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Abstract. We construct holomorphic functional calculi and introduce local
quadratic estimates for operators in a reflexive Banach space that are bisecto-
rial except possibly in a neighbourhood of the origin. The main result is an
equivalence of local quadratic estimates with bounded holomorphic functional
calculi. For operators with spectrum in a neighbourhood of the origin, the
results are weaker than those for bisectorial operators. For operators with a

spectral gap in a neighbourhood of the origin, the results are stronger. In
each case, however, local quadratic estimates are a more appropriate tool than
standard quadratic estimates for establishing that our functional calculi are
bounded. This shows that in certain applications it suffices to establish local
quadratic estimates.
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1. Introduction

Given an operator T on a Banach space X and a space of functions F , a func-
tional calculus is a mapping from F into the space of linear operators on X that
is canonical in a certain sense. It is usual to denote this mapping by f 7→ f(T ) for
all f in F . In applications, such as those discussed below, it is often desirable to
know that f(T ) is bounded with operator norm controlled by some property of f
in F . This is the important notion of a bounded functional calculus.

Given a closed operator T with nonempty resolvent set and a domain Ω in C that
contains a neighbourhood of the spectrum of T , the Dunford–Riesz–Taylor func-
tional calculus, which is given in Definition 2.1, is defined on the space of functions
that are holomorphic in Ω. The idea of McIntosh in [11] was to instead design a
functional calculus suited to operators of type Sω. These are closed operators sat-
isfying certain resolvent bounds and having spectrum contained in the bisector Sω
centered at the origin in the complex plane of angle ω in (0, π/2). The advantage
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of the resulting functional calculus is that it is defined for functions that need not
be holomorphic in a neighbourhood of the origin nor the point at infinity.

It is shown in [11] that, for an operator T of type Sω on a Hilbert space H,
the functional calculus designed by McIntosh is bounded if and only if quadratic
estimates of the form
∫ ∞

0

‖tT (I + t2T 2)−1u‖2
H

dt

t
. ‖u‖2

H and

∫ ∞

0

‖tT ∗(I + t2T ∗2)−1u‖2
H

dt

t
. ‖u‖2

H

hold for all u ∈ H, where T ∗ is the adjoint operator. Establishing these types of
quadratic estimates in order to have a bounded holomorphic functional calculus has
been used with great effect in many applications. Most notable is the proof of the
Kato Conjecture in [2, 9] and it’s many extensions, including [3, 10].

More generally, given an operator T of type Sω and a domain Ω that touches the
spectrum of T nontangentially at a point, the functional calculus on the space of
functions that are holomorphic in Ω depends on quadratic estimates approaching
the point of contact. Indeed, the lower and upper limits in the quadratic estimates
above correspond to the spectral points at infinity and at the origin, respectively.
The case of several points of contact has also been considered in [7].

In this paper, we replicate the construction in [11] for operators on a Banach
space X that satisfy resolvent bounds and have spectrum contained in either the
set Sω∪R or the set Sω\R ∪ {0}, as depicted in Figure 1. Operators of type Sω∪R
are introduced in Section 3.1. The functional calculus that we construct is defined
for functions that must be holomorphic in a neighbourhood of the origin but need
not be holomorphic in a neighbourhood of the point at infinity. As a result, the
functional calculus only depends on quadratic estimates near the spectral point at
infinity. We refer to these as local quadratic estimates, since they are of the form

∫ 1

0

‖tT (I + t2T 2)−1u‖2
X

dt

t
+ ‖(I + T 2)−1u‖2

X . ‖u‖2
X

for all u ∈ X . These are defined in Section 3.2 and the equivalence with bounded
holomorphic functional calculi is proved in Section 3.3.
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Figure 1. The sets Sω∪R and Sω\R for ω ∈ (0, π/2) and R > 0. The shaded
areas depict the spectrums of an operator of type Sω∪R and an operator of
type Sω\R. In both cases, the origin may be in the spectrum.

The theory of type Sω∪R operators, which is a weak version of the theory in [11],
is actually more suited to certain applications. For example, consider the gradient
operator D = −i∇ on the Sobolev space W 1,2(Rn). The connection between sin-
gular convolution operators and the functional calculus of D is well-understood. In
particular, local Riesz transforms r = {rj}j=1,...,n are defined for each a > 0 as the

multiplier (rju)̂ (ξ) = iξj(|ξ|2 + a)−1/2û(ξ). These then correspond to the operator

r(D) under our new functional calculus, where r(z) = z(z2 +a)−1/2 is holomorphic
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at the origin but not at the point at infinity. The local Riesz transforms also moti-
vate the definition of the local Hardy spaces hp(Rn) in [8]. Furthermore, the theory
developed in this paper is applied in [4] to define local Hardy spaces of differential
forms hpD(∧T ∗M) that are adapted to a class of first-order differential operators D
of type Sω∪R on Riemannian manifolds M with exponential volume growth.

The analogous results for operators of type Sω\R are in Section 4. This is a
special case of the theory of type Sω operators and the results are stronger. In
the sequel, the author applies the theory to Kato-type problems for first order
differential operators D of type Sω that have a spectral gap. The presence of the
spectral gap implies that there exists R > 0 such that D is of type Sω\R, so the
existence of a bounded functional calculus follows from local quadratic estimates.
The advantage of local quadratic estimates in this context is that they allow for
techniques in harmonic analysis that usually require at most polynomial volume
growth to be applied on Riemannian manifolds with exponential volume growth.

2. Notation and Preliminaries

Throughout this paper, let X denote a nontrivial complex reflexive Banach space
with norm ‖·‖X . An operator T on X is a linear mapping T : D(T ) → X , where the
domain D(T ) is a subspace of X . The range R(T ) = {Tu : u ∈ D(T )} and the null-

space N(T ) = {u ∈ D(T ) : Tu = 0}. Let D(T ) and R(T ) denote the closure of these
subspaces in X . An operator T is closed if the graph G(T ) = {(u, Tu) : u ∈ D(T )}
is a closed subspace of X ×X , and bounded if the operator norm

‖T ‖ = sup{‖Tu‖X : u ∈ D(T ) and ‖u‖X ≤ 1}

is finite. To minimise notation, we also denote the norm on X by ‖ ·‖ when there is
no danger of confusion. The unital algebra of bounded operators on X is denoted
by L(X), where the unit is the identity operator I on X . The resolvent set ρ(T )
is the set of all z ∈ C for which the operator zI − T has a bounded inverse with
domain equal to X . The resolvent RT (z) is the operator on X defined by

RT (z) = (zI − T )−1

for all z ∈ ρ(T ). The spectrum σ(T ) is the complement of the resolvent set in the
extended complex plane C∞ = C ∪ {∞}.

We adopt the convention for estimating x, y ∈ R whereby x . y means that
x ≤ cy for some constant c ≥ 1 that may only depend on constants specified in the
relevant preceding hypotheses.

Given an open set Ω ⊆ C∞, letH(Ω) denote the algebra of holomorphic functions
on Ω. Note that a function f is holomorphic in a neighbourhood of the point at
infinity if f(1/z) is holomorphic in a neighbourhood of the origin. The following
functional calculus is usually attributed to N. Dunford, F. Riesz and A. E. Taylor.
The precise formulation below is from [12].

Definition 2.1 (Dunford–Riesz–Taylor H(Ω) functional calculus). Let T be a
closed operator on X with nonempty resolvent set. If Ω is a proper open sub-
set of C∞ that contains σ(T ) ∪ {∞} and f ∈ H(Ω), then define f(T ) ∈ L(X)
by

f(T )u = f(∞)u+
1

2πi

∫

γ

f(z)RT (z)u dz (2.1)

for all u ∈ X , where f(∞) = limz→∞ f(z) and γ is the boundary of an unbounded
Cauchy domain that is oriented clockwise and envelopes σ(T ) in Ω.

If T is a bounded operator on X , then Ω in Definition 2.1 need not contain the
point at infinity, in which case f(T )u = 1

2πi

∫

γ f(z)RT (z)u dz. A comprehensive

list of attributes and references to the literature on this topic can be found at the
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end of Chapter VII in [6]. The following theorem, which is set as an exercise in [1],
is a consequence of Runge’s Theorem.

Theorem 2.2. The mapping given by (2.1) is the unique algebra homomorphism

from H(Ω) into L(X) with following properties:

(1) If 1(z) = 1 for all z ∈ Ω, then 1(T ) = I on X;

(2) If λ ∈ ρ(T ) \ Ω and f(z) = (λ− z)−1 for all z ∈ Ω, then f(T ) = RT (λ);
(3) If (fn)n is a sequence in H(Ω) that converges uniformly on compact subsets

of Ω to f ∈ H(Ω), then fn(T ) converges to f(T ) in L(X).

We conclude this section by introducing the following setup.

Definition 2.3. Given 0 ≤ µ < θ < π/2, define the closed and open bisectors in
the complex plane as follows:

Sµ = {z ∈ C : | arg z| ≤ µ or |π − arg z| ≤ µ};

Soθ = {z ∈ C \ {0} : | arg z| < θ or |π − arg z| < θ}.

