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AH. DOOLEY

ABSTRACT. We survey the theory of wrapping maps as applied
to compact groups and vector times compact semidirect products,
and give an explicit description of the e-function for compact sym-
metric spaces. The latter is globally defined.

1. INTRODUCTION

Let GG be a Lie group. The Kirillov orbit method gives a heuristic
method which relates the Euclidean Fourier transforms of coadjoint
orbits in g* to the infinitesimal characters of the irreducible represen-
tations. At its simplest, it has the following form

(1.1) it ofexp X) = [ Do),

where o is an irreducible representation of G related to the coadjoint
orbit O, e is G-invariant Liouville measure on O and j is the square
root of the Jacobian of the exponential map.

In the case of a compact Lie group, this formula is exact — for other
groups, where ¢ is infinite dimensional and O need not have compact
support, the formula needs more careful interpretation — in general,
it should be seen as an equality of distributions. The reader should
consult Kirillov’s recent survey article [11] for a detailed discussion of
the orbit method.

In [4], the author and Norman Wildberger remarked that, for com-
pact groups, the Kirillov formula follows in a simple way from the fact
that the wrapping map is a homomorphism of Banach algebras between
(say) M%(g) and M%(G). Hence M€ is the set of G-invariant measures
(Ad-invariant on g and central on (). For an Ad-invariant distribution
n of compact support on g, let ®n be a distribution on G defined for
f e C®(G), by

(@, fla = (n,].f o exp),.
The wrapping formula then states
(1'2) (1)77 xg Pv = (I)(n *g 1/),
42
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From this formula, it follows that the adjoint mapping ®' : M%(G)" —
M€(g)’is an injection of Gelfand spaces; thus, to each irreducible char-
acter of G, one obtains a character of g averaged over adjoint orbits,
that is, a mapping of the form v — [ [, €*®dpuo(¢)dv(z). From this
the Kirillov character (1.1) follows easily.

The above theorem allows us to relate the central harmonic analysis
of G to Euclidean harmonic analysis of g. This becomes particularly
interesting when one realizes that the latter can be described explicitly.
In fact, in [3], we gave the following formula for Ad-invariant convo-
lution on g. Recall that each adjoint orbit O intersects the positive
Weyl chamber t* of the Cartan subalgebra t in a unique point — A
say. Then we have

% J1y = / N\ 7, €) g de,
t
where

N()\,%f) - Z SEN W Eqy ) *TV(é-):

weW

T (&) being the projection on t of O, given by

T\ = ﬁ Z sgn ww' ey H Fua,

w,w' eEW acdt

where F,, is the distribution on t given by Lebesgue measure on the ray
through a.

In work currently in progress, these results are being extended in two
directions — to some non-compact groups, and to compact symmetric
spaces. I will describe these results in the next section and in section
4.

2. SEMI-DIRECT PRODUCT GROUPS

In [6], we extend the wrapping map formula to G =V x K, V a
vector group, K a compact group. Here already, there is a substan-
tial technical hurdle to be overcome, in the sense that formula (1.2)
requires the convolution of Ad-invariant distributions (or measures) to
be defined, and there are no non-trivial G-invariant distributions of
compact support, as the G-orbits in g (and in g*) are not compact.

This problem can be overcome by the following device. Notice that
conjugacy classes, adjoint orbits and coadjoint orbits are all fibred
spaces over K-orbits.

I will illustrate this for adjoint orbits only. For each A € €, split
V into two subspaces, V4 = {v € V : A-v = v} and V4 = Vi (the
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orthogonal complement with respect to a K-invariant inner product)
— where A - v is the derivative of the K-action. Then for v € V the
orbit GG - A is fibred over the compact orbit K -v, the fibre at k- A being
kA

Now we replace the G-invariant distributions of compact support on
G with a family of distributions on g = ¢ + V which are K-invariant,
compactly supported in the ¢-direction and for each A in this support,
are given by an invariant mean (suitably normalized) on V4. It turns
out that such distributions:

(i) wrap to similarly defined distributions on conjugacy classes,

(ii) belong to the dual of a suitable G-stable family of functions on g
— they are C'*™° in the £-direction and for each A € &, are almost
periodic in the V4 direction,

(iii) have a natural notion of convolution (using the above duality in
a standard way),

(iv) have as Fourier transforms, similar distributions on g*.

