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Abstract. We survey the theory of wrapping maps as applied

to compact groups and vector times compact semidirect products,

and give an explicit description of the e-function for compact sym-

metric spaces. The latter is globally de�ned.

1. Introduction

Let G be a Lie group. The Kirillov orbit method gives a heuristic
method which relates the Euclidean Fourier transforms of coadjoint
orbits in g

� to the in�nitesimal characters of the irreducible represen-
tations. At its simplest, it has the following form

j(X)tr �(exp X) =

Z
O

ei�(X)d�O(�);(1.1)

where � is an irreducible representation of G related to the coadjoint
orbit O, �O is G-invariant Liouville measure on O and j is the square
root of the Jacobian of the exponential map.
In the case of a compact Lie group, this formula is exact | for other

groups, where � is in�nite dimensional and O need not have compact
support, the formula needs more careful interpretation | in general,
it should be seen as an equality of distributions. The reader should
consult Kirillov's recent survey article [11] for a detailed discussion of
the orbit method.
In [4], the author and Norman Wildberger remarked that, for com-

pact groups, the Kirillov formula follows in a simple way from the fact
that the wrapping map is a homomorphism of Banach algebras between
(say)MG(g) andMG(G). HenceMG is the set of G-invariant measures
(Ad-invariant on g and central on G). For an Ad-invariant distribution
� of compact support on g, let �� be a distribution on G de�ned for
f 2 C1(G), by

h��; fiG = h�; j:f � expig:

The wrapping formula then states

�� �G �� = �(� �g �):(1.2)
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From this formula, it follows that the adjoint mapping �0 :MG(G)0 !
MG(g)0 is an injection of Gelfand spaces; thus, to each irreducible char-
acter of G, one obtains a character of g averaged over adjoint orbits,
that is, a mapping of the form � 7!

R R
O
ei�(x)d�O(�)d�(x). From this

the Kirillov character (1.1) follows easily.
The above theorem allows us to relate the central harmonic analysis

of G to Euclidean harmonic analysis of g. This becomes particularly
interesting when one realizes that the latter can be described explicitly.
In fact, in [3], we gave the following formula for Ad-invariant convo-
lution on g. Recall that each adjoint orbit O intersects the positive
Weyl chamber t

+ of the Cartan subalgebra t in a unique point | �
say. Then we have

�� � �
 =

Z
t+

N(�; 
; �)�� d�;

where

N(�; 
; �) =
X
w2W

sgnw ew� � T
(�);

T�(�) being the projection on t of O�, given by

T� =
1

jW j

X
w;w02W

sgnww0ew�
Y
�2�+

Fw0�;

where F� is the distribution on t given by Lebesgue measure on the ray
through �.
In work currently in progress, these results are being extended in two

directions | to some non-compact groups, and to compact symmetric
spaces. I will describe these results in the next section and in section
4.

2. Semi-direct product groups

In [6], we extend the wrapping map formula to G = V o K, V a
vector group, K a compact group. Here already, there is a substan-
tial technical hurdle to be overcome, in the sense that formula (1.2)
requires the convolution of Ad-invariant distributions (or measures) to
be de�ned, and there are no non-trivial G-invariant distributions of
compact support, as the G-orbits in g (and in g

�) are not compact.
This problem can be overcome by the following device. Notice that

conjugacy classes, adjoint orbits and coadjoint orbits are all �bred
spaces over K-orbits.
I will illustrate this for adjoint orbits only. For each A 2 k, split

V into two subspaces, VA = fv 2 V : A � v = vg and V A = V ?
A (the
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orthogonal complement with respect to a K-invariant inner product)
| where A � v is the derivative of the K-action. Then for v 2 V the
orbit G �A is �bred over the compact orbit K �v, the �bre at k �A being
V k�A.
Now we replace the G-invariant distributions of compact support on

G with a family of distributions on g = k + V which are K-invariant,
compactly supported in the k-direction and for each A in this support,
are given by an invariant mean (suitably normalized) on V A. It turns
out that such distributions:

(i) wrap to similarly de�ned distributions on conjugacy classes,
(ii) belong to the dual of a suitable G-stable family of functions on g

| they are C1 in the k-direction and for each A 2 k, are almost
periodic in the V A direction,

(iii) have a natural notion of convolution (using the above duality in
a standard way),

(iv) have as Fourier transforms, similar distributions on g
�.

The formula (1.2) continues to hold for V o K with the above de�-
nitions. This leads to a new proof of the Lipsman character theorem
[13]. The full details are somewhat technical. We may interpret the
above results as follows. Each of the conjugacy classes, adjoint orbits
and coadjoint orbits possesses a natural convolution on hypergroup
structures. Denote the associated hypergroups as Conj, Adj and Coadj
respectively. Now � provides a homomorphism � : Adj ! Conj and
we may identify Coadj as the dual hypergroup of Adj. The Lipsman
character may thus be interpreted as the mapping �0 from

Conj� ! Coadj = (Adj)�:

It is possible also to give very explicit formulae for the hypergroup
structures of Adj and Coadj: they are no longer identical, in contrast
to the compact case. The gist of this structure is that the compact
orbits in V (or V �) are convolved as in section 1, and one forms the
sums of the �bres. Full details are in [6].

