YET ANOTHER CONSTRUCTION OF THE CENTRAL EXTENSION OF THE LOOP GROUP

MICHAEL K. MURRAY AND DANIEL STEVENSON

Abstract

We give a characterisation of central extensions of a Lie group G by \mathbb{C}^{\times}in terms of a differential two-form on G and a differential one-form on $G \times G$. This is applied to the case of the central extension of the loop group.

1. Introduction

Let G and A be groups. A central extension of G by A is another group \hat{G} and a homomorphism $\pi: \hat{G} \rightarrow G$ whose kernel is isomorphic to A and in the center of \hat{G}. Note that because A is in the center of \hat{G} it is necessarily abelian. We will be interested ultimately in the case that $G=\Omega(K)$ the loop group of all smooth maps from the circle S^{1} to a Lie group K with pointwise multiplication but the theory developed applies to any Lie group G.

2. Central extension of groups

Consider first the case when G is just a group and ignore questions of continuity or differentiability. In this case we can choose a section of the map π. That is a map $s: G \rightarrow \hat{G}$ such that $\pi(s(g))=g$ for every $g \in G$. From this section we can construct a bijection

$$
\phi: A \times G \rightarrow \hat{G}
$$

by $\phi(g, a)=\iota(a) s(g)$ where $\iota: A \rightarrow \hat{G}$ is the identification of A with the kernel of π. So we know that as a set \hat{G} is just the product $A \times G$. However as a group \hat{G} is not generally a product. To see what it is note that $\pi(s(g) s(h))=\pi(s(g)) \pi(s(h))=g h=\pi(s(g h))$ so that $s(g) s(h)=$ $c(g, h) s(g h)$ where $c: G \times G \rightarrow A$. The bijection $\phi: A \times G \rightarrow \hat{G}$ induces a product on $A \times G$ for which ϕ is a homomorphism. To calculate this

[^0]product we note that
\[

$$
\begin{aligned}
\phi(a, g) \phi(b, h) & =\iota(a) s(g) \iota(b) s(h) \\
& =\iota(a b) s(g) s(h) \\
& =\iota(a b) c(g h) s(g h) .
\end{aligned}
$$
\]

Hence the product on $A \times G$ is given by $(a, g) \star(b, h)=(a b c(g, h) g h)$ and the map ϕ is a group isomorphism between \hat{G} and $A \times G$ with this product.

Notice that if we choose a different section \tilde{s} then $\tilde{s}=s h$ were $h: G \rightarrow A$.

It is straightforward to check that if we pick any $c: G \times G \rightarrow A$ and define a product on $A \times G$ by $(a, g) \star(b, h)=(a b c(g, h) g h)$ then this is an associative product if and only if c satisfies the cocycle condition

$$
c(g, h) c(g h, k)=c(g, h k) c(h, k)
$$

for all $g \Gamma h$ and k in G.
If we choose a different section \tilde{s} then we must have $\tilde{s}=s d$ for some $d: G \rightarrow A$. If \tilde{c} is the cocycle determined by \tilde{s} then a calculation shows that

$$
\begin{equation*}
c(g, h)=\tilde{c}(g, h) d(g h) d(g)^{-1} d(h)^{-1} . \tag{1}
\end{equation*}
$$

We have now essentially shown that all central extensions of G by A are determined by cocycles c modulo identifying two that satisfy the condition (1). Let us recast this result in a form that we will see again in this talk.

Define maps $d_{i}: G^{p+1} \rightarrow G^{p}$ by

$$
d_{i}\left(g_{1}, \ldots, g_{p+1}\right)= \begin{cases}\left(g_{2}, \ldots, g_{p+1}\right), & i=0 \tag{2}\\ \left(g_{1}, \ldots, g_{i-1} g_{i}, g_{i+1}, \ldots, g_{p+1}\right), & 1 \leq i \leq p-1 \\ \left(g_{1}, \ldots, g_{p}\right), & i=p\end{cases}
$$

If $M^{p}(G ; A)=\operatorname{Map}\left(G^{p}, A\right)$ then we define $\delta: M^{p}(G ; A) \rightarrow M^{p-1}(G ; A)$ by $\delta(c)=\left(c \circ d_{1}\right)\left(c \circ d_{2}\right)^{-1}\left(c \circ d_{3}\right) \ldots$ This satisfies $\delta^{2}=1$ and defines a complex

$$
M^{0}(G ; A) \xrightarrow{\delta} M^{1}(G ; A) \xrightarrow{\delta} M^{2}(G ; A) \xrightarrow{\delta} \ldots
$$

The cocycle condition can be rewritten as $\delta(c)=1$ and the condition that two cocycles give rise to the same central extension is that $c=$ $\tilde{c} \delta(d)$. If we define

$$
H^{p}(G ; A)=\frac{\text { kernel } \delta: M^{p}(G ; A) \rightarrow M^{p-1}(G ; A)}{\text { image } \delta: M^{p+1}(G ; A) \rightarrow M^{p}(G ; A)}
$$

then we have shown that central extensions of G by A are classified by $H^{2}(G ; A)$.