Given r ≥ 0, define the closed and open discs as follows:

Dr = {z ∈ C : |z| ≤ r}

Do
r = {z ∈ C : |z| < r}.

These are combined together as follows:

Sµ∪r = Sµ ∪Dr; Sµ\r = Sµ \Do
r ;

Soθ∪r = Soθ ∪D
o
r ; Soθ\r = Soθ \Dr.

Note that D0 = {0} and Do
0 = ∅ so that Sµ∪0 = Sµ\0 = Sµ and Soθ∪0 = Soθ\0 = Soθ .

Let Soθ,r denote either Soθ∪r or Soθ\r. A function on Soθ,r is called nondegenerate if

it is not identically zero on either component of Soθ,r.

Let H∞(Soθ,r) denote the algebra of bounded holomorphic functions on Soθ,r.

Given f ∈ H∞(Soθ,r) and t ∈ (0, 1], define f∗ ∈ H∞(Soθ,r) and ft ∈ H∞(Soθ,r/t) as

follows:

f∗(z) = f(z̄) for all z ∈ Soθ,r;

ft(z) = f(tz) for all z ∈ Soθ,r/t.

Given α, β > 0, define the following sets:

Ψβ
α(Soθ,r) = {ψ ∈ H∞(Soθ,r) : |ψ(z)| . min(|z|α, |z|−β)};

Θβ(Soθ,r) = {φ ∈ H∞(Soθ,r) : |φ(z)| . |z|−β}.

Let Ψ(Soθ,r) =
⋃

α,β>0 Ψβ
α(Soθ,r) and Θ(Soθ,r) =

⋃

β>0 Θβ(Soθ,r).

3. Operators of Type Sω∪R

3.1. Holomorphic Functional Calculi. We construct holomorphic functional
calculi for the following class of operators, where X denotes a nontrivial complex
reflexive Banach space.

Definition 3.1. Let ω ∈ [0, π/2) and R ≥ 0. An operator T on X is of type Sω∪R
if σ(T ) ⊆ Sω∪R, and for each θ ∈ (ω, π/2) and r > R, there exists Cθ∪r > 0 such
that

‖RT (z)‖ ≤
Cθ∪r
|z|

for all z ∈ C \ Sθ∪r.

The following important lemma allows us to obtain stronger results in reflexive
Banach spaces. The proof below is derived from the proof of Theorem 3.8 in [5].
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Lemma 3.2. Let ω ∈ [0, π/2) and R ≥ 0. Let T be an operator of type Sω∪R
on X . If r > R, then

D(T ) = {u ∈ X : lim
n→∞

(I + i
rnT )−1u = u} = X.

Proof. If u ∈ X and limn→∞(I + i
rnT )−1u = u, then u ∈ D(T ) simply because

R((I + i
rnT )−1) = D(T ) for all n ∈ N.

To prove the converse, first suppose that u ∈ D(T ). The resolvent bounds in
Definition 3.1 imply that

‖(I + i
rnT )−1u− u‖ = ‖ i

rn(I + i
rnT )−1Tu‖ = ‖RT (irn)Tu‖ . (1/rn)‖Tu‖

for all n ≥ 1, which implies that limn→∞(I + i
rnT )−1u = u. Now suppose that

u ∈ D(T ). For each ǫ > 0, there exists v ∈ D(T ) and N ∈ N such that ‖u− v‖ < ǫ
and

‖(I + i
rnT )−1u− u‖ ≤ ‖(I + i

rnT )−1(u − v)‖ + ‖(I + i
rnT )−1v − v‖ + ‖v − u‖

. (rn‖RT (irn)‖ + 1)‖u− v‖ + (1/rn)‖Tv‖

. ǫ

for all n > N , as required.
The proof that D(T ) = X uses the fact that X is reflexive and follows exactly

as in the proof of Theorem 3.8 in [5]. �

For the remainder of this section, fix ω ∈ [0, π/2) and R ≥ 0, and let T be an
operator of type Sω∪R on X . An operator of type Sω∪R has a nonempty resolvent
set, which of course implies that it is closed, so the Dunford–Riesz–Taylor H(Ω)
functional calculus applies. Following the ideas in [11], however, we introduce the
following preliminary functional calculus.

Definition 3.3 (Θ(Soθ∪r) functional calculus). Given θ ∈ (ω, π/2), r > R and
φ ∈ Θ(Soθ∪r), define φ(T ) ∈ L(X) by

φ(T )u =
1

2πi

∫

+∂So

θ̃∪r̃

φ(z)RT (z)u dz := lim
ρ→∞

1

2πi

∫

(+∂So

θ̃∪r̃
)∩Dρ

φ(z)RT (z)u dz

(3.1)

for all u ∈ X , where θ̃ ∈ (ω, θ), r̃ ∈ (R, r) and +∂So
θ̃∪r̃

denotes the boundary of
So
θ̃∪r̃

oriented clockwise.

The exceptional feature of (3.1) is that the contour of integration is allowed to
touch the spectrum of T at infinity. This is made possible by the decay of φ and
the resolvent bounds in Definition 3.1. A standard calculation using the resolvent
equation shows that the mapping Θ(Soθ∪r) 7→ L(X) given by (3.1) is an algebra
homomorphism. There is also no ambiguity in our notation, since if Ω is an open
set in C∞ that contains Sθ∪r ∪ {∞}, then the operators defined by (2.1) and (3.1)
coincide for functions in Θ(Soθ∪r) ∩ H(Ω). This is because φ ∈ Θ(Soθ∪r) ∩ H(Ω)
is holomorphic in a neighbourhood of infinity, so the Θ-class decay implies that
φ(∞) = 0. Cauchy’s Theorem, the resolvent bounds and the Θ-class decay then
allow us to modify the contour of integration in (3.1) to that in (2.1). In particular,
if λ ∈ C \ Sθ∪r and f(z) = (λ− z)−1 for all z ∈ Sθ∪r, then f(T ) = RT (λ).

The proofs of the next two results are based on proofs for operators of type Sω
that were communicated to the author by Alan McIntosh in a graduate course. The
first is a convergence lemma for the Θ(Soθ∪r) functional calculus.

Proposition 3.4. Let θ ∈ (ω, π/2) and r > R. If (φn)n is a sequence in Θ(Soθ∪r)
and there exists c, δ > 0 and φ ∈ Θ(Soθ∪r) such that the following hold:
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(1) supn |φn(z)| ≤ c|z|−δ for all z ∈ Soθ∪r;
(2) φn converges to φ uniformly on compacts subsets of Soθ∪r,

then φn(T ) converges to φ(T ) in L(X).

Proof. Fix θ̃ ∈ (ω, θ) and r̃ ∈ (R, r). Let γ denote the boundary of Sθ̃∪r̃ oriented
clockwise. Given r0 ≥ r̃, divide γ into γ0 = γ ∩Dr0 and γ∞ = γ ∩ (C \Dr0), so

φn(T )u− φ(T )u =
1

2πi

(
∫

γ0

+

∫

γ∞

)

(φn(z) − φ(z))RT (z)u dz = I1 + I2

for all u ∈ X . Given ǫ > 0, choose r0 > r̃ such that

‖I2‖ .

∫ ∞

r0

(|φn(z)| + |φ(z)|)‖RT (z)u‖
d|z|

|z|
.

∫ ∞

r0

|z|−δ
d|z|

|z|
‖u‖ < ǫ‖u‖

for all n ∈ N and u ∈ X . Now, since φn converges to φ uniformly on compact
subsets of Soθ∪r, there exists N ∈ N such that

‖I1‖ .

∫

|z|=r̃

|φn(z) − φ(z)|
|dz|

|z|
‖u‖ +

∫ r0

r̃

|φn(z) − φ(z)|
d|z|

|z|
‖u‖ < ǫ‖u‖

for all n > N and u ∈ X . The result follows. �

The next lemma allows us to derive an H∞(Soθ∪r) functional calculus from the
Θ(Soθ∪r) functional calculus.

Lemma 3.5. Let θ ∈ (ω, π/2) and r > R. If (φn)n is a sequence in Θ(Soθ∪r) and
there exists f ∈ H∞(Soθ∪r) such that the following hold:

(1) supn ‖φn‖∞ <∞;
(2) supn ‖φn(T )‖ <∞;
(3) φn converges to f uniformly on compacts subsets of Soθ∪r,

then limn φn(T )u exists in X for all u ∈ X . Moreover, if f ∈ Θ(Soθ∪r), then
limn φn(T )u = f(T )u for all u ∈ X .

Proof. Let φ̃n(z) = (1 + i
rz)

−1φn(z) and φ̃(z) = (1 + i
r z)

−1f(z) for all z ∈ Soθ∪r.

