Y'}\}$ for $\{Y'_{j'}\}$ such that $T_{j'}^{Y'} = T_j^{Y}|_{|T_{j'}^{Y'}|}$ for $j' \in J_j$ with dim $Y'_{j'} = j$, $(*)_Y$ for j' and jwith $Y'_{j'} \subset \overline{Y_j}$ and $(**)_Y$ for $j' \in J_{j_1}$ and j with $j_1 < j$.

Next we define $\{T_{i'}^{X'}\}$ by induction as $\{T_{j'}^{Y'}\}$. Consider all $X'_{i'}$ included in Xand forget $X'_{i'}$ outside of X. We change the set of indexes of X_i . For non-negative integers i_0 and j_0 , let X_{i_0,j_0} denote the union of X_i 's such that dim $X_i = i_0$ and $f(X_i) \subset Y_{j_0}$, i.e., dim $f(X_i) = j_0$, naturally define $T_{i,j}^X = (|T_{i,j}^X|, \pi_{i,j}^X, \rho_{i,j}^X)$ and continue to define $\{X'_{i'}\}$ to be $\{X_{i,j} \cap p^{-1}(Y'_{j'}), Z \cap \{0\} \times Y'_{j'}\}$. Then dim $X_{i,j} = i$ and $f|_{X_{i,j}}$ is a map to Y_j . Let I_i denote the set of indexes of $X'_{i'}$ such that $X'_{i'}$ is included in $X_{i,j}$ for some j. Note $X = \bigcup \{X'_{i'} : i' \in I_i \text{ for some } i\}$. Fix a non-negative integer i_0 , and assume there exists a semialgebraic C^1 tube system $\{T_{i'}^{X'} = (|T_{i'}^{X'}|, \pi_{i'}^{X'}, \rho_{i'}^{X'}) : i' \in I_i, i < i_0\}$ for $\{X_{i'}' : i' \in I_i, i < i_0\}$ such that the following four conditions are satisfied, which are, except (iv), similar to the conditions (1), (2) and (3) in section 2.

(i) For i, i' and j' with $i < i_0, i' \in I_i$ and $f(X'_{i'}) = Y'_{i'}$,

 $f \circ \pi_{i'}^{X'} = \pi_{i'}^{Y'} \circ p$ on $|T_{i'}^{X'}| \cap p^{-1}(|T_{i'}^{Y'}|).$

(ii) For each j', $\{T_{i'}^{X'}: f(X_{i'}') = Y_{j'}', i' \in I_i, i < i_0\}$ is a controlled semialgebraic C^1 tube system for $\{X'_{i'} : f(X'_{i'}) = Y'_{j'}, i' \in I_i, i < i_0\}.$

(iii) For $i_k, i'_k, k = 1, 2, 3, i_4$ and j_4 with $i_k < i_0, i'_k \in I_{i_k}, k = 1, 2, 3, X'_{i'_1} \cap (\overline{X'_{i'_2}} - C_{i'_1})$ $X'_{i'_{2}} \neq \emptyset$ and $X'_{i'_{2}} \subset \overline{X_{i_{4},j_{4}}},$

$$\begin{aligned} \pi_{i'_1}^{X'} \circ \pi_{i'_2}^{X'} &= \pi_{i'_1}^{X'} \quad \text{on } |T_{i'_1}^{X'}| \cap |T_{i'_2}^{X'}|, \\ \pi_{i'_3}^{X'} \circ \pi_{i_4,j_4}^X &= \pi_{i'_3}^{X'} \quad \text{on } |T_{i'_3}^{X'}| \cap |T_{i_4,j_4}^X| \end{aligned}$$

if $i_3 < i_4$ moreover, then

$$\rho_{i'_3}^{X'} \circ \pi_{i_4,j_4}^X = \rho_{i'_3}^{X'} \quad \text{on } |T_{i'_3}^{X'}| \cap |T_{i_4,j_4}^X|.$$

(iv) For i, i' and j with $i < i_0, i' \in I_i$ and dim $X'_{i'} = i$,

$$T_{i'}^{X'} = T_{i,j}^X|_{|T_{i'}^{X'}|}.$$

Then we need to define $\{T_{i'}^{X'}: i' \in I_{i_0}\}$ so that the induction process works. Before that we note a fact.

(v) Given $i_k, i'_k, j'_k, k = 1, 2$, with $i_k < i_0, i'_k \in I_{i_k}, k = 1, 2, X'_{i'_1} \cap (\overline{X'_{i'_2}} - X'_{i'_2}) \neq \emptyset$, $\begin{array}{l} Y_{j_1'}' \subset \overline{Y_{j_2'}'} - Y_{j_2'}' \text{ and } f(X_{i_k'}') = Y_{j_k'}', \ k = 1, 2, \text{ then the restriction of the map } (\pi_{i_1'}^{X'}, f) \\ \text{to } X_{i_2'}' \cap |T_{i_1'}^{X'}| \text{ is a } C^1 \text{ submersion into the fiber product } X_{i_1'}' \times_{(f, \pi_{j_1'}^{Y'})} (Y_{j_2'}' \cap |T_{j_1'}^{Y'}|). \end{array}$

The reason is the following.