3. Central extensions of Lie groups

In the case that G is a topological or Lie group it is well-known that there are interesting central extensions for which no continuous or differentiable section exists. For example consider the central extension

$$
\mathbb{Z}_{2} \rightarrow S U(2)=\operatorname{Spin}(3) \rightarrow S O(3)
$$

of the three dimensional orthogonal group $S O(3)$ by its double cover $\operatorname{Spin}(3)$. Here $S U(2)$ is known to be the three sphere but if a section existed then we would have $S U(2)$ homeomorphic to $\mathbb{Z}_{2} \times S O(3)$ and hence disconnected.

From now on we will concentrate on the case when $A=\mathbb{C}^{\times}$. Then $\hat{G} \rightarrow G$ can be thought of as a \mathbb{C}^{\times}principal bundle and a section will only exist if this bundle is trivial. The structure of the central extension as a \mathbb{C}^{\times}bundle is important in what follows so we digress to discuss them in more detail.
3.1. \mathbb{C}^{\times}bundles. Let $P \rightarrow X$ be a \mathbb{C}^{\times}bundle over a manifold X. We denote the fibre of P over $x \in X$ by P_{x}. Recall [1] that if P is a \mathbb{C}^{\times}bundle over a manifold X we can define the dual bundle P^{*} as the same space P but with the action $p^{*} g=\left(p g^{-1}\right)^{*}$ and Γ that if Q is another such bundle Γ we can define the product bundle $P \otimes Q$ by $(P \otimes Q)_{x}=\left(P_{x} \times Q_{x}\right) / \mathbb{C}^{\times}$where \mathbb{C}^{\times}acts by $(p, q) w=\left(p w, q w^{-1}\right)$. We denote an element of $P \otimes Q$ by $p \otimes q$ with the understanding that $(p w) \otimes q=p \otimes(q w)=(p \otimes q) w$ for $w \in \mathbb{C}^{\times}$. It is straightforward to check that $P \otimes P^{*}$ is canonically trivialised by the section $x \mapsto p \otimes p^{*}$ where p is any point in P_{x}.

If P and Q are \mathbb{C}^{\times}bundles on X with connections μ_{P} and μ_{Q} then $P \otimes Q$ has an induced connection we denote by $\mu_{P} \otimes \mu_{Q}$. The curvature of this connection is $R_{P}+R_{Q}$ where R_{P} and R_{Q} are the curvatures of μ_{P} and μ_{Q} respectively. The bundle P^{*} has an induced connection whose curvature is $-R_{P}$.

Recall the maps $d_{i}: G^{p} \rightarrow G^{p-1}$ defined by (2). If $P \rightarrow G^{p}$ is a \mathbb{C}^{\times} bundle then we can define a \mathbb{C}^{\times}bundle over G^{p+1} denoted $\delta(P)$ by

$$
\delta(P)=\pi_{1}^{-1}(P) \otimes \pi_{2}^{-1}(P)^{*} \otimes \pi_{3}^{-1}(P) \otimes \ldots
$$

If s is a section of P then it defines $\delta(s)$ a section of $\delta(P)$ and if μ is a connection on P with curvature R it defines a connection on $\delta(P)$ which we denote by $\delta(\mu)$. To define the curvature of $\delta(\mu)$ let us denote
by $\Omega^{q}\left(G^{p}\right)$ the space of all differentiable q forms on G^{p}. Then we define a map

$$
\begin{equation*}
\delta: \Omega^{q}\left(G^{p}\right) \rightarrow \Omega^{q}\left(G^{p+1}\right) \tag{3}
\end{equation*}
$$

by $\delta=\sum_{i=0}^{p} d_{i}^{*} \Gamma$ the alternating sum of pull-backs by the various maps $d_{i}: G^{p+1} \rightarrow G^{p}$. Then the curvature of $\delta(\mu)$ is $\delta(R)$. If we consider $\delta(\delta(P))$ it is a product of factors and every factor occurs with its dual so $\delta(\delta(P))$ is canonically trivial. If s is a section of P then under this identification $\delta \delta(s)=1$ and moreover if μ is a connection on P then $\delta \delta(\mu)$ is the flat connection on $\delta \delta(P)$ with respect to $\delta(\delta(s))$.