There exists c > 0 such that the sequence (φ̃n)n in Θ(Soθ∪r) satisfies supn |φ̃n(z)| ≤

c|z|−1 for all z ∈ Soθ∪r, and converges to φ̃ ∈ Θ(Soθ∪r) uniformly on compact subsets
of Soθ∪r. Proposition 3.4 then implies that

lim
n

‖φ̃n(T )u− φ̃(T )u‖ = 0 (3.2)

for all u ∈ X .
If u ∈ D(T ), then u = (I + i

rT )−1v for some v ∈ X , so we have

φn(T )u = φn(T )(I + i
rT )−1v = φ̃n(T )v

and (3.2) implies that limn φn(T )u = φ̃(T )v. Note that the second equality above
holds because (1 + i

rz)
−1 is in Θ(Soθ∪r).

If u ∈ X , then u ∈ D(T ) by Lemma 3.2. For each ǫ > 0, there exists v ∈ D(T )
such that ‖u− v‖ < ǫ, and it follows from what was just proved that (φn(T )v)n is
a Cauchy sequence in X . Therefore, there exists N ∈ N such that

‖φn(T )u− φm(T )u‖ ≤ ‖φn(T )(u− v)‖ + ‖φn(T )v − φm(T )v‖ + ‖φm(T )(v − u)‖

. sup
n

‖φn(T )‖ ǫ

for all n > m > N , and limn φn(T )u exists in X .
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Finally, if f ∈ Θ(Soθ∪r), then φ̃(T ) = f(T )(I + i
rT )−1 and limn φn(T )u = f(T )u

for all u ∈ D(T ) by the above. If u ∈ X , then for each ǫ > 0, there exists v ∈ D(T )
and N ∈ N such that

‖φn(T )u− f(T )u‖ ≤ ‖φn(T )(u− v)‖ + ‖φn(T )v − f(T )v‖ + ‖f(T )(v − u)‖

. (sup
n

‖φn(T )‖ + ‖f(T )‖)ǫ

for all n > N , and limn φn(T )u = f(T )u. �

The usefulness of condition (2) in the preceding lemma suggests the following
definition, which allows us to construct an H∞(Soθ∪r) functional calculus. This is
based on the analogous construction for operators of type Sω that was communi-
cated to the author by Alan McIntosh in a graduate course.

Definition 3.6 (H∞(Soθ∪r) functional calculus). Given θ ∈ (ω, π/2) and r > R,
the operator T has a bounded H∞(Soθ∪r) functional calculus if there exists c > 0
such that

‖φ(T )‖ ≤ c‖φ‖∞

for all φ ∈ Θ(Soθ∪r). If T has a bounded H∞(Soθ∪r) functional calculus, then given
f ∈ H∞(Soθ∪r) define f(T ) ∈ L(X) by

f(T )u = lim
n

(fφn)(T )u (3.3)

for all u ∈ X , where (φn)n is a uniformly bounded sequence in Θ(Soθ∪r) that
converges to 1 uniformly on compact subsets of Soθ∪r.

The operator in (3.3) is well-defined by Lemma 3.5. In particular, the definition
is independent of the choice of sequence (φn)n in Definition 3.6. As an example,
consider the sequence defined by φn(z) = (1 + i

rnz)
−1 for all z ∈ Soθ∪r and n ∈ N,

which satisfies supn ‖φn‖∞ = 1. The requirement that T has a bounded H∞(Soθ∪r)
functional calculus then implies that

‖f(T )‖ ≤ sup
n

‖(fφn)(T )‖ ≤ c sup
n

‖fφn‖∞ ≤ c‖f‖∞

for all f ∈ H∞(Soθ∪r), where c is the constant from Definition 3.6.
Lemma 3.5 also shows that the operators defined by (3.1) and (3.3) coincide

for functions in Θ(Soθ∪r). Furthermore, if Ω is an open set in C∞ that contains
Sθ∪r ∪ {∞}, then the operators defined by (2.1) and (3.3) coincide for functions
in H∞(Soθ∪r) ∩ H(Ω) by Theorem 2.2. There is also the following analogue of
Theorem 2.2.

Theorem 3.7. The mapping given by (3.3) is an algebra homomorphism from

H∞(Soθ∪r) into L(X) with following properties:

(1) If 1(z) = 1 for all z ∈ Soθ∪r, then 1(T ) = I on X;

(2) If λ ∈ C \Sω∪R and f(z) = (λ− z)−1 for all z ∈ Soθ∪r, then f(T ) = RT (λ);
(3) If (fn)n is a sequence in H∞(Soθ∪r) and there exists f ∈ H∞(Soθ∪r) such

that the following hold:

(i) supn ‖fn‖∞ <∞;

(ii) supn ‖fn(T )‖ <∞;

(iii) fn converges to f uniformly on compacts subsets of Soθ∪r,
then ‖f(T )‖ ≤ supn ‖fn(T )‖ and limn fn(T )u = f(T )u for all u ∈ X.

Proof. Let f, g ∈ H∞(Soθ∪r). If (φn)n satisfies the requirements of Definition 3.6,
then so does (φ2

n)n. Therefore, the algebra homomorphism property of the Θ(Soθ∪r)
functional calculus implies that

(fg)(T )u = lim
n

(fgφ2
n)(T )u = lim

n
fn(T )gn(T )u
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for all u ∈ X , where fn = fφn and gn = gφn. This shows that for each ǫ > 0 and
u ∈ X , there exists N ∈ N such that

‖(fg)(T )u− fn(T )g(T )u‖

≤ ‖(fg)(T )u− fn(T )gn(T )u‖+‖fn(T )[gn(T )u− g(T )u]‖

. sup
n

‖fn(T )‖ ǫ

for all n > N . Hence, (fg)(T )u = limn fn(T )g(T )u = f(T )g(T )u for all u ∈ X .
It remains to prove (1) and (3), since (2) holds by the coincidence of (2.1) and

(3.3). If φn(z) = (1 + i
rnz)

−1 for all z ∈ Soθ∪r and n ∈ N, then by Lemma 3.2 we
have

1(T )u = lim
n
φn(T )u = lim

n
(I + i

rnT )−1u = u

for all u ∈ X . The final part of the theorem follows from the algebra homomorphism
property, as in the proof of Lemma 3.5. �

3.2. Local Quadratic Estimates. Fix ω ∈ [0, π/2) and R ≥ 0, and let T be an
operator of type Sω∪R on X . The Φ-class of holomorphic functions is introduced
below to develop a local version of the McIntosh approximation technique. This
essential tool is used to prove the equivalence of local quadratic norms.

Definition 3.8. Given θ ∈ (0, π/2), r ≥ 0 and β > 0, define Φβ(Soθ,r) to be the set

of all φ ∈ Θβ(Soθ,r) with the following properties:

(1) For all z ∈ Soθ,r, φ(z) 6= 0 ;

(2) infz∈Do
r
|φ(z)| 6= 0;

(3) sup t≥1|φt(z)| . |φ(z)| for all z ∈ Soθ,r \Dr,

where Soθ,r denotes either Soθ∪r or Soθ\r. Note that (2) is obviated in the case of

Soθ\r.

The following result is the local version of an exercise in Lecture 3 of [1].

Lemma 3.9 (McIntosh approximation). Let θ ∈ (ω, π/2) and r > R. Given
nondegenerate ψ ∈ Ψ(Soθ∪r) and φ ∈ Φ(Soθ∪r), there exist η ∈ Ψ(Soθ∪r) and ϕ ∈
Θ(Soθ∪r) such that

∫ 1

0

ηt(z)ψt(z)
dt

t
+ ϕ(z)φ(z) = 1 (3.4)

for all z ∈ Soθ∪r. Given 0 < α < β ≤ 1 and f ∈ Θ(Soθ∪r), if

Ψα,β(z) = f(z)

∫ β

α

ηt(z)ψt(z)
dt

t
and Φ(z) = f(z)ϕ(z)φ(z)

for all z ∈ Soθ∪r, then

lim
α→0

‖(Ψα,1(T ) + Φ(T ))u− f(T )u‖ = 0 (3.5)

for all u ∈ X . Moreover, if T has a bounded H∞(Soθ∪r) functional calculus, then
this holds for any f ∈ H∞(Soθ∪r).

Proof. Given f ∈ H∞(Soθ∪r), let f−(z) = f(−z) and f∗(z) = f(z̄) for all z ∈ Soθ∪r.

