
Lecture 1: O-minimal structures

Ta Lê Loi

Introduction

In Real Algebraic and Analytic Geometry the following traditional classes of
sets and their geometries are considered:
(1) The class of semialgebraic sets (Whitney-!Lojasiewicz, in the 50’s) (see [BCR]).
(2) The class of semianalytic sets (!Lojasiewicz, in the 60’s) (see [L]).
(3) The class of subanalytic sets (Gabrielov-Hironaka-Hardt and Krakovian school,
in the 70’s) (see [BM], [Hi], [LZ]).
These classes of sets have many nice properties. Semialgebraic and subanalytic
sets form the so-called Tarski-type systems, that is the corresponding class is closed
under boolean operators and under proper projections. In particular, these classes
have the finiteness property: each set in these classes has locally only finite number
of connected components and each of the components also belongs to the corre-
sponding class.

In some problems, we have to treat functions like xα or exp(−1/x), where x > 0 and
α is an irrational number, which are not subanalytic at 0. Naturally, it requires
an extension of classes mentioned above. According to van den Dries [D1], the
finiteness is the most remarkable in the sense that if a Tarski-type system has this
property, it will preserve many nice properties of semi and subanalytic sets. Van den
Dries, Knight, Pillay and Steinhorn gave the name o-minimal structures for such
systems and developed the general theory ([D1],[KPS], [PS]). Note that Shiota
had a similar program ([S1],[S2]). Khovanskii’s results on Fewnomials [Kh], and a
notable theorem of Wilkie on model completeness [W1] confirm the o-minimality
of the real exponential field.

The theory of o-minimal structures is a wide-ranging generalization of semialgebraic
and subanalytic geometry. Moreover, one can view the subject as a realization of
Grothendieck’s idea of topologie modérée, or tame topology, in “Esquisse d’un Pro-
gramme” (1984). In recent years, o-minimality of many remarkable structures have
been proved (see the examples in 1.3–1.9) and many interesting results have been
established in the theory of o-minimal structures on the real field (see Lectures 2,3).

This note is a part of [L1]. Mainly we follow the proofs of [D2] and [C] with
some changes. The definition and some examples of o-minimal structures are given
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20 O-MINIMAL STRUCTURES

in Section 1. In Section 2 we give some important properties of o-minimal struc-
tures. In the last section we sketch the idea of constructing an analytic-geometric
category corresponding to an o-minimal structure.

Acknowledgements. This lecture is partially supported by the Grant-in-Aid
for Scientific Research (No. 20540075) of Ministry of Education, Science and Cul-
ture of Japan, and HEM 21 Invitation Fellowship Programs for Research in Hyogo.

1. Definition and examples of o-minimal structures

Motivation 1.1. Let (Fn)n∈N be a class of real-valued functions on spaces
Rn, n ∈ N. Similar to semialgebraic or subanalytic sets, it is natural to construct
a class of subsets of Rn, n ∈ N, as follows.
First consider basic sets of the forms

{x ∈ Rn : f(x) > 0}, where f ∈ Fn, n ∈ N.

Then starting from these basic sets we create new sets by taking finite unions, finite
intersections, complements, Cartesian products, and linear projections (or proper
projections) onto smaller dimensional Euclidean spaces. Repeating these operators
with the new sets that arise, we get a class of subsets of Rn, n ∈ N, which is closed
under usual topological operators (e.g. taking closure, interior, boundary, ...).
We are interested in the case that the new sets are not so complicated and patho-
logical as Cantor sets, Borel sets, nonmeasurable sets..., since it promises a “tame
topology” for the class of sets that we constructed. The corresponding category
of spaces and maps between them may yield a rich algebraic-analytic-topological
structure.

Definition 1.2. A structure on the real field (R,+, ·) is a sequence D =
(Dn)n∈N such that the following conditions are satisfied for all n ∈ N:

(D1) Dn is a boolean algebra of subsets of Rn.
(D2) If A ∈ Dn, then A× R and R×A ∈ Dn+1.
(D3) If A ∈ Dn+1, then π(A) ∈ Dn, where π : Rn+1 → Rn is the projection on

the first n coordinates.
(D4) Dn contains {x ∈ Rn : P (x) = 0} for every polynomial P ∈ R[X1, · · · , Xn].

Structure D is called to be o-minimal if

(D5) Each set in D1 is a finite union of intervals and points.

A set belonging to D is called definable (in that structure). Definable maps in
structure D are maps whose graphs are definable sets in D.

Example 1.3. Given a collection of real-valued functions F , the smallest struc-
ture on (R,+, ·) containing the graphs of all f ∈ F is denoted by (R,+, ·,F).