4. Central extensions

Let G be a Lie group and consider a central extension

$$
\mathbb{C}^{\times} \rightarrow \hat{G} \xrightarrow{\pi} G .
$$

Following Brylinski and McLaughlin [2] we think of this as a \mathbb{C}^{\times}bundle $\hat{G} \rightarrow G$ with a product $M: \hat{G} \times \hat{G} \rightarrow \hat{G}$ covering the product $m=$ $d_{1}: G \times G \rightarrow G$.

Because this is a central extension we must have that $M(p z, q w)=$ $M(p, q) z w$ for any $p, q \in P$ and $z, w \in \mathbb{C}^{\times}$. This means we have a section s of $\delta(P)$ given by

$$
s(g, h)=p \otimes M(p, q) \otimes q
$$

for any $p \in P_{g}$ and $q \in P_{h}$. This is well-defined as $p w \otimes M(p w, q z) \otimes q z=$ $p w \otimes M(p, q)(w z)^{-1} \otimes q z=p \otimes M(p, q) \otimes q$. Conversely any such section gives rise to an M.

Of course we need an associative product and it can be shown that M being associative is equivalent to $\delta(s)=1$. To actually make \hat{G} into a group we need more than multiplication we need an identity $\hat{e} \in \hat{G}$ and an inverse map. It is straightforward to check that if $e \in G$ is the identity then Γ because $M: \hat{G}_{e} \times \hat{G}_{e} \rightarrow \hat{G}_{e} \Gamma$ there is a unique $\hat{e} \in \hat{G}_{e}$ such that $M(\hat{e}, \hat{e})=\hat{e}$. It is also straightforward to deduce the existence of a unique inverse.

Hence we have the result from [2] that a central extension of G is a \mathbb{C}^{\times}bundle $P \rightarrow G$ together with a section s of $\delta(P) \rightarrow G \times G$ such that $\delta(s)=1$. In [2] this is phrased in terms of simplicial line bundles. Note that this is a kind of cohomology result analogous to that in the first section. We have an object (in this case a \mathbb{C}^{\times}bundle) and δ of the object is 'zero' i.e. trivial as a \mathbb{C}^{\times}bundle.

For our purposes we need to phrase this result in terms of differential forms. We call a connection for $\hat{G} \rightarrow G \Gamma$ thought of as a \mathbb{C}^{\times} bundle Γ a connection for the central extension. An isomorphism of
central extensions with connection is an isomorphism of bundles with connection which is a group isomorphism on the total space \hat{G}. Denote by $C(G)$ the set of all isomorphism classes of central extensions of G with connection.

Let $\mu \in \Omega^{1}(\hat{G})$ be a connection on the bundle $\hat{G} \rightarrow G$ and consider the tensor product connection $\delta(\mu)$. Let $\alpha=s^{*}(\delta(\mu))$. We then have that

$$
\begin{aligned}
\delta(\alpha) & =\left(\delta(s)^{*}\right)(\delta(\mu)) \\
& =(1)^{*}\left(\delta^{2}(\mu)\right) \\
& =0
\end{aligned}
$$

as $\delta^{2}(\mu)$ is the flat connection on $\delta^{2}(P)$. Also $d \alpha=s^{*}(d \delta(\mu))=\delta(R)$.
Let $\Gamma(G)$ denote the set of all pairs (α, R) where R is a closed $\Gamma 2 \pi i$ integral Γ two form on G and α is a one-form on $G \times G$ with $\delta(R)=d \alpha$ and $\delta(\alpha)=0$.

We have constructed a map $C(G) \rightarrow \Gamma(G)$. In the next section we construct an inverse to this map by showing how to define a central extension from a pair (α, R). For now notice that isomorphic central extensions with connection clearly give rise to the same (α, R) and that if we vary the connection Γ which is only possible by adding on the pullback of a one-form η from $G \Gamma$ then we change (α, R) to $(\alpha+\delta(\eta), R+d \eta)$.
4.1. Constructing the central extension. Recall that given R we can find a principal \mathbb{C}^{\times}bundle $P \rightarrow G$ with connection μ and curvature R which is unique up to isomorphism. It is a standard result in the theory of bundles that if $P \rightarrow X$ is a bundle with connection μ which is flat and $\pi_{1}(X)=0$ then P has a section $s: X \rightarrow P$ such that $s^{*}(\mu)=0$. Such a section is not unique of course it can be multiplied by a (constant) element of \mathbb{C}^{\times}. As our interest is in the loop group G which satisfies $\pi_{1}(G)=0$ we shall assume Γ from now on Γ that $\pi_{1}(G)=0$. Consider now our pair (R, α) and the bundle P. As $\delta(R)=d \alpha$ we have that the connection $\delta(w)-\pi^{*}(\alpha)$ on $\delta(P) \rightarrow G \times G$ is flat and hence (as $\pi_{1}(G \times G)=0$) we can find a section s such that $s^{*}(\delta(w))=\alpha$.