Let c =
∫∞

0 |ψ(t)ψ(−t)φ(t)φ(−t)|2 dt
t and define the functions

η = c−1ψ∗ψ−ψ
∗
−φφ

∗φ−φ
∗
− and ϕ =

1

φ

(

1 −

∫ 1

0

ηtψt
dt

t

)

,

in which case (3.4) is immediate and η ∈ Ψ(Soθ∪r). The function ϕ is holomorphic
on Soθ∪r by Morera’s Theorem, since φ(z) 6= 0 for all z ∈ Soθ∪r, and bounded on

Do
r , since infz∈Do

r
|φ(z)| 6= 0. A change of variable shows that

∫∞

0 ηt(x)ψt(x)
dt
t = 1

for all x ∈ R \ {0}, and since z 7→
∫∞

0 ηt(z)ψt(z)
dt
t is holomorphic on Soθ , we must
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have
∫∞

0 ηt(z)ψt(z)
dt
t = 1 for all z ∈ Soθ . It then follows from property (3) in

Definition 3.8 that

|ϕ(z)| =
1

|φ(z)|

∫ ∞

1

|ηt(z)ψt(z)|
dt

t
.

supt≥1 |φt(z)|

|φ(z)|

∫ ∞

1

(t|z|)−δ
dt

t
. |z|−δ

for all z ∈ Soθ and some δ > 0, so ϕ ∈ Θ(Soθ∪r).
To prove (3.5), let f ∈ Θ(Soθ∪r) and note that there exists δ > 0 such that

|Ψα,1(z)| . |f(z)|

∫ 1

0

min(|tz|δ, |tz|−δ)
dt

t

= min(‖f‖∞, |z|
−δ)

(

|z|δ
∫ 1/|z|

0

tδ
dt

t
+ |z|−δ

∫ ∞

1/|z|

t−δ
dt

t

)

. min(‖f‖∞, |z|
−δ)

(3.6)

for all α ∈ (0, 1) and z ∈ Soθ∪r, where the constants associated with each instance
of . do not depend on α. This shows that Ψα,1 + Φ is in Θ(Soθ∪r) for all α ∈ (0, 1)
with supα∈(0,1) |Ψα,1(z) + Φ(z)| ≤ c|z|−δ for some c > 0. Also, given a compact set

K ⊂ Soθ∪r, it follows from (3.4) that there exists cK > 0 such that

|Ψα,1(z) + Φ(z) − f(z)| ≤ ‖f‖∞

∫ α

0

|ηt(z)ψt(z)|
dt

t
. |αz|δ ≤ cKα

δ

for all α ∈ (0, 1) and z ∈ K. Therefore, the sequence (Ψ1/n,1 + Φ)n converges to
f uniformly on compact subsets of Soθ∪r, and (3.5) follows from the version of the
convergence lemma in Proposition 3.4.

Now let f ∈ H∞(Soθ∪r) and suppose that T has a bounded H∞(Soθ∪r) functional
calculus. It follows as in (3.6) that supα∈(0,1) ‖Ψα,1 + Φ‖∞ . ‖f‖∞ < ∞. Also,
there exists δ > 0 such that

|Ψα,1(z)| . ‖f‖∞

∫ 1

α

min(|tz|δ, |tz|−δ)
dt

t

= ‖f‖∞ min

(

|z|δ
∫ 1

α

tδ
dt

t
, |z|−δ

∫ 1

α

t−δ
dt

t

)

. min(|z|δ, |αz|−δ)

≤ α−δ|z|−δ

for all α ∈ (0, 1) and z ∈ Soθ∪r. This shows that Ψα,1 + Φ is in Θ(Soθ∪r) for all
α ∈ (0, 1), and since T has a bounded H∞(Soθ∪r) functional calculus, the result
follows by Theorem 3.7. �

We now introduce local quadratic norms on X adapted to the operator T and
define the notion of local quadratic estimates.

Definition 3.10. Let θ ∈ (ω, π/2) and r > R. Given ψ ∈ Ψ(Soθ∪r) and φ ∈
Φ(Soθ∪r), define the local quadratic norm ‖ · ‖T,ψ,φ by

‖u‖T,ψ,φ =

(
∫ 1

0

‖ψt(T )u‖2 dt

t
+ ‖φ(T )u‖2

)

1

2

for all u ∈ X . The operator T satisfies (ψ, φ) quadratic estimates if there exists
c > 0 such that ‖u‖T,ψ,φ ≤ c‖u‖ for all u ∈ X , and reverse (ψ, φ) quadratic

estimates if there exists c > 0 such that ‖u‖ ≤ c‖u‖T,ψ,φ for all u ∈ X satisfying
‖u‖T,ψ,φ <∞.

Given nondegenerate ψ ∈ Ψ(Soθ∪r) and φ ∈ Φ(Soθ∪r) in Definition 3.10, if T has
a bounded H∞(Soθ∪r) functional calculus, then Lemma 3.9 implies that the local
quadratic norm ‖ · ‖T,ψ,φ is indeed a norm on X . We use the next two lemmas to
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prove that families of local quadratic norms are equivalent for operators that have
a bounded H∞(Soθ∪r) functional calculus. These are local analogues of results in
[1].

Lemma 3.11. Let θ ∈ (ω, π/2) and r > R. Given ψ, ψ̃ ∈ Ψ(Soθ∪r) and φ ∈
Θ(Soθ∪r), there exists c > 0 and δ > 0 such that the following hold:

(1) ‖(fψt)(T )‖ ≤ c‖f‖∞;

(2) ‖(fφ)(T )‖ ≤ c‖f‖∞;

(3) ‖(fφψt)(T )‖ ≤ c‖f‖∞tδ(1 + log(1/t));

(4) ‖(fψtψ̃s)(T )‖ ≤ c‖f‖∞ ×

{

(s/t)δ(1 + log(t/s)) if s ∈ (0, t];

(t/s)δ(1 + log(s/t)) if s ∈ (t, 1]

for all t ∈ (0, 1] and f ∈ H∞(S0
θ∪r).

Proof. Fix θ̃ ∈ (ω, θ) and r̃ ∈ (R, r). Let γ denote the boundary of Sθ̃∪r̃ oriented

clockwise. Choose δ > 0 so that ψ, ψ̃ ∈ Ψδ
δ(S

o
θ∪r) and φ ∈ Θδ(Soθ∪r). The resolvent

bounds then imply that

‖(fψt)(T )‖

‖f‖∞
.

1

‖f‖∞

∫

γ

|f(z)ψt(z)|‖RT (z)‖ |dz|

.

∫

γ

min(|tz|δ, |tz|−δ)
|dz|

|z|

. tδ
∫

|z|=r̃

|z|δ−1|dz| + tδ
∫ r̃/t

r̃

|z|δ−1 d|z| + t−δ
∫ ∞

r̃/t

|z|−δ−1 d|z|

. 1

for all t ∈ (0, 1]. Similarly, we obtain

‖(fφ)(T )‖

‖f‖∞
.

∫

|z|=r̃

|z|−1 |dz| +

∫ ∞

r̃

|z|−δ−1 d|z| . 1

and

‖(fφψt)(T )‖

‖f‖∞
.

∫

γ

min(1, |z|−δ)min(|tz|δ, |tz|−δ)
|dz|

|z|

. tδ
∫

|z|=r̃

|z|δ−1 |dz| + tδ
∫ r̃/t

r̃

|z|−1 d|z| + t−δ
∫ ∞

r̃/t

|z|−2δ−1 d|z|

. tδ + tδ log(1/t) + t−δ(1/t)−2δ

. tδ(1 + log(1/t)).

for all t ∈ (0, 1]. Also, if 0 < s ≤ t ≤ 1, then

‖(fψtψ̃s)(T )‖

‖f‖∞
.

∫

γ

min(|tz|δ, |tz|−δ)min(|sz|δ, |sz|−δ)
|dz|

|z|

. (s/t)δ
∫

|z|=r̃

|z|−1 |dz| + (st)δ
∫ r̃/t

r̃

|z|2δ−1 d|z|

+ (s/t)δ
∫ r̃/s

r̃/t

|z|−1 d|z| + (st)−δ
∫ ∞

r̃/s

|z|−2δ d|z|

. (s/t)δ + (st)δ(1/t)2δ + (s/t)δ log(t/s) + (st)−δ(1/s)−2δ

. (s/t)δ(1 + log(t/s)).

The same argument applied in the case 0 < t < s ≤ 1 completes the proof. �
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Lemma 3.12. Let θ ∈ (ω, π/2) and r > R. Let ψ ∈ Ψ(Soθ∪r) and φ ∈ Φ(Soθ∪r). If
(un)n is sequence in X and there exists u ∈ X such that the following hold:

(1) ‖un‖T,ψ,φ <∞ for all n ∈ N;
(2) (un)n is a Cauchy sequence under the local quadratic norm ‖ · ‖T,ψ,φ;
(3) limn→∞ ‖un − u‖ = 0,

then ‖u‖T,ψ,φ <∞ and limn→∞ ‖un − u‖T,ψ,φ = 0.

Proof. For each α ∈ (0, 1), choose N(α) ∈ N so that ‖uN(α) − u‖2 < 1/(1 − logα).
Lemma 3.11 then implies that

∫ 1

α

‖ψt(T )u‖2 dt

t
+ ‖φ(T )u‖2

≤

∫ 1

α

‖ψt(T )(uN(α) − u)‖2 dt

t
+ ‖φ(T )(uN(α) − u)‖2 + sup

n
‖un‖

2
T,ψ,φ

. (1 − logα)‖uN(α) − u‖2 + sup
n

‖un‖
2
T,ψ,φ

. sup
n

‖un‖
2
T,ψ,φ

for all α ∈ (0, 1). The Cauchy condition guarantees that supn ‖un‖T,ψ,φ < ∞, so
we must have ‖u‖T,ψ,φ <∞.