Example 1.4. Let Ralg be the smallest structure on (R, ·,+). By Tarski-
Seidenberg’s Theorem a subset X ⊂ Rn is definable in Ralg if and only if X is
semialgebraic. Obviously, Ralg is o-minimal.

Example 1.5. Let Ran = (R,+, ·,A), where A is the class of all restricted
analytic functions on [−1, 1]n (n ∈ N). Definable sets in Ran are finitely subana-
lytic sets (see [D2]), i.e X ⊂ Rn is definable in Ran if and only if X is subanalytic
in the projective space Pn(R), where we identify Rn with an open set of Pn(R)
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via (x1, · · · , xn) !→ (1 : x1 : · · · : xn). By Grabrielov’s Theorem on the comple-
ment and a !Lojasiewicz result on connected components of semianalytic sets (see
[BM],[L],[LZ]) Ran is o-minimal.

Example 1.6. Let Rexp = (R,+, ·, exp). Wilkie [W1] proved that Rexp is
model complete, as a direct consequence of this theorem each definable sets in Rexp

is the image of the zero set of a function in R[x1, · · · , xN , exp(x1), · · · , exp(xN )],
for some N ∈ N under a natural projection (see [L2]). Then by a Khovanskii result
on fewnomials [Kh], Rexp is an o-minimal structure. An analytic proof of Wilkie’s
theorem is given in [LR]. Note that xα, exp(−1/x) (x > 0 and α is irrational) are
definable functions in Rexp but not subanalytic at 0.

Example 1.7. Let Ran,exp = (R,+, ·,A, exp), where A as in 3.2. Extending
Wilkie’s method, van den Dries and Miller [DM1] proved that Ran,exp is also o-
minimal. (see also [LR] for an analytic proof)

Example 1.8. Let f1, · · · , fk : Rn → R be a Pfaffian chain, i.e. f1, · · · , fk
are smooth functions and there exist polynomials Pij ∈ R[X1, · · · , Xn, Y1, · · · , Yi]
such that for all x ∈ Rn

∂fi
∂xj

(x) = Pij(x, f1(x), · · · , fi(x)) (i = 1, · · · , k; j = 1, · · · , n).

Let P = P(f1, · · · , fk) be the class of all functions of the form f(x) = Q(x, f1(x), · · · , fk(x)),
whereQ ∈ R[X1, · · · , Xn, Y1, · · · , Yk], (they are called Pfaffian functions). Then, by
Khovanskii’s Theory [Kh] and by a result of Wilkie [W2], (R,+, ·,P) is o-minimal.

Example 1.9. Examples of Pfaffian functions:
a) The polynomials are Pfaffian functions.
b) Let f1(x) = ex, fn(x) = efn−1(x) (n ∈ N). Then (f1, . . . , fk) is a Pfaffian chain,
since f ′

n = f ′
n−1fn = f1 · · · fn.

c) Let f(x) = (x2 + 1)−1, g(x) = arctanx. Then (f, g) is a Pfaffian chain, since
f ′ = −2xf , g′ = f .

2. Some properties of o-minimal structures

Throughout this section D denotes an o-minimal structure on (R,+, ·). “De-
finable” means definable in D.

Definition 2.1. A first-order formula (of the language of D) is constructed
according to the following rules:

• If P ∈ R[X1, · · · , Xn], then P # 0, where # ∈ {=, >,<}, is a formula.
• If A is a definable set, then x ∈ A is a formula.
• If φ and ψ are formulas, then their conjunction φ ∧ ψ , their disjunction

φ ∨ ψ, and the negation ¬φ are formulas.
• If φ(x, y) is a formula and A is a definable set, then ∃x ∈ A,φ(x, y) and
∀x ∈ A,φ(x, y) are formulas.

We use the relations between logical notations and boolean algebras: Let x, y be
variables ranging over nonempty sets X,Y , and let φ(x, y) and ψ(x, y) be first-order
formulas on (x, y) ∈ X × Y defining sets

Φ = {(x, y) ∈ X × Y : φ(x, y)}, and Ψ = {(x, y) ∈ X × Y : ψ(x, y)}.
Then

φ(x, y) ∨ ψ(x, y) defines Φ ∪Ψ,



22 O-MINIMAL STRUCTURES

φ(x, y) ∧ ψ(x, y) defines Φ ∩Ψ,
¬φ(x, y) defines X × Y \ Φ,
∃xφ(x, y) defines πY (Φ), where πY : X × Y → Y is the natural projection,
∀xφ(x, y) defines Y \ πY (X × Y \ Φ).