Case where $X'_{i'_{k}} \subset X_{i_{k},j_{k}}, k = 1, 2$, for some $j_{1} \neq j_{2}$. The condition (4) in section 2 is shown to be equivalent to (4)'. Now also similar equivalence holds. Hence it suffices to see for each $x \in X'_{i'_2} \cap |T^{X'}_{i'_1}|$, the germ of $\pi^{X'}_{i'_1}|_{X'_{i'_2} \cap f^{-1}(f(x))}$ at x is a C^1 submersion onto the germ of $X'_{i'_1} \cap f^{-1}(\pi^{Y'}_{i'_1} \circ f(x))$ at $\pi^{X'}_{i'_1}(x)$. We have four properties.

$$\begin{aligned} X'_{i'_{2}} \cap f^{-1}(f(x)) &= X_{i_{2},j_{2}} \cap f^{-1}(f(x)) & \text{by definition of } \{X'_{i'}\}; \\ X'_{i'_{1}} \cap f^{-1}(\pi^{Y'}_{j'_{1}} \circ f(x)) &= X'_{i'_{1}} \cap f^{-1}(f \circ \pi^{X'}_{i'_{1}}(x)) & \text{by (i)} \\ &= X_{i_{1},j_{1}} \cap f^{-1}(f \circ \pi^{X'}_{i'_{1}}(x)) & \text{by definition of } \{X'_{i'_{1}}\}; \end{aligned}$$

by (4)' the germ of $\pi_{i_1,j_1}^X|_{X_{i_2,j_2}\cap f^{-1}(f(x))}$ at x is a C^1 submersion onto the germ of $X_{i_1,j_1}\cap f^{-1}(f\circ\pi_{i_1,j_1}^X(x))$ at $\pi_{i_1,j_1}^X(x)$; by (iii)

$$\pi_{i_1'}^{X'} \circ \pi_{i_1,j_1}^X = \pi_{i_1'}^{X'} \quad \text{on } |T_{i_1'}^{X'}| \cap |T_{i_1,j_1}^X|.$$

Hence we only need to see the germ of $\pi_{i'_1}^{X'}|_{X_{i_1,j_1}\cap f^{-1}(f\circ\pi_{i_1,j_1}^X(x))}$ at $\pi_{i_1,j_1}^X(x)$ is a C^1 submersion onto the germ of $X'_{i'_1}\cap f^{-1}(f\circ\pi_{i'_1}^{X'}(x))$ at $\pi_{i'_1}^{X'}(x)$. That is clear by (i) because $f|_{X_{i_1,j_1}}: X_{i_1,j_1} \to Y_{j_1}$ is a C^1 submersion onto a union of some connected components of Y_{j_1} and $f \circ \pi^X_{i_1,j_1}(x)$ and $f \circ \pi^{X'}_{i'_1}(x)$ are contained in the same connected component.

Note we use the hypothesis $X'_{i'_k} \subset X_{i_k,j_k}$, $k = 1,2, j_1 \neq j_2$ in the above arguments for only the property that the germ of $\pi^X_{i_1,j_1}|_{X_{i_2,j_2} \cap f^{-1}(f(x))}$ is a C^1 submersion into $X_{i_1,j_1} \cap f^{-1}(f \circ \pi^X_{i_1,j_1}(x))$.

submersion into $X_{i_1,j_1} \cap f^{-1}(f \circ \pi^X_{i_1,j_1}(x))$. Case where $i_1 \neq i_2$ and $X'_{i'_k} \subset X_{i_k,j_k}$, k = 1, 2, for some j_1 . In this case also the above property holds because $f \circ \pi^X_{i_1,j_1} = f$ on $X_{i_2,j_1} \cap |T^X_{i_1,j_1}|$ and $\pi^X_{i_1,j_1}|_{X_{i_2,j_1}} \cap |T^X_{i_1,j_1}|$ is a C^1 submersion into X_{i_1,j_1} .

is a C^1 submersion into X_{i_1,j_1} . Case where $i_1 = i_2$ and hence $X'_{i'_k} \subset X_{i_1,j_1}$, k = 1, 2, for some j_1 . In this case the reason is simply $\pi^X_{i_1,j_1}|_{X_{i_1,j_1}} = \text{id}$.