For each ǫ > 0, conditions (2) and (3) combined with the result just proved
guarantee that there exists α0 ∈ (0, 1) and N ∈ N such that

sup
n>N

∫ α0

0

‖ψt(T )un‖
2 dt

t
< ǫ, sup

n>N
‖un − u‖ < ǫ and

∫ α0

0

‖ψt(T )u‖2 dt

t
< ǫ.

Lemma 3.11 then implies that

‖un − u‖2
T,ψ,φ ≤

(
∫ α0

0

+

∫ 1

α0

)

‖ψt(T )(un − u)‖2 dt

t
+ ‖φ(T )(un − u)‖2L . ǫ

for all n > N , as required. �

The following result is essential for establishing the connection between bounded
holomorphic functional calculi and quadratic estimates. This is a local analogue of
Proposition E in [1].

Proposition 3.13. Let θ ∈ (ω, π/2) and r > R. Given nondegenerate functions

ψ, ψ̃ ∈ Ψ(Soθ∪r) and φ, φ̃ ∈ Φ(Soθ∪r), there exists c > 0 such that

‖f(T )u‖T,ψ̃,φ̃ ≤ c‖f‖∞‖u‖T,ψ,φ

for all f ∈ Θ(Soθ∪r) and u ∈ X satisfying ‖u‖T,ψ,φ < ∞. Moreover, if T has a
bounded H∞(Soθ∪r) functional calculus, then there exists c > 0 such that

‖f(T )u‖T,ψ̃,φ̃ ≤ c‖f‖∞‖u‖T,ψ,φ

for all f ∈ H∞(Soθ∪r) and u ∈ X satisfying ‖u‖T,ψ,φ <∞.

Proof. Let f ∈ Θ(Soθ∪r) and let u ∈ X satisfying ‖u‖T,ψ,φ < ∞. Lemma 3.9 gives
η ∈ Ψ(Soθ∪r) and ϕ ∈ Θ(Soθ∪r) such that

∫ 1

0

ηt(z)ψt(z)ψt(z)
dt

t
+ ϕ(z)φ(z) = 1

for all z ∈ Soθ∪r. Given 0 < α < β ≤ 1, define

Ψα,β(z) = f(z)

∫ β

α

ηt(z)ψt(z)ψt(z)
dt

t
and Φ(z) = f(z)ϕ(z)φ(z)
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for all z ∈ Soθ∪r, so limα→0 ‖(Ψα,1(T ) + Φ(T ))u− f(T )u‖ = 0. Now write

‖Ψα,β(T )u+ Φ(T )u‖2
T,ψ̃,φ̃

≤

∫ 1

0

‖ψ̃t(T )Ψα,β(T )u‖2 dt

t
+

∫ 1

0

‖ψ̃t(T )Φ(T )u‖2 dt

t

+ ‖φ̃(T )Ψα,β(T )u‖2 + ‖φ̃(T )Φ(T )u‖2

= I1 + I2 + I3 + I4.

We use Lemma 3.11 to obtain the following Schur-type estimates:
Estimate for I1:

I1 =

∫ 1

0

∥

∥

∥

∥

∥

∫ β

α

(ψ̃tψs)(T )(fηsψs)(T )u
ds

s

∥

∥

∥

∥

∥

2
dt

t

≤

∫ 1

0

(

∫ β

α

‖(ψ̃tψs)(T )‖‖(fηsψs)(T )u‖
ds

s

)2
dt

t

≤

∫ 1

0

(

∫ β

α

‖(ψ̃tψs)(T )u‖
ds

s

)(

∫ β

α

‖(ψ̃tψs)(T )‖‖(fηsψs)(T )u‖2 ds

s

)

dt

t

≤ sup
t∈(0,1]

(

∫ β

α

‖(ψ̃tψs)(T )u‖
ds

s

)

∫ 1

0

∫ β

α

‖(ψ̃tψs)(T )‖‖(fηsψs)(T )u‖2 ds

s

dt

t

. sup
s∈(0,1]

(
∫ 1

0

‖(ψ̃tψs)(T )‖
dt

t

)
∫ β

α

‖(fηs)(T )ψs(T )u‖2 ds

s

. ‖f‖2
∞

∫ β

α

‖ψt(T )u‖2 dt

t
;

Estimate for I2:

I2 =

∫ 1

0

‖(fϕψ̃t)(T )φ(T )u‖2 dt

t

. ‖f‖2
∞

∫ 1

0

t2η(1 + log(1/t))2
dt

t
‖φ(T )u‖2

. ‖f‖2
∞‖φ(T )u‖2;

Estimate for I3:

I3 =

∥

∥

∥

∥

∥

∫ β

α

(fφ̃ηsψs)(T )ψs(T )u
ds

s

∥

∥

∥

∥

∥

2

≤

∫ β

α

‖(fφ̃ηsψs)(T )‖2 ds

s

∫ β

α

‖ψs(T )u‖2 ds

s

. ‖f‖2
∞

∫ β

α

t2η(1 + log(1/t))2
dt

t

∫ β

α

‖ψt(T )u‖2 dt

t

. ‖f‖2
∞

∫ β

α

‖ψt(T )u‖2 dt

t
;

Estimate for I4:

I4 = ‖(fφ̃ϕ)(T )φ(T )u‖2 . ‖f‖2
∞‖φ(T )u‖2.

Therefore, we have

‖Ψα,1(T )u+ Φ(T )u‖T,ψ̃,φ̃ . ‖f‖∞‖u‖T,ψ,φ



LOCAL QUADRATIC ESTIMATES 223

for all α ∈ (0, 1), and

‖Ψα,β(T )u‖2
T,ψ̃,φ̃

≤ I1 + I3 . ‖f‖2
∞

∫ β

α

‖ψt(T )u‖2 dt

t

for all 0 < α < β ≤ 1. Now, since ‖u‖T,ψ,φ <∞, for each ǫ > 0 there exists N ∈ N

such that
∫ 1

m

1

n

‖ψt(T )u‖2 dt

t
< ǫ

for all n > m > N , which implies that

‖(Ψ1/n,1(T ) + Φ(T ))u− (Ψ1/m,1(T ) + Φ(T ))u‖T,ψ̃,φ̃ = ‖Ψ1/n,1/m(T )u‖T,ψ̃,φ̃

. ‖f‖∞ǫ

for all n > m > N . This shows that (Ψ1/n,1(T )u+ Φ(T )u)n is a Cauchy sequence
under the local quadratic norm ‖ · ‖T,ψ̃,φ̃, so by Lemma 3.12 we have

lim
α→0

‖(Ψα,1(T ) + Φ(T ))u− f(T )u‖T,ψ̃,φ̃ = 0

and ‖f(T )u‖T,ψ̃,φ̃ . ‖f‖∞‖u‖T,ψ,φ, as required.

Finally, if T has a bounded H∞(Soθ∪r) functional calculus, then the proof above
holds for f ∈ H∞(Soθ∪r) by Lemma 3.9. �

3.3. The Main Equivalence. We connect the theory from the previous two sec-
tions. The first result is an immediate consequence of Proposition 3.13.

Proposition 3.14. Let ω ∈ [0, π/2) and R ≥ 0. Let T be an operator of type Sω∪R
on X . If there exists θ0 ∈ (ω, π/2), r0 > R, nondegenerate ψ, ψ̃ ∈ Ψ(Soθ0∪r0) and

nondegenerate φ, φ̃ ∈ Φ(Soθ0∪r0) such that T satisfies (ψ, φ) quadratic estimates

and reverse (ψ̃, φ̃) quadratic estimates, then T has a bounded H∞(Soθ∪r) functional
calculus for all θ ∈ (ω, π/2) and r > R.

Proof. Let θ ∈ (ω, π/2) and r > R. Given g ∈ H∞(Soθ0∪r0), let g0 denote the re-
striction of g to Somin{θ,θ0}∪min{r,r0}

. Using the properties of the Θ(Soθ∪r) functional

calculus, Proposition 3.13 implies that there exists c > 0 such that

‖f(T )u‖T,ψ̃,φ̃ = ‖f0(T )u‖T,ψ̃0,φ̃0
≤ c‖f0‖∞‖u‖T,ψ0,φ0

≤ c‖f‖∞‖u‖T,ψ,φ

for all f ∈ Θ(Soθ∪r) and u ∈ X satisfying ‖u‖T,ψ,φ < ∞. The quadratic estimates
then imply that there exists c̃ > 0 such that

‖f(T )u‖ ≤ c̃‖f‖∞‖u‖

for all f ∈ Θ(Soθ∪r) and u ∈ X , as required. �

A converse of the above result holds for dual pairs of operators.