From these relations and the definition of structures, we have:

Proposition 2.2. Let φ(x1, · · · , xn) be a first-order formula of the language
of D. Then the set {(x1, · · · , xn) ∈ Rn : φ(x1, · · · , xn)} is definable.

Theorem 2.3 (Elementary properties). (i) The closure, the interior, and the
boundary of a definable set are definable.
(ii) Images and inverse images of definable sets under definable maps are definable.
(ii) Compositions of definable maps are definable.

Proof. To prove these properties we use the definition and Proposition 2.2.
If A is definable subset of Rn, then its closure is

A = {x ∈ Rn : ∀ε ∈ R, ε > 0 ⇒ ∃y ∈ Rn, (y ∈ A) ∧ (
n∑

i=1

(xi − yi)
2 < ε2)},

where x = (x1, · · · , xn) and y = (y1, · · · yn). By Proposition 2.2, A is definable.
The interior and the boundary of A can be expressed by int (A) = Rn \Rn \A and
bd (A) = A ∩ Rn \A, so they are definable.
Let f : X → Y be a definable function and A ⊂ X,B ⊂ Y be definable subsets.
Let πX : X × Y → X and πY : X × Y → Y be the natural projections. Denote the
graph of f by f . Then f(A) = πY (f ∩ A× Y ) and f−1(B) = πX(f ∩X × B). So
they are definable.
Let f : X → Y, g : Y → Z be definable maps. Then g ◦f = π(f ×Z ∩X×g), where
π : X × Y × Z → X × Z defined by π(x, y, z) = (x, z). So g ◦ f is definable. !

Exercise 2.4. Let f : A → R be a definable function and p ∈ N. Prove
that the set Cp(f) = {x ∈ A : f is of class Cp at x} is definable, and the partial
derivatives ∂f/∂xi are definable functions on Cp(f).

Exercise 2.5. Let f : A → R be a definable function. Suppose that f is
bounded from below. Let g : A → Rm be a definable mapping. Prove that the
function ϕ : g(A) → R, defined by ϕ(y) = inf

x∈g−1(y)
f(x), is a definable function.

Note that these properties hold for any structure not necessary o-minimal.
Important results in the subject of o-minimality are the Monotonicity theorem, the
Cell decomposition theorem and their consequences.

Theorem 2.6 (Monotonicity theorem). Let f : (a, b) → R be a definable func-
tion and p ∈ N. Then there are points a = a0 < · · · < ak = b such that f |(ai,ai+1)

is Cp, and either constant or strictly monotone, for i = 0, · · · , k − 1.

Proof. First we establish four claims.

Claim 1: Let D(f) denote the set of discontinuity of f . Then D(f) is a finite
set.

By Proposition 2.2 D(f) is definable and hence it is finite or contains an interval.
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Contrary to the claim, suppose D(f) contains an interval I. Then f(I ′) contains
an interval for all subinterval I ′ of I. By induction, we can construct a sequence
of intervals [αn,βn] ⊂ I such that αn < αn+1 < βn+1 < βn, βn − αn < 1/n,
and f([αn,βn]) is contained in an interval of length smaller than 1/n. Clearly f is
continuous at the point x0 ∈ ∩n∈N[αn,βn] ⊂ D(f), a contradiction.

Claim 2: f has left derivative f ′
−(x) and right derivative f ′

+(x) in R ∪ {−∞,+∞}
for every x ∈ (a, b).

Suppose for instancce that at x ∈ (a, b),

lim inf
h→0+

f(x+ h)− f(x)

h
< lim sup

h→0+

f(x+ h)− f(x)

h

Then there exists k ∈ R, such that for each ε > 0, there are h1, h2 ∈ (0, ε),

f(x+ h1)− f(x) < kh1 and f(x+ h2)− f(x) > kh2 (∗)

On the other hand, (a, b) \ {x} is the union of three definable subsets
{y ∈ (a, b) \ {x} : f(y) > f(x) + k(y − x)},
{y ∈ (a, b) \ {x} : f(y) < f(x) + k(y − x)},
{y ∈ (a, b) \ {x} : f(y) = f(x) + k(y − x)}.

So there is ε > 0 such that f(x+ h)− f(x) > kh,∀h ∈ (0, ε) or f(x+ h)− f(x) <
kh,∀h ∈ (0, ε) or f(x+ h)− f(x) = kh, ∀h ∈ (0, ε). This contradicts (∗). Similarly
for the existence of f ′

−(x).

Claim 3: If f is continuous and f ′
+ > 0 (resp. f ′

− > 0) on an interval I, then
f is strictly increasing on I.

Otherwise, there are c < d both in I such that f(c) > f(d). Since f ′
+(c) > 0,

there exists e ∈ (c, d), f(e) > f(c). By continuity, f |[c,d] attains its maximum at a
point x0 ∈ (c, d) and hence f ′

+(x0) ≤ 0, contradiction. Similarly for f ′
− > 0.