the reason is simply $\pi_{i_1,j_1}^X|_{X_{i_1,j_1}} = \text{id.}$ Thus (v) is proved. Now we define $\{T_{i'}^{X'} : i' \in I_{i_0}\}$. For that it suffices to consider separately $\{X'_{i'} : X'_{i'} \subset X_{i_0,j}\}$ for each j. Hence we assume all $X'_{i'}$ with $i' \in I_{i_0}$ are included in one X_{i_0,j_0} for some j_0 and, moreover, $f(X_{i_0,j_0}) = Y_{j_0}$ for simplicity of notation. Then as shown below we have a semialgebraic C^1 tube system $\{T_{i'}^{X'} = (|T_{i'}^{X'}|, \pi_{i'}^{X'}, \rho_{i'}^{X'}) : i' \in I_0\}$ for $\{X'_{i'} : i' \in I_0\}$ such that (vi) for i' and j' with $i' \in I_{i_0}$ and $f(X'_{i'}) = Y'_{j'}$,

$$f \circ \pi^{X\prime}_{i'} = \pi^{Y\prime}_{j'} \circ p \quad \text{on } |T^{X\prime}_{i'}| \cap p^{-1}(|T^{Y\prime}_{j'}|);$$

(vii) for $j' \in J_{j_0}$, $\{T_{i'}^{X'} : f(X_{i'}') = Y_{j'}', i' \in I_{i_1}, i_1 \le i_0\}$ is a controlled semialgebraic C^1 tube system for $\{X_{i'}' : f(X_{i'}') = Y_{j'}', i' \in I_{i_1}, i_1 \le i_0\}$;

(viii) for $i_1, i'_k, k = 1, 2, 3, i_4$ and j_4 with $i_1 \le i_0, i'_1 \in I_{i_1}, i'_2, i'_3 \in I_{i_0}, X'_{i'_1} \cap (\overline{X'_{i'_2}} - X'_{i_2}) \ne \emptyset$ and $X'_{i'_2} \subset \overline{X_{i_4, j_4}}$,

$$\begin{aligned} \pi_{i_1'}^{X\prime} \circ \pi_{i_2'}^{X\prime} &= \pi_{i_1'}^{X\prime} \quad \text{on } |T_{i_1'}^{X\prime}| \cap |T_{i_2'}^{X\prime}|, \\ \pi_{i_3'}^{X\prime} \circ \pi_{i_4,j_4}^X &= \pi_{i_3'}^{X\prime} \quad \text{on } |T_{i_3'}^{X\prime}| \cap |T_{i_4,j_4}^X|, \end{aligned}$$

if $i_0 < i_4$ then

$$\rho_{i'_{3}}^{X'} \circ \pi_{i_{4},j_{4}}^{X} = \rho_{i'_{3}}^{X'} \quad \text{on } |T_{i'_{3}}^{X'}| \cap |T_{i_{4},j_{4}}^{X}|;$$

(ix) for $i' \in I_{i_0}$ with dim $X'_{i'} = i_0$,

$$T_{i'}^{X'} = T_{i_0,j_0}^X|_{|T_{i'}^{X'}|}.$$

We construct $\{T_{i'}^{X'}: i' \in I_0\}$ as follows. First we define $T_{i'}^{X'}$ on $|T_{i'}^{X'}| \cap X_{i_0,j_0}, i' \in I_{i_0}$, so that (vi), (vii) and the first equality in (viii) are satisfied by the usual arguments of lift of a tube system (see [1], Lemma II.6.1, [4] and its proof). Secondly, extend $\pi_{i'}^{X'}$ to $|T_{i'}^{X'}|$ using π_{i_0,j_0}^X as in the above construction of $\pi_{j'}^{Y'}$. Then $\pi_{i'}^{X'}$ are of class C^1 ; (vi) holds because for i' and j' with $i' \in I_{i_0}$ and $f(X_{i'}) = Y_{j'}'$,

$$f \circ \pi_{i'}^{X'} \stackrel{\text{definition of } \pi_{i'}^{X'}}{=} f \circ \pi_{i'}^{X'} \circ \pi_{i_0,j_0}^{X} \stackrel{\text{(vi) on } |T_{i'}^{X'}| \cap X_{i_0,j_0}}{=} \pi_{j'}^{Y'} \circ f \circ \pi_{i_0,j_0}^{X}$$

$$\stackrel{(1) \text{ in section } 2}{=} \pi_{j'}^{Y'} \circ \pi_{j_0}^{Y} \circ p \stackrel{(**)_Y}{=} \pi_{j'}^{Y'} \circ p \quad \text{on } |T_{i'}^{X'}| \cap p^{-1}(|T_{j'}^{Y'}|);$$