The formula (1.2) continues to hold for V' x K with the above defi-
nitions. This leads to a new proof of the Lipsman character theorem
[13]. The full details are somewhat technical. We may interpret the
above results as follows. Each of the conjugacy classes, adjoint orbits
and coadjoint orbits possesses a natural convolution on hypergroup
structures. Denote the associated hypergroups as Conj, Adj and Coadj
respectively. Now ® provides a homomorphism & : Adj — Conj and
we may identify Coadj as the dual hypergroup of Adj. The Lipsman
character may thus be interpreted as the mapping ®' from

Conj* — Coadj = (Adj)*.

It is possible also to give very explicit formulae for the hypergroup
structures of Adj and Coadj: they are no longer identical, in contrast
to the compact case. The gist of this structure is that the compact
orbits in V' (or V*) are convolved as in section 1, and one forms the
sums of the fibres. Full details are in [6].

3. GENERALIZATIONS OF THE DUFLO ISOMORPHISM

The wrapping map formula (1.2) can be considered as a global ver-
sion of the Duflo isomorphism. To see this, notice that the Ad-invariant
distributions of support {0} in g wrap to central distributions of sup-
port {e} in G. The latter may be identified with ju(g), the centre of
the universal enveloping algebra; the former with S (g), the centre of
the symmetric algebra of g.
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Recently, far reaching generalizations of the Duflo isomorphism have
been proved by Maxim Kontseivich [12]. He proves that for a Poisson
manifold (X,7), there is a family %, of star products which deform
products (at 7 = 0) to convolutions (at r = 1).

However, this series can only be shown to converge near {0}, and
it is of considerable interest to ask how far they can be extended, and
if global versions such as (1.2) are available in special cases. Andler,
Dvorsky and Sahi [1] recently showed, using [12], that every bi-invariant
differential operator on a Lie group is locally solvable.

Actually, in the case where X = G/H, G a Lie group and H the set
of fixed points of an involution ¢, Kontseivich’s construction coincides
with that of Rouviere [14].

Rouviere’s theory is as follows. We may write g = h+s, where h and
s are the eigenspaces of o (by which I denote also the differential of the
involution, by abuse of notation) of eigenvalues +1 and —1 respectively.
Then b is the Lie algebra of H, and p may be identified with the tangent
space of G/H. There is, furthermore, an exponential map Exp : p —
G/H. We take an H-invariant neighbourhood s of o in p on which
Exp is a diffeomorphism. For X € s, let j(X) be a suitable square
root of J,o(Exp)(X). (We leave aside temporarily the existence of a
smooth real-valued square root — in the case of interest below, it can
be explicitly calculated.) Then Ad|g : p — p and j(Ad(h)X) = j(X)
for all x € p, h € H. We may thus define a version of wrapping using
the same ideas as above: for an H-invariant distribution 7 (of compact
support) on p, and for f € C*(G/H), let

(n, fha/m = (n, j.f o Exp),.

If now &£, n are supported in s, and are such that & x, n is also sup-
ported in s, we can ask whether we have a formula such as “®(&*,n) =
®(&) *q/m ©(n)”. It turns out that the formula requires some modifi-
cation and that it should read

(3.1) D€ #pen) = () *a/u P(n).

In this formula, e(X,Y’) is a certain function of two variables on s X s,
and £ *,,. 7 is “twisted” convolution given, for &, n H-invariant and
locally integrable, by

(3.2) (€t 1) (X) = /p V(X — Y)e(X,Y)dY.

(This formula needs an obvious adaptation in order for it to work for
distributions — see [14].)

It is instructive to understand where the e-function comes from, as
we will be calculating it in some special cases in the next section. We



46 A.H. DOOLEY

write the right-hand side of (3.1), for u € C*°(G/H), a
@(©) s tnn) = [ [ S(O@Sm)u(r)dody
a/HJarn

= [ [€C0mmi (05 )u(Exp X Expy)axay,

SJS
We now claim that there exist h,k € H so that Exp X ExpY =
Exp(h.X + k.Y). Accepting this for the moment, consider the change

of variables (h.X,k.Y) — (X,Y). Denote the Jacobian of this change
of variables by ¢(X,Y"). Then the integral transforms to

[[g(th)n(le)j(th)j(k1Y)¢(X, Y)u(Exp(X +Y))dXdY.

Now 7, £ and n are all H-invariant, so we obtain

//5 X);(;{;i/’(X’ Y)(j.u o Exp)(X +Y)dXdY.
Letting
)= 2000,

we obtain the right-hand side.

Rouviére is able to calculate e(X, Y) as an infinite power series, which
converges in a neighbourhood of o in s.

To see why the elements h and k above exist, consider the Campbell-
Baker-Hausdorff series for Exp.

Exp X BxpY =Exp(X +Y +L[X, V] + C(X[X, Y]+ X))+ ).