Claim 4: If f is continuous on I, then for all but finitely many points in I, we
have f ′

+ = f ′
−. Hence f is differentiable outside a finite subset of I.

First note that the set on which f ′
−(x) or f

′
+(x) ∈ {−∞,+∞} is finite. Otherwise,

by definability, there would be a subinterval of I on which f ′
− = ∞ or f ′

+ = ∞.
Suppose for instance that f ′

+ = +∞ on a subinterval J . Take a < b, both in J and

set g(x) = f(x)− f(b)− f(a)

b− a
x, for x ∈ J . We have g′+ = +∞ on J . By Claim 2,

g is strictly increasing on J , which contradicts g(b) = g(a).
So f ′

− and f ′
+ take values in R outside a finite subset of I. By Claim 1, f, f ′

−, f
′
+

are continuous outside a finite subset of I. Suppose that there is x0 ∈ I, such that
f, f ′

−, f
′
+ are continuous at x0, but f ′

−(x0) < f ′
+(x0). By continuity, there are a

subinterval J , x0 ∈ J ⊂ I, and k ∈ R such that f ′
− < k < f ′

+ on J . Claim 2 implies
that x *→ f(x) − kx is at the same time strictly increasing and strictly decreasing
on J , which is impossible. Similarly for the other cases.

Now we prove the theorem. By induction on p it suffices to prove the desired
result for p = 1. By the claims there exists a finite subset D′ of (a, b) such that on
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each component C of (a, b) \D′, f |C is of class C ′. Using Claim 1 for (f |C)′ and
definability of the sets {(f |C)′ < 0}, {(f |C)′ = 0}, {(f |C)′ < 0} for each component
C, we get a finite subset D′′ of (a, b) such that on each component of (a, b) \D′′ f
is C1 and either constant or strictly monotone. !

Exercise 2.7. Let f : (a, b) → R be definable and c ∈ (a, b). Prove that
limx→a+f(x), limx→b− f(x), limx→c+ f(x), limx→c− f(x) exist in R ∪ {−∞,+∞}.

Note: From Monotonicity, the germs at +∞ of definable functions on R forms
a Hardy field , i.e a set of germs at +∞ of real-valued functions on neighborhoods of
+∞ that is closed under differentiation and that forms a field with usual addition
and multiplication of germs.

Definition 2.8. Let p ∈ N. Cp cells in Rn are connected definable submani-
folds of Rn which are defined by induction on n as follows:

• The Cp cells in R are points or open intervals.
• If C ⊂ Rn is a Cp cell and f, g : C → R are definable functions of class Cp such
that f < g, then the sets:
Γ(f) = {(x, t) : t = f(x)} (the graph), (f, g) = {(x, t) : f(x) < t < g(x)}, C × R,
(−∞, f) = {(x, t) : t < f(x)}, and (f,+∞) = {(x, t) : f(x) < t} (the bands)
are Cp cells in Rn+1.

Exercise 2.9. Prove that for each nonempty cell C, there is a definable home-
omorphism h : C → Rd for some d ∈ N.

A Cp cell decomposition of Rn is defined by induction on n:

• A Cp cell decomposition of R is a finite collection of intervals and points
{(−∞, a1), · · · , (ak,+∞), {a1}, · · · , {ak}}, where a1 < · · · < ak, k ∈ N.

• A Cp cell decomposition of Rn+1 is a finite partition of Rn+1 into cells C, such
that the collection of all the projections π(C) is a Cp cell decomposition of Rn,
where π : Rn+1 → Rn is the projection on the first n coordinates.

We say that a decomposition compatible with a class A of subsets of Rn, if each
A ∈ A is a union of some cells of the decomposition.

Theorem 2.10 (Uniform finiteness - Cell decomposition - Piecewise smooth-
ness). (Un) Let A be a definable subset of Rn, such that for every x ∈ Rn−1, the set
Ax = {y ∈ R : (x, y) ∈ A} is finite. Then there exists l ∈ N such that #Ax ≤ l,
for every x ∈ Rn−1.

(In) For A1, · · · , Ak ∈ Dn, there exists a Cp cell decomposition of Rn compatible
with {A1, · · · , Ak}.

(IIn) For each definable function f : A → R, A ⊂ Rn, there exists a Cp cell decom-
position of Rn compatible with A such that for each cell C ⊂ A of the decomposition
the restriction f |C is of class Cp.