the first equality in (viii) for $i_1 = i_0$ follows from definition of the extension; that for $i_1 < i_0$ does from the second equality in (iii); the second in (viii) does from definition of the extension and the equality $\pi_{i_0,j_0}^X \circ \pi_{i_4,j_4}^X = \pi_{i_0,j_0}^X$; trivially $\pi_{i'}^{X'} = \pi_{i_0,j_0}^X$ for $i' \in I_{i_0}$ with dim $X'_{i'} = i_0$. Thirdly, extend $\rho_{i'}^{X'}$ to $|T_{i'}^{X'}|$ in the same way as $\rho_{j'}^{Y'}$. Then $\{T_{i'}^{X'} : i' \in I_{i_0}\}$ is a semialgebraic C^1 tube system for $\{X'_{i'} : i' \in I_{i_0}\}$; (vii) holds because for i'_0 and $i'_1 \in I_{i_1}$ with $i'_0 \in I_{i_0}$, $i_1 < i_0$ and $f(X'_{i'_0}) = f(X'_{i'_0})$,

$$\rho_{i'_1}^{X'} \circ \pi_{i'_0}^{X'} = \rho_{i'_1}^{X'} \circ \pi_{i'_0}^{X'} \circ \pi_{i_0,j_0}^X \quad \text{by definition of } \pi_{i'_0}^{X'}$$

$$= \rho_{i'_{1}}^{X'} \circ \pi_{i_{0},j_{0}}^{X} \quad \text{by (vii) on } X_{i_{0},j_{0}}$$
$$= \rho_{i'_{1}}^{X'} \quad \text{by the third equality in (iii);}$$

the extensions are chosen so that the third equality in (viii) and (ix) are satisfied, which completes construction of a semialgebraic C^1 tube system $\{T_{i'}^{X'}: i' \in I_{i_0}\}$ and hence by induction that of $\{T_{i'}^{X'}: X'_{i'} \subset X\}$ with (i), (ii), the first equality in (iii) and (v) for any i_0 , i.e., controlled over $\{T_{j'}^{Y'}\}$.

It remains only to consider $X'_{i'}$ in Z, i.e., the case where $X'_{i'}$ is of the form $\{0\} \times Y'_{j'}$ for some j'. Set $\partial I = \{i' : X'_{i'} \subset Z\}$. Obviously, we set

$$\pi^{X\prime}_{i'}(x) = (0, \pi^{Y\prime}_{j'} \circ p(x)) \quad \text{for } x \in |T^{X\prime}_{i'}|, \; i' \in \partial I \text{ and } j' \text{ with } X'_{i'} = \{0\} \times Y'_{j'},$$

where $|T_{i'}^{X'}|$ is a small semialgebraic neighborhood of $X'_{i'}$ in $\mathbf{R}^m \times \mathbf{R}^n$. Then (i) for $i' \in \partial I$ is clear; the first equality in (iii) for $i'_1 \in \partial I$ holds because

$$\pi_{i'_{1}}^{X'} \circ \pi_{i'_{2}}^{X'}(x) \stackrel{\text{definition of } \pi_{i'_{1}}^{X'}}{=} (0, \pi_{j'_{1}}^{Y'} \circ p \circ \pi_{i'_{2}}^{X'}(x)) \stackrel{(i)}{=} (0, \pi_{j'_{1}}^{Y'} \circ \pi_{j'_{2}}^{Y'} \circ p(x))$$

$$\stackrel{\text{controlledness of } \{T_{j'}^{Y'}\}}{=} (0, \pi_{j'_{1}}^{Y'} \circ p(x)) = \pi_{i'_{1}}^{X'}(x) \quad \text{for } x \in |T_{i'_{1}}^{X'}| \cap |T_{i'_{2}}^{X'}|,$$

where j'_1 and j'_2 are such that $f(X'_{i'_k}) = Y'_{j'_k}$, k = 1, 2; (v) for $i'_1 \in \partial I$ is clear, to be precise, for $i'_1 \in \partial I$, i'_2 , j'_1 and j'_2 with $X'_{i'_1} \cap (\overline{X'_{i_2}} - X'_{i'_2}) \neq \emptyset$, $Y'_{j'_1} \subset \overline{Y'_{j'_2}} - Y'_{j'_2}$ and $p(X'_{i'_k}) = Y'_{j'_k}$, k = 1, 2, the restriction of the map $(\pi^{X'}_{i'_1}, p)$ to $X'_{i'_2} \cap |T^{X'}_{i'_1}|$ is a C^1 submersion into $X'_{i'_1} \times_{(p,\pi^{Y'}_{j'_1})} (Y'_{j'_2} \cap |T^{Y'}_{j'_1}|)$ because $p|_{X'_{i'_1}} : X'_{i'_1} \to Y'_{j'_1}$ is a C^1 diffeomorphism and $p|_{X'_{i'_1}} : X'_{i'_2} \to Y'_{j'_2}$ is a C^1 submersion.