Definition 3.15. A dual pair of Banach spaces 〈X,X ′〉 is a pair of complex Banach
spaces (X,X ′) associated with a sesquilinear form 〈·, ·〉 on X×X ′ that satisfies the
following properties:

(1) |〈u, v〉| ≤ C0‖u‖X‖v‖X′ for all u ∈ X and v ∈ X ′;

(2) ‖u‖X ≤ C1 sup
v∈X′

|〈u, v〉|

‖v‖X′

for all u ∈ X ;

(3) ‖v‖X′ ≤ C2 sup
u∈X

|〈u, v〉|

‖u‖X
for all v ∈ X ′,

for some constants C0, C1 and C2 > 0.
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Definition 3.16. Given a dual pair of Banach spaces 〈X,X ′〉, a dual pair of op-

erators 〈T, T ′〉 consists of an operator T on X and an operator T ′ on X ′ such
that

〈Tu, v〉 = 〈u, T ′v〉

for all u ∈ D(T ) and v ∈ D(T ′).

If T is an operator of type Sω∪R on a Hilbert space, then the adjoint operator
T ∗ provides a dual pair of operators 〈T, T ∗〉 of type Sω∪R under the inner-product.
We use the next lemma to prove the equivalence of bounded holomorphic functional
calculi and quadratic estimates.

Lemma 3.17. Let ω ∈ [0, π/2) and R ≥ 0. Let 〈T, T ′〉 be a dual pair of operators of
type Sω∪R. If θ ∈ (ω, π/2) and r > R, then T has a bounded H∞(Soθ∪r) functional
calculus if and only if T ′ has a bounded H∞(Soθ∪r) functional calculus. Moreover,
if T has a bounded H∞(Soθ∪r) functional calculus, then

〈f(T )u, v〉 = 〈u, f∗(T ′)v〉

for all u ∈ X , v ∈ X ′ and f ∈ H∞(Soθ∪r), where f∗ is given by Definition 2.3.

Proof. Let θ ∈ (ω, π/2) and r > R. If z ∈ C \ Sω∪R, then

〈RT (z)u, v〉 = 〈RT (z)u, (z̄I − T ′)RT ′(z̄)v〉

= 〈zRT (z)u,RT ′(z̄)v〉 − 〈TRT (z)u,RT ′(z̄)v〉

= 〈u,RT ′(z̄)v〉

for all u ∈ X and v ∈ X ′, since R(RT (z)) ⊆ D(T ) and R(RT ′(z̄)) ⊆ D(T ′). This
shows that, for an appropriate contour γ in C, we have

〈φ(T )u, v〉 =
1

2πi

∫

γ

φ(z)〈RT (z)u, v〉
dz

z

=
1

2πi

∫

γ

φ(z)〈u,RT ′(z̄)v〉
dz

z

= 〈u, φ∗(T ′)v〉

for all u ∈ X , v ∈ X ′ and φ ∈ Θ(Soθ∪r). Therefore, we have

‖φ(T )u‖X
‖u‖X

. sup
v∈X′

|〈φ(T )u, v〉|

‖u‖X‖v‖X′

= sup
v∈X′

|〈u, φ∗(T ′)v〉|

‖u‖X‖v‖X′

. sup
v∈X′

‖φ∗(T ′)v‖X′

‖v‖X′

for all u ∈ X and φ ∈ Θ(Soθ∪r). The dual version of this inequality holds by the same
reasoning. Therefore, there exists c > 0 such that 1

c‖φ(T )‖ ≤ ‖φ∗(T ′)‖ ≤ c‖φ(T )‖
for all φ ∈ Θ(Soθ∪r), which proves that T has a bounded H∞(Soθ∪r) functional
calculus if and only if T ′ has a bounded H∞(Soθ∪r) functional calculus.

Now suppose that T has a bounded H∞(Soθ∪r) functional calculus. Let (φn)n
be a sequence of functions satisfying the requirements of Definition 3.6 so that

f(T )u = lim
n

(fφn)(T )u

for all u ∈ X and f ∈ H∞(Soθ∪r). For each ǫ > 0, u ∈ X and v ∈ X ′, there exists
N ∈ N such that

|〈(fφn)(T )u, v〉 − 〈f(T )u, v〉| . ‖(fφn)(T )u− f(T )u‖‖v‖ < ǫ

for all n > N . The dual version of this statement also holds, so we have

〈f(T )u, v〉 = lim
n→∞

〈(fφn)(T )u, v〉 = lim
n→∞

〈u, (f∗φ∗n)(T ′)v〉 = 〈u, f∗(T ′)v〉

for all u ∈ X and v ∈ X ′, as required. �

This brings us to the principal result of this section. The proof is based on the
proof of Theorem 7 in [11] and Theorem F in [1].



LOCAL QUADRATIC ESTIMATES 225

Theorem 3.18. Let ω ∈ [0, π/2) and R ≥ 0. Let 〈T, T ′〉 be a dual pair of operators

of type Sω∪R on 〈X,X ′〉. The following statements are equivalent:

(1) The operators T and T ′ satisfy (ψ, φ) quadratic estimates for all ψ in

Ψ(Soθ∪r) and φ in Φ(Soθ∪r) and all θ in (ω, π/2) and r > R;

(2) There exists θ in (ω, π/2), r > R and nondegenerate ψ, ψ̃ in Ψ(Soθ∪r) and

nondegenerate φ, φ̃ in Φ(Soθ∪r) such that T satisfies (ψ, φ) quadratic esti-

mates and T ′ satisfies (ψ̃, φ̃) quadratic estimates;

(3) The operator T has a bounded H∞(Soθ∪r) functional calculus for all θ in

(ω, π/2) and r > R;

(4) There exists θ in (ω, π/2) and r > R such that T has a bounded H∞(Soθ∪r)
functional calculus.

Proof. It suffices to prove that (2) implies (3) and that (4) implies (1). First,

suppose that (2) holds. Fix θ0 ∈ (ω, π/2), r0 > R, nondegenerate ψ, ψ̃ ∈ Ψ(Soθ0∪r0)

and nondegenerate φ, φ̃ ∈ Φ(Soθ0∪r0) such that T satisfies (ψ, φ) quadratic estimates

and T ′ satisfies (ψ̃, φ̃) quadratic estimates. Let θ ∈ (ω, π/2) and r > R. Lemma 3.9
gives η ∈ Ψ(Soθ0∪r0) and ϕ ∈ Θ(Soθ0∪r0) such that

∫ 1

0

ηt(z)ψ̃
∗
t (z)ψt(z)

dt

t
+ ϕ(z)φ̃∗(z)φ(z) = 1

for all z ∈ Soθ0r0 . Given α ∈ (0, 1) and f ∈ Θ(Soθ∪r), if

Ψα,1(z) = f(z)

∫ 1

α

ηt(z)ψ̃
∗
t (z)ψt(z)

dt

t
and Φ(z) = f(z)ϕ(z)φ̃∗(z)φ(z)

for all z ∈ Somin{θ,θ0}∪min{r,r0}
, then

lim
α→0

‖(Ψα,1(T ) + Φ(T ))u− f(T )u‖X = lim
α→0

‖(Ψα,1(T ) + Φ(T ))u− f0(T )u‖X = 0

for all u ∈ X , where f0 denotes the restriction of f to Somin{θ,θ0}∪min{r,r0}
. The

dual pairing and Lemma 3.11 imply that

|〈Ψα,1(T )u+ Φ(T )u, v〉|

≤

∫ 1

α

|〈(fηt)(T )ψt(T )u, ψt(T
′)v〉|

dt

t
+ |〈(fϕ)(T )φ(T )u, φ(T ′)v〉|

.

∫ 1

α

‖(fηt)(T )‖‖ψt(T )u‖X‖ψt(T
′)v‖X′

dt

t
+ ‖(fϕ)(T )‖‖φ(T )u‖X‖φ(T ′)v‖X′

. ‖f‖∞‖u‖T,ψ,φ‖v‖T ′,ψ,φ

for all u ∈ X , v ∈ X ′, α ∈ (0, 1) and f ∈ Θ(Soθ∪r). The quadratic estimates then
imply that

|〈f(T )u, v〉| . ‖f‖∞‖u‖T,ψ,φ‖v‖T ′,ψ,φ . ‖f‖∞‖u‖X‖v‖X′

for all u ∈ X , v ∈ X ′ and f ∈ Θ(Soθ∪r), which implies (3).
Now, suppose that (4) holds. Fix θ0 ∈ (ω, π/2) and r0 > R such that T has a

bounded H∞(Soθ0∪r0) functional calculus, and choose nondegenerate ψ̃ ∈ Ψ(Soθ0∪r0)

and nondegenerate φ̃ ∈ Φ(Soθ0∪r0). Let θ ∈ (ω, π/2), r > R, ψ ∈ Ψ(Soθ∪r) be nonde-
generate and φ ∈ Φ(Soθ∪r) be nondegenerate. Given g ∈ H∞(Soθ∪r), let g0 denote
the restriction of g to Somin{θ,θ0}∪min{r,r0}

. A discrete version of Proposition 3.13

shows that

‖f(T )u‖T,ψ,φ = ‖f0(T )u‖T,ψ0,φ0
. ‖f‖∞

( ∞
∑

k=0

‖ψ̃2−k(T )u‖2
X + ‖φ̃(T )u‖2

X

)
1

2
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for all f ∈ H∞(Soθ∪r) and u ∈ X for which the right-hand-side is finite. In partic-
ular, since we can take f to be a constant function, this shows that

‖u‖2
T,ψ,φ .