Proof. We only give the proof of the theorem for p = 0. Then using Theorem
2.11, one can get the theorem for p > 0 (Exercise).
The proof of the theorem for p = 0 is by induction on n. For n = 1, (U1) is trivial,
(I1) follows from the o-minimality, (II1) is a consequence of Monotonicity theorem.
From now on, assume (Um), (Im), (IIm) hold for all m such that 0 < m < n.
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2.10.1 Proof of (Un). We can assume that, for every x ∈ Rn−1, Ax is con-
tained in (−1, 1) (we can replace A with its image by (x, y) #→ (x, y/

√
1 + y2)).

For x ∈ Rn−1 with Ax %= ∅, define fi(x) by

Ax = {f1(x), · · · , f#(Ax)(x)}, f1(x) < · · · < f#(Ax)(x).

Note that, for each i ∈ {1, 2, · · · }, the function fi is definable (on its domain).
Call a ∈ Rn−1 good if f1, · · · , f#(Aa) are defined and continuous on an open box
B ⊂ Rn−1 containing a, and (B × R) ∩A = Γ(f1|B) ∪ · · · ∪ Γ(f#(Aa)|B).
Call a ∈ Rn−1 bad if it is not good.

Claim 1: The set of good points is definable.
Let a ∈ Rn−1. Let b ∈ [−1, 1]. We say that (a, b) is normal if there exists an open
box C = B × (c, d) containing (a, b) such that A ∩ C is either empty or the graph
of a continuous definable function B → (c, d).
If a is good, then clearly (a, b) is normal for every b ∈ [−1, 1].
Now assume a is bad. Let fl be the first function fi such that a is in the closure of
the domain of fi and there is no open box containing a on which fi is defined and
continuous. Set β(a) = lim infx→a fl(x). Then (a,β(a)) is not normal (Otherwise,
suppose (a,β(a)) is normal. There is an open box B × (c, d) containing (a,β(a))
whose intersection with A is the graph of a continuous function g : B → (c, d).
We can assume that fl(x) > c for all x ∈ B such that fl(x) is defined. If l > 1
and β(a) = fl−1(a), we would deduce g = fl−1|B since B is connected. We would
have fl(x) ≥ d for all x ∈ B such that fl(x) is defined, which contradicts β(a) < d.
Hence, we can assume l = 1 or fl−1 < c on B. It follows that g = fl|B, which
contradicts the definition of l.)
We have shown that a ∈ Rn−1 is good if and only if for all b ∈ [−1, 1], (a, b) is
normal. From this we deduce the claim.

Claim 2: The set of good points is dense.
Otherwise, there is an open box B ⊂ Rn−1 contained in the set of bad points.
Consider the definable function β : B → [−1, 1] defined as above. By (IIn−1),
we can assume that β is continuous. For x ∈ B, we define β−(x) (resp. β+(x))
to be the maximum (resp. minimum) of the y ∈ Aa such that y < β(x) (resp.
y > β(x)), if such y exists. Using (IIn−1) and shrinking B, we can assume that
β− (resp. β+) either nowhere defined on B or is continuous on B. Then the set of
(x, y) ∈ A∩(B×R) such that y %= β(x) is open and closed in A∩(B×R). Shrinking
B, we can assume that the graph of β|B is either disjoint from A or contained in A.
The first case contradicts the definition of β. In the second case, (x,β(x)) would
be normal for every x ∈ B, which contradicts what was proved in Claim 1.

Now we prove (Un). By (In−1), there is a cell decomposition of Rn−1 compati-
ble with the set of good points. Let C be a cell of dimension n − 1. Since good
points are dense, every x ∈ C is good. Take a ∈ C. The set of x ∈ C such that
#(Ax) = #(Aa) is definable, open and closed in C. By connectedness of C, it
is equal to C. If D is a cell of smaller dimension, we can use a definable home-
omorphism D → Rd and the assumption that (Ud) holds to prove that #(Ax) is
uniformly bounded for x ∈ D. Since there are finitely many cells, the proof is
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completed.

2.10.2 Proof of (In). Let A be the set of (x, y) ∈ Rn−1 × R such that y be-
longs to the frontier of one of A1,x, · · · , Ak,x. Clearly A is definable and satisfies
the assumptions of (Un). Hence #(Ax) has a maximum l for x ∈ Rn−1, and A is
the union of the graphs of functions f1, · · · , fl defined at the beginning of the proof
of (Un). For x ∈ Rn−1, define the type τ(x) being the following data:
• #(Ax),
• {(i, j) : 1 ≤ i ≤ #Ax, 1 ≤ j ≤ k, fi(x) ∈ Aj,x},
• {(i, j) : 0 ≤ i ≤ #Ax, 1 ≤ j ≤ k, (fi(x), fi+1(x)) ⊂ Aj,x} (f0 = −∞, fAx+1 =
+∞).
Then T = {τ(x) : x ∈ Rn−1} is finite, and for all t ∈ T the set {x ∈ Rn−1 : τ(x) = t}
is definable. By (In−1) there is a cell decomposition P1 of Rn−1 such that two points
in the same cell have the same type. Moreover, using (IIn−1), we can assume the
cell decomposition is such that for each cell C and i = 1, · · · , l, either fi is defined
nowhere on C or fi|C is continuous. Then P = P1 ∪ {Γ(fi|C), (fi|C, fi+1|C), C ∈
P1, i = 0, · · · , l} is a cell decomposition compatible with A1, · · · , Ak.