diffeomorphism and $p|_{X'_{i'_2}} : X'_{i'_2} \to Y'_{j'_2}$ is a C^1 submersion. We want to define $\{\rho_{i'}^{X'} : i' \in \partial I\}$ so that $\{T_{i'}^{X'} = (|T_{i'}^{X'}|, \pi_{i'}^{X'}, \rho_{i'}^{X'}) : i' \in \partial I\}$ is a semialgebraic C^1 weak tube system and for each j', $\{T_{i'}^{X'} : f(X'_{i'}) = Y'_{j'}\}$ is controlled. We proceed by double induction. Let $d \ge 0 \in \mathbb{Z}$, and assume $\rho_{i'}^{X'}$ are already defined if $\dim X'_{i'} > d$. We need to construct $\rho_{i'}^{X'}$ for $i' \in \partial I$ with $\dim X'_{i'} = d$. As the problem is local at such $X'_{i'}$, assume there exists only one $i'_0 \in \partial I$ with $\dim X'_{i'_0} = d$. Set $I' = \{i' : X'_{i'_0} \subset \overline{X'_{i'}} - X'_{i'}\}$ and $Y'_{j'_0} = p(X'_{i'_0})$.

$$\begin{split} &i'_0 \in \partial I \text{ with } \dim X'_{i'_0} = d. \text{ Set } I' = \{i': X'_{i'_0} \subset \overline{X'_{i'}} - X'_{i'}\} \text{ and } Y'_{j'_0} = p(X'_{i'_0}). \\ & \text{ For the moment we construct a non-negative semialgebraic } C^0 \text{ function } \rho^{X'}_{i'_0,d}, \\ & \text{ on } |T^{X'}_{i'_0}| \text{ with zero set } X'_{i'_0} \text{ which is of class } C^1 \text{ on } |T^{X'}_{i'_0}| - X'_{i'_0} \text{ and such that } \\ \{T^{X'}_{i'_0,d}, T^{X'}_{i'}: i' \in I', \, p(X'_{i'}) = Y'_{j'_0}\} \text{ is controlled, i.e.,} \end{split}$$

$$\rho_{i'_0,d}^{X\prime} \circ \pi_{i'}^{X\prime} = \rho_{i'_0,d}^{X\prime} \quad \text{on } |T_{i'_0}^{X\prime}| \cap |T_{i'}^{X\prime}| \text{ for } i' \in I' \text{ with } p(X_{i'}') = Y_{j'_0}',$$

where d = 1 + #I' and $T_{i'_0,d}^{X'} = (|T_{i'_0}^{X'}|, \pi_{i'_0}^{X'}, \rho_{i'_0,d}^{X'})$. (Namely we forget the condition that $\rho_{i'_0,d}^{X'}|_{X'_{i'}\cap\pi_{i'_0}^{X'-1}(x)-X'_{i'_0}}$ is C^1 regular for each x and any $i' \in I'$.) Order elements of I' as $\{i'_1, \dots, i'_{d-1}\}$ so that $\dim X'_{i'_1} \leq \cdots \leq \dim X'_{i'_{d-1}}$.

of I' as $\{i'_1, \dots, i'_{d-1}\}$ so that $\dim X'_{i'_1} \leq \dots \leq \dim X'_{i'_{d-1}}$. Let $k \in \mathbb{Z}$ with $0 \leq k < d-1$. As the second induction, assume we have a non-negative semialgebraic C^0 function $\rho^{X'}_{i'_0,k}$ defined on $|T^{X'}_{i'_0}| \cap (|T^{X'}_{i'_1}| \cup \dots \cup |T^{X'}_{i'_k}|)$ such that $\rho^{X'-1}_{i'_0,k}(0) = X'_{i'_0}, \rho^{X'}_{i'_0,k}$ is of class C^1 outside of $X'_{i'_0}$ and $\{T^{X'}_{i'_0,k}, T^{X'}_{i'}: i' \in I', p(X'_{i'}) = Y'_{j'_0}\}$ is controlled, i.e.,

$$\rho_{i'_{0},k}^{X'} \circ \pi_{i'}^{X'} = \rho_{i'_{0},k}^{X'} \quad \text{on } |T_{i'_{0}}^{X'}| \cap (|T_{i'_{1}}^{X'}| \cup \dots \cup |T_{i'_{k}}^{X'}|) \cap |T_{i'}^{X'}| \text{ for } i' \in I' \text{ with } p(X'_{i'}) = Y'_{j'_{0}},$$