Now the hypothesis that ¢ is an involutive automorphism of g implies
that [, p] C p, and [p, p] C h. Thus we may rearrange the above series
to get

X+é[[X,Y],X]+---+Y—1[[X,Y],Y]+---+---+H(X,Y)

6
= (I+%[X,Y]+---+)X+(I—%[X,Y]+---+)Y+H(X,Y),

= hX+kY+H,

where H € h.
The result now follows. (For a fuller proof, and for computations of
the series, see [14].)
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4. SYMMETRIC SPACES OF THE COMPACT TYPE

The question I would like to address in this section is: can we find a
global version of Rouviere’s formula in the case of a symmetric space
of the compact type?

Let (G, K) be a Riemannian symmetric pair of the compact type.
Then K is the set of fixed points of the Cartan involution o, and
g = £+ p is the Cartan decomposition. Choose a maximal abelian
subalgebra g of p and let A be the corresponding subgroup of G. We
then have the Cartan decomposition of G, G = KA, K, where A, =
exp(a;). Here a, is the positive Weyl chamber for a set of positive
restricted roots ®. Let m, denote the multiplicity of o € ;.

We may identify p as the tangent space at eK of X = G/K, and
have the standard exponential map Exp : p — X. The square root of
the Jacobian of Exp is Adg invariant of p, and is given by

j(H) = agj [%} e , (H) € a,.

For X,V € p, let X = Ad(k))H,, Y = Ad(k))H, and X +Y =
Ad(k3)Hs. We define

e(X,Y)

M2

J(H1)j(H>) cos L (a(H1)+a® (Hz)+a™' (Hs))
JI(HB) : Haed)j' Hw,w’eWr |: C2M(H1)+Oéw(H2)+Oéw,(H3) )

where W, denotes the restricted Weyl group and o (H) is the image
of the root a by the Wi.-action. The following theorem then holds.
Theorem (i) e is defined on all of p.

(ii) Let g and v be K-invariant distributions of compact support on p.
Then

Qp xx Pv =D *p, V).

Details of the proof of this theorem will appear in [7]. In order to
prove it, we need to find explicitly the hypergroup convolution of K-
orbits in p and of K-orbits in X. The e-function is then found by
comparing the two structures.

The gist of the calculation is already present in the case of the sphere
X = 50(3)/S0O(2), which is discussed in [15]. We briefly describe this
calculation here.

Let us discuss the convolution of two circles (radii r; and ) in the
plane. (This corresponds to K-orbits in p.) One needs to write

ry 4 roe?? = ret
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and then compute “dr”in terms of “df”. (It is obvious that the resulting
measure is rotationally invariant.) A little first year calculus yields
2r dr  df

21179 8in T T
and one identifies the denominator on the left-hand side as the area
of a triangle in the complex plane with vertices at 0, 7, and r.¢?. By
Heron’s formula, this is given also by [(r2— (r; —r2)2)((r1 +72)2 —r2)]z,
which we may write as

[H(rirl irz)r,

+
where the product is over all choices of + signs.

Thus, the convolution of two circles of radius ry, ry is a rotationally
invariant density given by

Jrir (r) = 2

Tt Nerinna®
+

If one now carries out the same calculation on the surface of the sphere
S? — there is a convenient version of Heron’s formula for spherical
geodesic triangles — one obtains the density function:

N

sinr [(cos(ry — r2) — cosr)(cosT — cos(ry + 72))]

Gri,ro (T) = n :
i sinr; sinrsy

1 i 1
= —&{HCOS§(T:|:T1:|:T2):|
+

ol

T sinry sinry

using the half-angle formula for cosine.
The e-function is now given by the ratio g/ f

e =

1
sinr HFCOS%(Tiﬁﬂ:m)]?

. . 1
sinrysinry - s(rxri£1y)

In essence, the proof for the symmetric space case is to reduce ev-
erything to two dimensions and to use these elementary ideas.

For the n-dimensional sphere, one obtains
n—3

2cos(r £ +15)/2| °
Q(X, Y) = H X(|7‘1*7‘2|,7‘1+T2) (7")

- (r+r +mr)

These formulae will have interesting consequences for harmonic anal-
ysis — for example in finding fundamental solutions of K-invariant
differential operators on X.
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One can also prove a compact version of the Gindikin-Karpilevic
formula for the Harish-Chandra c-function.

W)= [T calro).

where the right-hand side is the c-function for each of the symmetric
spaces Go/K,, a € ®F. Tt seems most likely that the proof will also
go through in the non-compact case and yield an elementary proof of
this formula.
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