2.10.3 Proof of (IIn). First consider the case that A is an open box B × (a, b).

Claim 1: Suppose that f(x, ·) is continuous and monotone on (a, b) for every x ∈ B,
and f(·, y) is continuous on B for every y ∈ (a, b). Then f is continuous on B×(a, b).

Indeed, take (x0, y0) ∈ B×(a, b) and I an interval containing f(x0, y0). By continu-
ity of f(x0, ·), we find y1 < y0 < y2 such that f(x0, yi) ∈ I for i = 1, 2. By continuity
of f(·, yi), we can find an open box B′ ( x0 in B such that f(B′ × {yi}) ⊂ I for
i = 1, 2. It follows from the monotonicity of f(x, ·) that f(B′×(y1, y2)) is contained
in I. This proves the continuity of f .

Claim 2: There is an open box A′ ⊂ A such that f |A′ is continuous.

Take an open box B × (a, b) contained in A. For every x ∈ B, let

λ(x) = inf{y ∈ (a, b) : f(x, ·) is continuous and monotone on (a, y)}
The function λ is well-defined and definable. The Motonicity implies λ(x) > a for
all x ∈ B. Applying (IIn−1) to λ and replacing B with a smaller open box, we can
assume that λ is continuous, and there is c > a such that λ > c. Replacing b with
c, we can assume that for every x ∈ B, f(x, ·) is continuous and monotone on (a, b).
Now consider the set C of points (x, y) ∈ B × (a, b) such that f(·, y) is continuous
at x. The set C is definable. It follows from (IIn−1) that for every y ∈ (a, b) the
set x such that f(·, y) is continuous at x is dense in B. Hence, C is dense in A.
Applying (In), we deduce that C contains an open box of A. Replacing A with this
box, we can assume that for every y ∈ (a, b), f(·, y) is continuous. So the claim is
followed by Claim 1.

Now we prove (IIn). Let D be the set of discotinuity of f . Then D is defin-
able. By (In), there is a cell decomposition P1 of Rn compatible with {A,D}. Let
C ∈ P1 , C ⊂ A. We dishtinguish 2 cases.
Case 1: C is an open cell. the claims show that C ∩D = ∅, i.e. f |C is continuous.
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Case 2: C is not an open cell. Then there is a definable homeomorphism p : C → Rd.
Applying (IId) to f ◦ p−1, then applying (In), we obtain a finite partition of C into
cells C ′

1, · · ·C ′
k(C) such that f |C′

i
is continuous for i = 1, · · · , k(C).

Let P be the cell decomposition of Rn consisting of:
• C ∈ P1 such that C ∩A = ∅,
• C ∈ P1 such that C ⊂ A and C open,
• C ′

1, · · ·C ′
k(C), where C ∈ P1, C ⊂ A and C is not open.

Then P satisfies the demands of (IIn). !

Theorem 2.11 (Cp smoothness). Let f : U → R be a definable function, with
U open subset of Rn. For p ∈ N, let Cp(f) = {x ∈ U : f is of class Cp at x}.
Then Cp(f) is a definable dense subset of U . In particular U \ Cp(f) has empty
interior.

Proof. Using Proposition 2.2, one can check that Cp(f) is definable. We prove
the density by induction on p. The case p = 0 is proved in Claim 2 of 2.10.3. By
induction, it is sufficient to prove that for each i ∈ {1, · · · , n}, the complement of the
set where the partial derivative ∂f/∂xi exists has empty interior. Otherwise, there
would exist an open box where ∂f/∂xi does not exist. Considering the restriction
of f to an interval of a line parallel to the xi axis contained in this box, we obtain
a contradiction with Motonicity theorem. !

Note: For all presently known o-minimal structures on the real field Theorem
2.10 still holds true if we replace “Cp” by “analytic”, i.e. p = ω.

Exercise 2.12. Let f : Rn → R be a C1 definable function. Let C = {x ∈
Rn : Df(x) = 0}. Prove that f(C) is finite.