where $T_{i'_0,k}^{X\prime} = (|T_{i'_0}^{X\prime}|, \pi_{i'_0}^{X\prime}, \rho_{i'_0,k}^{X\prime})$. Then we need to define $\rho_{i'_0,k+1}^{X\prime}$. Let $\tilde{\rho}_{i'_0,k}^{X\prime}$ be any non-negative semialgebraic C^0 extension of $\rho_{i'_0,k}^{X\prime}|_{|T_{i'_0}^{X\prime}| \cap (|T_{i'_1}^{X\prime}| \cup \cdots \cup |T_{i'_k}^{X\prime}|) \cap X'_{i'_{k+1}}}$ to $|T_{i'_0}^{X'}| \cap X'_{i'_{k+1}}$ with zero set $X'_{i'_0}$, let V be an open semialgebraic neighborhood of $X'_{i'_1} \cup \cdots \cup X'_{i'_k}$ in $X'_{i'_1} \cup \cdots \cup X'_{i'_{k+1}}$ whose closure is included in $|T_{i'_1}^{X'}| \cup \cdots \cup |T_{i'_k}^{X'}|$, approximate $\tilde{\rho}_{i'_0,k}^{X'}|_{|T_{i'_0}^{X'}|\cap X'_{i'_{k+1}}-V}$ by a non-negative semialgebraic C^0 function $\tilde{\tilde{\rho}}_{i'_0,k}^{X'}$ in the uniform C^0 topology so that $\tilde{\rho}_{i'_0,k}^{X'-1}(0) = X'_{i'_0}$, and $\tilde{\rho}_{i'_0,k}^{X'}$ is of class C^1 outside of $X'_{i'_0}$ (Theorem II.4.1, [3]), let ξ be a semialgebraic C^1 function on $|T^{X'}_{i'_0}| \cap X'_{i'_{k+1}}$ such that $0 \leq \xi \leq 1, \ \xi = 0$ on $|T_{i'_0}^{X'}| \cap X'_{i'_{k+1}} \cap V$ and $\xi = 1$ on $|T_{i'_0}^{X'}| \cap X'_{i'_{k+1}} - C_{i'_{k+1}}$ $|T_{i'_{1}}^{X'}| - \cdots |T_{i'_{n}}^{X'}|$, and set

$$\hat{\rho}_{i'_0,k}^{X\prime}(x) = \xi(x)\tilde{\tilde{\rho}}_{i'_0,k}^{X\prime}(x) + (1-\xi(x))\rho_{i'_0,k}^{X\prime}(x) \quad \text{for } x \in |T_{i'_0}^{X\prime}| \cap X'_{i'_{k+1}}$$

Then $\hat{\rho}_{i_0',k}^{X\prime}$ is a non-negative semialgebraic C^0 extension of $\rho_{i_0',k}^{X\prime}|_{|T_{i_0'}^{X\prime}|\cap V \cap X_{i_{k+1}'}'}$ $|T_{i'_0}^{X'}| \cap X'_{i'_{k+1}} \text{ with zero set } X'_{i'_0} \text{ and of class } C^1 \text{ outside of } X'_{i'_0}. \text{ If } p(X'_{i'_{k+1}}) \neq Y'_{j'_0}, \text{ we continue to extend } \hat{\rho}_{i'_0,k}^{X'} \text{ to the required } \hat{\rho}_{i'_0,k+1}^{X'} : |T_{i'_0}^{X'}| \cap (|T_{i'_1}^{X'}| \cup \cdots \cup |T_{i'_{k+1}}^{X'}|) \to \mathbf{R}$ shrinking $|T_{i'_1}^{X'}|, ..., |T_{i'_k}^{X'}|$ and using a partition of unity in the same way so that $\rho_{i'_0,k+1}^{X'} = \rho_{i'_0,k}^{X'}$ on $|T_{i'_1}^{X'}| \cap (|T_{i'_1}^{X'}| \cup \cdots \cup |T_{i'_k}^{X'}|)$. Otherwise, set

$$\rho_{i'_{0},k+1}^{X\prime} = \begin{cases} \rho_{i'_{0},k}^{X\prime} & \text{ on } |T_{i'_{0}}^{X\prime}| \cap (|T_{i'_{1}}^{X\prime}| \cup \dots \cup |T_{i'_{k}}^{X\prime}|) \\ \hat{\rho}_{i'_{0},k}^{X\prime} \circ \pi_{i'_{0},k+1}^{X\prime} & \text{ on } |T_{i'_{0}}^{X\prime}| \cap |T_{i'_{k+1}}^{X\prime}|, \end{cases}$$