The section s defines a multiplication by

$$
s(p, q)=p \otimes M(p, q)^{*} \otimes q .
$$

Consider now $\delta(s)$ this satisfies $\delta(s)^{*}(\delta(\delta(w)))=\delta\left(s^{*}(\delta(w))=\delta(\alpha)=\right.$ 0 . On the other hand the canonical section 1 of $\delta(\delta(P))$ also satisfies this so they differ by a constant element of the group. This means that there is a $w \in \mathbb{C}^{\times}$such that for any $p \Gamma q$ and r we must have

$$
M(M(p, q), r)=w M(p, M(q, r))
$$

Choose $p \in \hat{G}_{e}$ where e is the identity in G. Then $M(p, p) \in \hat{G}_{e}$ and hence $M(p, p)=p z$ for some $z \in \mathbb{C}^{\times}$. Now let $p=q=r$ and it is clear that we must have $w=1$.

So from (α, R) we have constructed P and a section s of $\delta(P)$ with $\delta(s)=1$. However s is not unique but this is not a problem. If we change s to $s^{\prime}=s z$ for some constant $z \in \mathbb{C}^{\times}$then we have changed M to $M^{\prime}=M z$. As \mathbb{C}^{\times}is central multiplying by z is an isomorphism of central extensions with connection. So the ambiguity in s does not change the isomorphism class of the central extension with connection. Hence we have constructed a map

$$
\Gamma(G) \rightarrow C(G)
$$

as required. That it is the inverse of the earlier map follows from the definition of α as $s^{*}(\delta(\mu))$ and the fact that the connection on P is chosen so its curvature is R.

5. Conclusion: Loop groups

In the case where $G=L(K)$ there is a well known expression for the curvature R of a left invariant connection on $L(K)$ - see [5]. We can also write down a 1-form α on $L(K) \times L(K)$ such that $\delta(R)=d \alpha$ and $\delta(\alpha)=0$. We have:

$$
\begin{aligned}
R(g)(g X, g Y) & =\frac{1}{4 \pi^{2}} \int_{S^{1}}\left\langle X, \partial_{\theta} Y\right\rangle d \theta \\
\alpha\left(g_{1}, g_{2}\right)\left(g_{1} X_{1}, g_{2} X_{2}\right) & =\frac{1}{4 \pi^{2}} \int_{S^{1}}\left\langle X_{1},\left(\partial_{\theta} g_{2}\right) \partial_{\theta} g_{2}^{-1}\right\rangle d \theta .
\end{aligned}
$$

Here \langle,$\rangle is the Killing form on \mathfrak{k}$ normalised so the longest root has length squared equal to 2 and ∂_{θ} denotes differentiation with respect to $\theta \in S^{1}$. Note that R is left invariant and that α is left invariant in the first factor of $G \times G$. It can be shown that these are the R and α arising in [3].

In [4] we apply the methods of this talk to give an explicit construction of the 'string class' of a loop group bundle and relate it to earlier work of Murray on calorons.

References

[1] J.-L. Brylinski, Loop spaces, characteristic classes and geometric quantization, Progr. Math., 107, Birkhäuser Boston, Boston, MA, 1993.
[2] J.-L. Brylinski and D. A. McLaughlin, The geometry of degree-four characteristic classes and of line bundles on loop spaces. I, Duke Math. J. 75 (1994), no. 3, 603-638;
[3] M. K. Murray, Another construction of the central extension of the loop group, Comm. Math. Phys. 116 (1988), 73-80
[4] M.K. Murray and D. Stevenson, Higgs fields, bundle gerbes and string structures. In preparation.
[5] A. Pressley and G. Segal, Loop groups. Oxford, Clarendon Press, 1986.
Department of Pure Mathematics, University of Adelaide, Adelaide, SA 5005, Australia

E-mail address, Michael K. Murray: mmurray@maths.adelaide. edu.au
E-mail address, Daniel Stevenson: dstevens@maths.adelaide.edu.au

[^0]: The first author acknowledges the support of the Australian Research Council.
 The second author acknowledges the support of the Australian Research Council.