Theorem 2.13 (Theorem on components). Every definable set has only finitely
many connected components and each component is also definable.

Proof. The proof follows from Theorem 2.10 (In). !

Theorem 2.14 (Definable choice). Let A ⊂ Rm ×Rn be a definable set and let
π : Rm × Rn → Rm be the projection on the first m coordinates. Then there exists
a definable map ρ : π(A) → Rm × Rn such that π(ρ(x)) = x, for all x ∈ π(A).

Proof. It is sufficient to consider the case n = 1. Take a cell decomposition
of Rm+1 compatible with A. Then π(A) is the union of the images by π of cells
contained in A. Hence, we can assume that A is a cell, and consequently π(A) is a
cell. If A is the graph of f : π(A) → R, take ρ = f . If A is a band (f, g), then if
f, g are bounded, take ρ = 1

2 (f + g), if f is bounded, g = +∞, take ρ = f + 1, and
if f = −∞, g is bounded, take ρ = g − 1. !

Theorem 2.15 (Curve selection). Let A be a definable subset of Rn, and a ∈
A \A. Let p ∈ N. Then there exists a Cp definable curve γ : (0, 1) → A \ {a} such
that lim

t→0+
γ(t) = a.

Proof. LetX = {(t, x) ∈ R×Rn : x ∈ A, 0 < ‖x−a‖ < t}. Let π : Rn×R → R
be the natural projection. Since a ∈ A \ A, we have π(X) = {t ∈ R : t > 0}.
Applying Definable choice and Monotonicity theorem, we find ε > 0 and a Cp

definable map δ : (0, ε) → A \ {a} such that ‖δ(t) − a‖ < ε. Take γ : (0, 1) → Rn

defined by γ(t) = δ(tε). !
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Note: For sets definable in Ralg or Ran, by Puiseux lemma, γ can be chosen to be
analytic on (−1, 1). For sets in structure Rexp or Ran,exp, the theorem holds true
for analytic curve γ; but, in general, it cannot be analytically extended to 0 (e.g.
S = {(x, y) : x > 0, y = exp(−1/x)}).

The Curve selection replaces the use of sequences in many situations.

Exercise 2.16. Prove that a definable function f : A → R is continuous if and
only if for every continuous definable γ : [0, 1) → A, lim

t→0+
f(γ(t)) = f(γ(0)).

Exercise 2.17. Let f : Rn → R be a C1 definable function. Prove that if a is
a regular or isolated singular point of f , then there exists ε0 > 0 such that for every
sphere Sε centered at a with radius ε < ε0, Sε is transverse to the hypersurface
Z = {x ∈ Rn : f(x) = f(a)}, i.e. grad f(x) and x− a are linearly independent for
all x ∈ Z ∩ Sε.

Definition 2.18. Let A ⊂ Rn be a definable set. The dimension of A is defined
by

dimA = sup{ dimC : C is a C1-submanifold contained in A}.

Theorem 2.19. (i) If A ⊂ B are definable sets, then dimA ≤ dimB.
(ii) If A1, · · · , Ap are definable subsets of Rn, then dim∪p

i=1Ai = max
1≤i≤p

dimAi.

(iii) Let f : A → Rm is definable. If dim f−1(y) ≤ k, for all y ∈ f(A), then

dim f(A) ≤ dimA ≤ dim f(A) + k.

(iv) If A is a definable set, then dim(A\A) < dimA. In particular, dimA = dimA.

Exercise 2.20. Construct a surjective, continuous function f : [0, 1] → [0, 1]2.
(Hint. Peano curves).

Exercise 2.21. Find an example of A ⊂ Rn such that dim(A \ A) = dimA.
(Hint. e.g. the oscillation A = {(x, y) ∈ R2 : x > 0, y = sin 1

x}).

Proof. (i) and (ii) are obvious.
(iii) Let X = Γ(f) ⊂ Rn × Rm, and π : Rn × Rm → Rm denote the natu-
ral projection. Then dimA = dimX, dim f(A) = dimπ(X), and dim f−1(y) =
dim(π−1

2 (y) ∩X), for all y ∈ f(A) = π(X). Therefore, it is sufficient to prove (iii)
for A := X and f := π|X .
Let C ⊂ X be a C1-submanifold of dimension dimX. Then the definable set
C0 = {x ∈ C : rankx π|C is maximal } is open in C. By the rank theorem, each
fiber π|−1

C0
(y), y ∈ π(C0), is a submanifold of dimension dimC0 − rankπ|C0 . There-

fore,
dimX = dimC0 ≤ dimπ(X) + k.