which is well-defined because

$$\begin{aligned} \hat{\rho}_{i_{0},k}^{X'} \circ \pi_{i_{0},k+1}^{X'} &= \rho_{i_{0},k}^{X'} \circ \pi_{i_{0},k+1}^{X'} \quad \text{by definition of } \hat{\rho}_{i_{0},k}^{X'} \\ &= \rho_{i_{0},k}^{X'} \quad \text{by controlledness of } \{T_{i_{0},k}^{X'}, T_{i'}^{X'} : i' \in I', \ p(X_{i'}') = Y_{j_{0}}'\} \\ & \text{on } |T_{i_{0}}^{X'}| \cap (|T_{i_{1}}^{X'}| \cup \dots \cup |T_{i_{k}}^{X'}|) \cap |T_{i_{k+1}'}^{X'}| \ \text{for shrunk } |T_{i_{1}'}^{X'}|, \dots, |T_{i_{k}'}^{X'}|. \end{aligned}$$
Then clearly $\rho_{i_{0},k+1}^{X'-1}(0) = X_{i_{0}'}', \ \rho_{i_{0},k+1}^{X'}| \ \text{is of class } C^{1} \ \text{outside of } X_{i_{0}'}' \ \text{and} \\ \rho_{i_{0}',k+1}^{X'} \circ \pi_{i'}^{X'} &= \rho_{i_{0}',k+1}^{X'} \ \text{on } |T_{i_{0}'}^{X'}| \cap (|T_{i_{1}'}^{X'}| \cup \dots \cup |T_{i_{k+1}'}^{X'}|) \cap |T_{i'}^{X'}| \ \text{for } i' \in I' \ \text{with } p(X_{i'}') = Y_{j_{0}'}' \\ \text{as follows. It suffices to consider only the case where } \overline{X_{i'}'} - X_{i'}' \supset X_{i_{k+1}}' \ \text{and} \\ p(X_{i'}') &= p(X_{i_{k+1}}') = Y_{j_{0}'}' \ \text{and the equation on } |T_{i_{0}'}^{X'}| \cap |T_{i_{k+1}'}^{X'}| \cap |T_{i'}^{X'}|. \ \text{We have} \\ \rho_{i_{0}',k+1}^{X'} \circ \pi_{i'}^{X'} &= \hat{\rho}_{i_{0}',k}^{X'} \circ \pi_{i_{k+1}'}^{X'} \circ \pi_{i'}^{X'} \ \text{by definition of } \rho_{i_{0}',k+1}^{X'} \\ &= \hat{\rho}_{i_{0}',k}^{X'} \circ \pi_{i_{k+1}'}^{X'} \ \text{by the first equation in (iii)} \\ &= \rho_{i_{0}',k+1}^{X'} \ \text{by definition of } \rho_{i_{0}',k+1}^{X'} \ \text{on } |T_{i_{0}'}^{X'}| \cap |T_{i_{k+1}'}^{X'}| \cap |T_{i'}^{X'}|. \end{aligned}$

Thus by the second induction we obtain $\rho_{i'_0,d-1}^{X'} : |T_{i'_0}^{X'}| \cap (|T_{i'_1}^{X'}| \cup \cdots \cup |T_{i',d-1}^{X'}|) \to \mathbf{R}.$ It remains only to extend $\rho_{i'_0,d-1}^{X'}$ to a non-negative semialgebraic C^0 function

$$\begin{split} \rho_{i'_0,d}^{X\prime} & \text{ on } |T_{i'_0}^{X\prime}| \text{ with zero set } X_{i'_0}^{\prime} \text{ and of class } C^1 \text{ outside of } X_{i'_0}^{\prime}. \text{ However we have already carried out such a sort of extension by using a partition of unity } \xi. \\ & \text{ We need to solve the problem of } C^1 \text{ regularity of } \rho_{i'_0,d}^{X\prime}|_{X_{i'}^{\prime}\cap\pi_{i'_0}^{X\prime-1}(x)-X_{i'_0}^{\prime}}. \\ & \text{ For each } x \in X_{i'_0}^{\prime}, \text{ the restriction of } \rho_{i'_0,d}^{X\prime} \text{ to } X_{i'}^{\prime}\cap\pi_{i'_0}^{X\prime-1}(x)\cap\rho_{i'_0,d}^{X\prime-1}((0, \delta_x)) \text{ is } C^1 \text{ regular } X_{i'_0}^{\prime}. \end{split}$$

for some $\delta_x > 0 \in \mathbf{R}$ and any $i' \in I'$. Here we can choose δ_x so that the function $X'_{i'_0} \ni x \to \delta_x \in \mathbf{R}$ is semialgebraic (but not necessarily continuous). Then there exists a semialgebraic closed subset $X''_{i'_0}$ of $X'_{i'_0}$ of smaller dimension such that each point x in $X'_{i'_0} - X''_{i'_0}$ has a neighborhood in $X'_{i'_0}$ where δ_x is larger than a positive number. Hence if we replace $X'_{i'_0}$ with $X'_{i'_0} - X''_{i'_0}$, i.e., $Y'_{j'_0}$ with $Y'_{j'_0} - p(X''_{i'_0})$ and shrink $|T^{X'}_{i'_0}|$ then the C^1 regularity holds. Thus we obtain the required $\rho^{X'}_{i'_0}$ though $X'_{i'_0}$ is shrunk to $X'_{i'_0} - X''_{i'_0}$.