∞
∑

k=0

‖ψ̃2−k(T )u‖2
X + ‖φ̃(T )u‖2

X

for all u ∈ X for which the right-hand-side is finite. Choose w ∈ X ′ such that
‖w‖X′ = 1 and sup{|〈ψ̃2−k(T )u, v〉| : v ∈ X ′, ‖v‖X′ = 1} ≤ 2|〈ψ̃2−k(T )u,w〉|. The
dual pairing and Lemma 3.11 then imply that

n
∑

k=0

‖ψ̃2−k(T )u‖2
X + ‖φ̃(T )u‖2

X

.

n
∑

k=0

|〈ψ̃2−k(T )u,w〉|‖u‖X + ‖u‖2
X

=

n
∑

k=0

|〈u, ψ̃∗
2−k(T ′)w〉|‖u‖X + ‖u‖2

X

=

n
∑

k=0

sgn
(

〈u, ψ̃∗
2−k(T ′)w〉

)

〈u, ψ̃∗
2−k(T ′)w〉‖u‖X+‖u‖2

X

≤ sup
rk∈{−1,1}

〈u,
∑n

k=0 rkψ̃
∗
2−k(T ′)w〉‖u‖X + ‖u‖2

X

≤ sup
rk∈{−1,1}

‖
(
∑n
k=0rkψ̃

∗
2−k

)

(T ′)‖‖w‖X′‖u‖2
X

. ‖u‖2
X

for all u ∈ X and n ∈ N, where the final inequality holds because Lemma 3.17
implies that T ′ has a bounded H∞(Soθ0∪r0) functional calculus, and because

n
∑

k=0

rkψ̃
∗
2−k

is in Ψ(Soθ0∪r0) for any sequence (rk)k taking values in {−1, 1} and all n ∈ N. This
shows that T satisfies (ψ, φ) quadratic estimates. The same reasoning shows that
T ′ satisfies (ψ, φ) quadratic estimates, which implies (1). �

4. Operators of Type Sω\R

We develop an analogous theory for the following class of operators, where X
denotes a nontrivial complex reflexive Banach space.

Definition 4.1. Let ω ∈ [0, π/2) and R > 0. An operator T on X is of type Sω\R
if σ(T ) ⊆ Sω\R∪{0}, and for each θ ∈ (ω, π/2) and r ∈ [0, R), there exists Cθ,r > 0
such that

‖RT (z)‖ ≤
Cθ,r
|z|

for all z ∈ C \ (Sθ\r ∪ {0}).

The theory of type Sω\R operators is similar to that of type Sω∪R operators.
The main difference arises for operators with a nontrivial null space, which means
that 0 is in the spectrum. The following specialization of Lemma 3.2 allows us to
deal with this possibility. The proof is omitted since it is essentially the same as
the proof of Theorem 3.8 in [5].
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Lemma 4.2. Let ω ∈ [0, π/2) and R > 0. Let T be an operator of type Sω\R on
X . If r ∈ (0, R), then the following hold

D(T ) = {u ∈ X : lim
n→∞

(I + i
rnT )−1u = u};

R(T ) = {u ∈ X : lim
n→∞

(I + in
r T )−1u = 0};

N(T ) = {u ∈ X : lim
n→∞

(I + in
r T )−1u = u},

and D(T ) = R(T ) ⊕ N(T ) = X .

For the remainder of this section, fix ω ∈ [0, π/2) and R > 0, and let T be
an operator of type Sω\R on X . Also, let P

R(T ) and PN(T ) denote the projections

from X onto R(T ) and N(T ), as given by Lemma 4.2. We introduce an analogue of
Definition 3.3.

Definition 4.3 (Θ(Soθ\r) functional calculus). Given θ ∈ (ω, π/2), r ∈ [0, R) and

φ ∈ Θ(Soθ\r), define φ(T
R
) ∈ L(X) by

φ(T
R
)u =

1

2πi

∫

+∂So

θ̃\r̃

φ(z)RT (z)u dz := lim
ρ→∞

1

2πi

∫

+∂So

θ̃\r̃
∩Dρ

φ(z)RT (z)u dz

(4.1)

for all u ∈ X , where θ̃ ∈ (ω, θ), r̃ ∈ (r,R) and +∂So
θ̃\r̃

denotes the boundary of

So
θ̃\r̃

oriented clockwise.

A standard calculation shows that the mapping Θ(Soθ\r) 7→ L(X) given by (4.1) is

an algebra homomorphism. The reason for the notation φ(T
R
) will become apparent

in Lemma 4.5. This requires the following convergence lemma for the Θ(Soθ\r)

functional calculus, which is proved in essentially the same way as Proposition 3.4.

Proposition 4.4. Let θ ∈ (ω, π/2) and r ∈ [0, R). If (φn)n is a sequence in Θ(Soθ\r)

and there exists c, δ > 0 and φ ∈ Θ(Soθ\r) such that the following hold:

(1) supn |φn(z)| ≤ c|z|−δ for all z ∈ Soθ\r;

(2) φn converges to φ uniformly on compacts subsets of Soθ\r,

then φn(T
R
) converges to φ(T

R
) in L(X).

We now establish the connection between the operators defined by (2.1) and
(4.1).

Lemma 4.5. Let θ ∈ (ω, π/2) and r ∈ [0, R). If Ω is an open set in C∞ that
contains Soθ\r ∪ {0,∞} and φ ∈ Θ(Soθ\r) ∩H(Ω), then

φ(T )u = φ(T
R
)P

R(T )u+ φ(0)PN(T )u

for all u ∈ X . If φ ∈ Θ(Soθ\r), then

φ(T
R
)u = φ(T

R
)P

R(T )u = P
R(T )φ(T

R
)P

R(T )u

for all u ∈ X .

Proof. Let Ω be an open set in C∞ containing Soθ\r ∪ {0,∞}. Suppose that

φ ∈ Θ(Soθ\r) ∩H(Ω). If γ is a contour satisfying the requirements of (2.1), then

Cauchy’s Theorem, the resolvent bounds in Definition 4.1 and the Θ-class decay
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imply that

φ(T )u = φ(∞)u +
1

2πi

∫

γ

φ(z)RT (z)u dz

=
1

2πi

(

∫

+∂So

θ̃\r̃

+

∫

+∂Dδ

)

φ(z)RT (z)u dz

for all u ∈ X , θ̃ ∈ (ω, θ), r̃ ∈ (r,R) and δ ∈ (0, r) satisfying Dδ ⊂ Ω.
If u ∈ N(T ), then RT (z)u = 1

zu for all z ∈ ρ(T ). The function z 7→ 1
zφ(z)

is holomorphic in So
θ̃\r̃

and in a neighbourhood of infinity. Therefore, Cauchy’s

Theorem and the Θ-class decay imply that
∫

+∂So

θ̃\r̃

φ(z)RT (z)u dz =

∫

+∂So

θ̃\r̃

φ(z)

z
u dz = 0 (4.2)

for all u ∈ N(T ). Also, Cauchy’s integral formula implies that
∫

+∂Dδ

φ(z)RT (z)u dz =

∫

+∂Dδ

φ(z)

z − 0
u dz = 2πi φ(0)u

for all u ∈ N(T ).
If u ∈ R(T ), then there exists v ∈ X such that u = Tv, in which case

‖zRT (z)u‖ = ‖zRT (z)Tv‖ = ‖z(zRT (z) − I)v‖ ≤ |z|(Cθ,r + 1)‖v‖

for all z ∈ Dδ \ {0} and δ ∈ (0, r). A limiting argument then shows that for

each ǫ > 0 and u ∈ R(T ), there exists η ∈ (0, r) such that ‖zRT (z)u‖ < ǫ for all
z ∈ Dη \ {0}, in which case

∥

∥

∥

∥

∫

+∂Dη

φ(z)RT (z)u dz

∥

∥

∥

∥

≤ ‖φ‖∞

∫

|z|=η

‖zRT (z)u‖
|dz|

|z|
< 2π‖φ‖∞ǫ.

Another application of Cauchy’s Theorem allows us to conclude that
∫

+∂Dδ

φ(z)RT (z)u dz = 0

for all u ∈ R(T ), which completes the proof of the first part of the theorem.
Now let φ ∈ Θ(Soθ\r). To complete the proof, it suffices to show that φ(TR)u is

in R(T ) for all u ∈ R(T ), since (4.2) implies that φ(TR)u = φ(TR)PR(T )u for all

u ∈ X . For each n ∈ N, define

ψn(z) =
1

1 − i
rnz

−
1

1 − rn
i z

=
−( i

rn + rn
i )z

1 − ( i
rn + rn

i )z + z2

for all z ∈ C \ { rni ,
i
rn}. The sequence (φψn)n in Θ(Soθ\r) converges to φ uniformly

on compact subsets of Soθ\r and there exists c, δ > 0 such that

sup
n

|φ(z)ψn(z)| ≤ sup
n

‖ψn‖L∞(So
θ\r

)|φ(z)| ≤ c|z|−δ

for all z ∈ Soθ\r, so Proposition 4.4 implies that limn ‖(φψn)(TR)u − φ(TR)u‖ = 0

for all u ∈ X . The first part of this lemma then shows that

(φψn)n(TR)u = ψn(TR)φ(TR)u

= ψn(T )P
R(T )φ(TR)u

= [(I − i
rnT )−1 − (I − rn

i T )−1]P
R(T )φ(TR)u

= TRT ( rni )RT ( i
rn )P

R(T )φ(TR)u

for all u ∈ X and n ∈ N, which completes the proof. �
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We use the following class of functions to incorporate the null space of T in a
holomorphic functional calculus.