On the other hand, by Cell decomposition, we can represent X = ∪p
i=1Ci, where

Ci is a C1-cell, π(Ci) is a C1-cell, and π|Ci has constant rank, i ∈ {1, · · · , p}. Then
dimX = max

1≤i≤p
dimCi ≥ max

1≤i≤p
rankπ|Ci = max

1≤i≤p
dimπ(Ci) = dimπ(X).

(iv) We will prove that there exist ε > 0, and a definable subset U of A \ A with
dimU = dim(A \ A), and a definable injective map γ : U × (0, ε) → A. Then, by
(iii), we have dim(A \A) = dimU = dim γ(U × (0, ε))− 1 ≤ dimA− 1, and hence
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dim(A \A) < dimA.
Using a locally definable homeomorphism, we reduce the proof of the existence of
γ to the following lemma.

Lemma 2.22. (Wing Lemma). Let V ⊂ Rk be a nonempty open definable set,

and A ⊂ Rk × Rl be a definable set. Suppose V ⊂ A \ A. Then there exist a
nonempty open subset U of V , ε > 0, and a definable map γ : U × (0, ε) → A, such
that γ(y, t) = (y, ρ(y, t)) and ‖ρ(y, t)‖ = t, for all y ∈ U, t ∈ (0, ε).

Proof Let X = {(y, x, t) : y ∈ V, x ∈ A, 0 < t < 1, ‖x− y‖ < t,π(x) = y},
where π : Rk × Rl → Rk is the natural projection. Note that X is definable.
Let π2(y, x, t) = (y, t), and π2(X)y = {t : (t, y) ∈ π2(X)}. Define

ε(y) = inf π2(X)y , (inf ∅ := 1).

Then ε : V → R is definable, and if ε(y) > 0 then (0, ε(y)) ∩ π2(X)y = ∅.

Claim: dim{y ∈ V : ε(y) > 0} < dimV = k.
Suppose to the contrary that the dimension is k. Then, by Cell decomposition,
there is an open ball B ⊂ V and c > 0 such that ε > c on B. This implies
B )⊂ A \A, a contradiction.
Now let V0 = {y ∈ V : ε(y) = 0}. Then dimV0 = k, and, by the definition,
V0 × (0, 1) ⊂ π2(X). By Definable choice and Cell decomposition, there exists
an open set V ′ ⊂ V0, δ > 0, and a continuous definable map: V ′ × (0, δ) → A,
(y, t) *→ (y, θ(y, t)). Let τ(y) = sup0<s<δ ‖θ(y, s)‖. Then for y ∈ V ′, t < τ(y),
there exists x ∈ A, such that π(x) = y and ‖x− y‖ = t. Again by Definable choice
and Cell decomposition it is easy to prove the existence of the ε, U, γ satisfying the
demands of the lemma. !

3. Globalization

The notions of definable sets and their properties can be globalized in a natural
way to arbitrary analytic manifolds. Here we sketch the idea due to van den Dries
and Miller [DM2] (c.f. [S2]).

Definition 3.1. We say that an analytic-geometric category C is given if each
manifold M (= real analytic, Hausdorff manifold with a countable basis for its
topology) is equipped with a collection C(M) of subsets ofM such that the following
conditions are satisfied for all manifolds M and N :

(AG1) C(M) is a boolean algebra of subsets of M , with M ∈ C(M).
(AG2) If A ∈ C(M), then A× R ∈ C(M × R).
(AG3) If f : M → N is a proper analytic map and A ∈ C(M), then f(A) ∈ C(N).
(AG4) If A ∈ C(M) and (Ui)i∈I is an open covering of M , then A ∈ C(M) if and

only if A ∩ Ui ∈ C(Ui), for all i ∈ I.
(AG5) Every bounded set in C(R) has finite boundary.

It is proved in [DM2] that C is a category with its objects being pairs (A,M),
where M is a manifold and A ∈ C(M), and its morphisms (A,M) → (B,N) being
maps f : A → B whose graphs belong to C(M ×N).

Definition 3.2. Let D be an o-minimal structure on Ran. One can construct
an analytic-geometry category C by defining the collection C(M) in a manifold M
to be those set A ⊂ M such that for each x ∈ M , there exist an open neighborhood
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U of x, an open set V ⊂ Rn, and an analytic homeomorphism h : U → V such that
h(A ∩ U) ∈ Dn.

From the definition it follows that the category Can of subanalytic sets and con-
tinuous subanlytic maps is the smallest analytic-geometric category corresponding
to the structure Ran.

3.3 Properties of analytic-geometry categories. Results in Section 2 can
be translated to the setting of analytic-geometric categories. Perhaps the only thing
one has to change is to replace “finite” by “locally finite”.
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