The shrinking is admissible as follows. Substratify $\{Y'_{j'} \cap p(\overline{X''_{i_0}}), Y'_{j'} - p(\overline{X''_{i_0}})\}$ to a Whitney semialgebraic C^1 stratification $\{Y''_{j''}\}$ such that $\{Y'_{j'} - p(\overline{X''_{i_0}})\} = \{Y''_{j''} - p(\overline{X''_{i_0}})\}$, set $\{X''_{i''}\} = \{X_{i,j} \cap p^{-1}(Y''_{j''}), Z \cap \{0\} \times Y''_{j''}\}$, which implies $\{X'_{i'} - p^{-1}(p(\overline{X''_{i_0}}))\} = \{X''_{i''} - p^{-1}(p(\overline{X''_{i_0}}))\}$, and repeat all the above arguments to $\overline{f}: \{X''_{i''}\} \to \{Y''_{j''}\}$. Then we obtain a semialgebraic C^1 tube system $\{T^{Y''}_{j''}\}$ for $\{Y''_{j''}\}$ and a semialgebraic C^1 tube system $\{T^{Y''}_{i''} \in X\}$ for $\{X''_{i''} \in X\}$ for $\{X''_{i''} \in X\}$ controlled over $\{T^{Y''}_{j''}\}$ such that $\{T^{Y''}_{j''} : Y''_{j''} \cap p(\overline{X''_{i_0}}) = \emptyset\}$ and $\{T^{X''}_{i'''} : X''_{i''} \in X, X''_{i''} \cap p^{-1}(p(\overline{X''_{i_0}})) = \emptyset\}$ are equal to $\{T^{Y'}_{j''}|_{|T^{Y'}_{j'}|-\pi^{Y'-1}_{j'}(p(\overline{X''_{i_0}})))}\}$ and $\{T^{X'}_{i''}|_{|T^{X'}_{i'}|-\pi^{X'-1}_{i'}(p^{-1}(p(\overline{X''_{i_0}})))}\}$, respectively, by (iv) and (ix), where the domains of the latter two tube systems are shrunk. Moreover we continue construction of $\rho^{X''}_{i''}$ for $X''_{i''} \in Z$. Since $\{X''_{i''} \in Z: \dim X''_{i''} > d\} = \{X'_{i'} \in Z: \dim X''_{i''} < Z$ with $\dim X''_{i''} < d\}$ and $\{X''_{i''} < Z: \dim X''_{i''} < d\}$ and $\{X''_{i''} < Z: \dim X''_{i''} < d\} = \{X'_{i'_0} - X''_{i'_0}\}$ we choose $\rho^{X'}_{i''}$ as $\rho^{X''}_{i'''}$ for $X''_{i'_0} < Z$ with $\dim X''_{i''} < d$ and $\rho^{X'}_{i'_0}|_{|T^{X''}_{i'''}|}$ as $\rho^{X''}_{i'''}$ for $X''_{i''_0} < Z$ with $\dim X''_{i''_0} = \emptyset$ from the beginning, which completes the construction of $\rho^{X'}_{i'_0}$ and hence of the required $\{\rho^{X'}_{i'}: i' \in \partial I\}$ by induction.

Thus $\overline{f}: \{X'_{i'}\} \to \{Y'_{j'}\}, \{T^{X'}_{i'}\}$ and $\{T^{Y'}_{j'}\}$ satisfy the conditions in theorem 2.2. Hence theorem 1.2 follows.

Bibliography

- [G] C. G. Gibson et al, Topological stability of smooth mappings, Lecture Notes in Math., 552, Springer, 1976.
- [MS] M. Murayama and M. Shiota, *Triangulation of the map of a G-manifold to its orbit space*, to appear.
- [S1] M. Shiota, Nash manifolds, Lecture Notes in Math., 1269, Springer-Verlag, 1987.
- [S2] _____, Geometry of subanalytic and semialgebraic sets, Progress in Math., 150, Birkhäuser, 1997.
- [S3] _____, Thom's conjecture on triangulations of maps, Topology, 39 (2000), 383–399.

Graduate School of Mathematics Nagoya University Chikusa, Nagoya, 464-8602, Japan E-mail: shiota@math.nagoya-u.ac.jp