Definition 4.6. Given θ ∈ [0, π/2) and r ≥ 0, define H∞(Soθ\r, {0}) to be the

algebra of functions that are defined on Soθ\r ∪ {0} and holomorphic on Soθ\r.

The next lemma, which is proved in the same way as Lemma 3.5, allows us to
derive an H∞(Soθ\r, {0}) functional calculus from the Θ(Soθ\r) functional calculus.

Lemma 4.7. Let θ ∈ (ω, π/2) and r ∈ [0, R). If (φn)n is a sequence in Θ(Soθ\r)

and there exists f ∈ H∞(Soθ\r) such that the following hold:

(1) supn ‖φn‖∞ <∞;
(2) supn ‖φn(TR)‖ <∞;
(3) φn converges to f uniformly on compacts subsets of Soθ\r,

then limn φn(TR)u exists in X for all u ∈ X . Moreover, if f ∈ Θ(Soθ\r), then

limn φn(TR)u = f(TR)u for all u ∈ X .

This suggests the following definition.

Definition 4.8 (H∞(Soθ\r, {0}) functional calculus). Given both θ ∈ (ω, π/2) and

r ∈ [0, R), the operator T has a bounded H∞(Soθ\r, {0}) functional calculus if there

exists c > 0 such that

‖φ(T
R
)‖ ≤ c‖φ‖∞

for all φ ∈ Θ(Soθ\r). If T has a bounded H∞(Soθ\r, {0}) functional calculus and

f ∈ H∞(Soθ\r, {0}), then define f(T ) ∈ L(X) by

f(T )u = lim
n

(fφn)(T
R
)P

R(T )u+ f(0)PN(T )u (4.3)

for all u ∈ X , where (φn)n is a uniformly bounded sequence in Θ(Soθ\r) that con-

verges to 1 uniformly on compact subsets of Soθ\r.

The operator in (4.3) is well-defined by Lemma 4.7. The requirement that T has
a bounded H∞(Soθ\r, {0}) functional calculus implies that

‖f(T )‖ ≤ sup
n

‖(fφn)(TR
)‖ + |f(0)| ≤ c sup

n
‖fφn‖L∞(So

θ\r
) + |f(0)| ≤ c‖f‖∞

for all f ∈ H∞(Soθ\r, {0}), where c is the constant from Definition 4.8.

Lemma 4.7 also shows that the operators defined by (4.1) and (4.3) coincide

on R(T ) for functions in Θ(Soθ\r) ∩ H
∞(Soθ\r, {0}). Furthermore, if Ω is an open

set in C∞ that contains (Soθ\r) ∪ {0,∞}, then the operators defined by (2.1) and

(4.3) coincide on X for functions in H∞(Soθ\r, {0}) ∩ H(Ω) by Theorem 2.2 and

Lemma 4.5. There is also the following analogue of Theorem 3.7.

Theorem 4.9. The mapping given by (4.3) is an algebra homomorphism from

H∞(Soθ\r, {0}) into L(X) with following properties:

(1) If 1(z) = 1 for all z ∈ Soθ\r ∪ {0}, then 1(T ) = I on X;

(2) If λ ∈ C \ (Sω\R ∪ {0}) and f(z) = (λ − z)−1 for all z ∈ Soθ\r ∪ {0}, then

f(T ) = RT (λ);
(3) If (fn)n is a sequence in H∞(Soθ\r, {0}) and there exists f ∈ H∞(Soθ\r, {0})

such that the following hold:

(i) supn ‖fn‖∞ <∞;

(ii) supn ‖fn(T )‖ <∞;

(iii) fn converges to f uniformly on compacts subsets of Soθ\r ∪ {0},

then ‖f(T )‖ ≤ supn ‖fn(T )‖ and limn fn(T )u = f(T )u for all u ∈ X.
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Proof. Let f, g ∈ H∞(Soθ\r, {0}). If u ∈ R(T ), then using Lemma 4.5 and following

the proof of Theorem 3.7, we obtain (fg)(T )u = f(T )g(T )u. If u ∈ N(T ), then

(fg)(T )u = f(0)g(0)u = f(0)g(T )u = f(T )g(T )u.

It remains to prove (1) and (3), since (2) holds by the coincidence of (2.1) and
(4.3). If φn(z) = (1 + i

rnz)
−1 for all z ∈ Soθ\r and n ∈ N, then Lemmas 4.2 and 4.5

imply that

1(T )u = lim
n
φn(TR

)P
R(T )u+ PN(T )u = lim

n
(I + i

rnT )−1
P

R(T )u+ PN(T )u = u

for all u ∈ X . Now let (fn)n be a sequence in H∞(Soθ\r, {0}) with the properties

listed in the theorem. If u ∈ R(T ), then using Lemma 4.7 and following the proof
of Theorem 3.7, we obtain limn fn(T )u = f(T )u. If u ∈ N(T ), then

lim
n
fn(T )u = lim

n
fn(0)u = f(0)u = f(T )u,

which completes the proof. �

All of the results in Section 3.2 have a natural analogue for type Sω\R operators

with restrictions to R(T ) where required. The proofs are essentially the same.
In particular, the McIntosh approximation technique goes over directly. Local
quadratic estimates are then restricted to R(T ), as below.

Definition 4.10. Let θ ∈ (ω, π/2) and r ∈ [0, R). Given both ψ ∈ Ψ(Soθ\r) and

φ ∈ Φ(Soθ\r), define the local quadratic norm ‖ · ‖T
R
,ψ,φ by

‖u‖T
R
,ψ,φ =

(
∫ 1

0

‖ψt(TR
)u‖2 dt

t
+ ‖φ(T

R
)u‖2

)

1

2

for all u ∈ X . The operator T satisfies (ψ, φ) quadratic estimates on R(T ) if there

exists c > 0 such that ‖u‖T
R
,ψ,φ ≤ c‖u‖ for all u ∈ R(T ), and reverse (ψ, φ) quadratic

estimates on R(T ) if there exists c > 0 such that ‖u‖ ≤ c‖u‖T
R
,ψ,φ for all u ∈ R(T )

satisfying ‖u‖T
R
,ψ,φ <∞.

The next result is an immediate consequence of the analogue of Proposition 3.13
for type Sω\R operators.

Proposition 4.11. Let ω ∈ [0, π/2) and R > 0. Let T be an operator of type Sω\R
on X . If there exists θ0 ∈ (ω, π/2), r0 ∈ [0, R), nondegenerate ψ, ψ̃ ∈ Ψ(Soθ0\r0)

and nondegenerate φ, φ̃ ∈ Φ(Soθ0\r0) such that T satisfies (ψ, φ) quadratic estimates

on R(T ) and reverse (ψ̃, φ̃) quadratic estimates on R(T ), then T has a bounded
H∞(Soθ\r, {0}) functional calculus for all θ ∈ (ω, π/2) and r ∈ [0, R).

The full equivalence also holds for dual pairs of operators of type Sω\R.

Theorem 4.12. Let ω ∈ [0, π/2) and R > 0. Let 〈T, T ′〉 be a dual pair of operators

of type Sω\R on 〈X,X ′〉. The following statements are equivalent:

(1) The operators T and T ′ satisfy (ψ, φ) quadratic estimates on R(T ) and

R(T ′) for all ψ in Ψ(Soθ\r) and φ in Φ(Soθ\r) and all θ in (ω, π/2) and r in

[0, R);

(2) There exists θ in (ω, π/2), r in [0, R), nondegenerate ψ, ψ̃ in Ψ(Soθ\r) and

nondegenerate φ, φ̃ in Φ(Soθ\r) such that T satisfies (ψ, φ) quadratic esti-

mates on R(T ) and T ′ satisfies (ψ̃, φ̃) quadratic estimates on R(T ′);
(3) The operator T has a bounded H∞(Soθ\r, {0}) functional calculus for all θ

in (ω, π/2) and r in [0, R);
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(4) There exists θ in (ω, π/2) and r in [0, R) such that the operator T has a

bounded H∞(Soθ\r, {0}) functional calculus.

A dual pair 〈T, T ′〉 of operators of type Sω\R is also a dual pair of operators
of type Sω, as defined in [5]. Therefore, we conclude that Theorem 4.12 and the
standard equivalence for operators of type Sω, as in Theorem 2.4 of [5], show
that local quadratic estimates are equivalent to standard quadratic estimates for
operators of type Sω\R.
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