3. Generalizations of the Duflo Isomorphism

The wrapping map formula (1.2) can be considered as a global ver-
sion of the Du
o isomorphism. To see this, notice that the Ad-invariant
distributions of support f0g in g wrap to central distributions of sup-
port feg in G. The latter may be identi�ed with zu(g), the centre of
the universal enveloping algebra; the former with S�G(g), the centre of
the symmetric algebra of g.
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Recently, far reaching generalizations of the Du
o isomorphism have
been proved by Maxim Kontseivich [12]. He proves that for a Poisson
manifold (X; 
), there is a family �r of star products which deform
products (at r = 0) to convolutions (at r = 1).
However, this series can only be shown to converge near f0g, and

it is of considerable interest to ask how far they can be extended, and
if global versions such as (1.2) are available in special cases. Andler,
Dvorsky and Sahi [1] recently showed, using [12], that every bi-invariant
di�erential operator on a Lie group is locally solvable.
Actually, in the case where X = G=H, G a Lie group and H the set

of �xed points of an involution �, Kontseivich's construction coincides
with that of Rouvi�ere [14].
Rouvi�ere's theory is as follows. We may write g = h+s, where h and

s are the eigenspaces of � (by which I denote also the di�erential of the
involution, by abuse of notation) of eigenvalues +1 and �1 respectively.
Then h is the Lie algebra ofH, and pmay be identi�ed with the tangent
space of G=H. There is, furthermore, an exponential map Exp : p !

G=H. We take an H-invariant neighbourhood s of o in p on which
Exp is a di�eomorphism. For X 2 s, let j(X) be a suitable square
root of J�;0(Exp)(X). (We leave aside temporarily the existence of a
smooth real-valued square root | in the case of interest below, it can
be explicitly calculated.) Then AdjH : p ! p and j(Ad(h)X) = j(X)
for all x 2 p, h 2 H. We may thus de�ne a version of wrapping using
the same ideas as above: for an H-invariant distribution � (of compact
support) on p, and for f 2 C1

c (G=H), let

h�; fiG=H = h�; j:f � Expip:

If now �; � are supported in s, and are such that � �p � is also sup-
ported in s, we can ask whether we have a formula such as \�(� �p�) =
�(�) �G=H �(�)". It turns out that the formula requires some modi�-
cation and that it should read

�(� �p;e �) = �(�) �G=H �(�):(3.1)

In this formula, e(X; Y ) is a certain function of two variables on s� s,
and � �p;e � is \twisted" convolution given, for �, � H-invariant and
locally integrable, by

(� �p;e �)(X) =

Z
p

�(Y )�(X � Y )e(X; Y )dY:(3.2)

(This formula needs an obvious adaptation in order for it to work for
distributions | see [14].)
It is instructive to understand where the e-function comes from, as

we will be calculating it in some special cases in the next section. We
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write the right-hand side of (3.1), for u 2 C1(G=H), as

h�(�) �G=H �(�); ui =

Z
G=H

Z
G=H

�(�)(x)�(�)(y)u(xy)dxdy

=

Z
s

Z
s

�(X)�(Y )j(X)j(Y )u(ExpX ExpY )dXdY:

We now claim that there exist h; k 2 H so that ExpX Exp Y =
Exp(h:X + k:Y ). Accepting this for the moment, consider the change
of variables (h:X; k:Y ) 7! (X; Y ). Denote the Jacobian of this change
of variables by  (X; Y ). Then the integral transforms toZ

s

Z
s

�(h�1X)�(k�1Y )j(h�1X)j(k�1Y ) (X; Y )u(Exp(X + Y ))dXdY:

Now j, � and � are all H-invariant, so we obtainZ
s

Z
s

�(X)�(Y )
j(X)j(Y )

j(X + Y )
 (X; Y )(j:u � Exp)(X + Y )dXdY:

Letting

e(X; Y ) =
j(X)j(Y )

j(X + Y )
 (X; Y );

we obtain the right-hand side.
Rouvi�ere is able to calculate e(X; Y ) as an in�nite power series, which

converges in a neighbourhood of o in s.
To see why the elements h and k above exist, consider the Campbell-

Baker-Hausdor� series for Exp.

ExpX Exp Y =Exp(X+Y +
1

2
[X; Y ] +

1

6
([X[X; Y ]]+[Y [Y;X]])+ : : : ):

Now the hypothesis that � is an involutive automorphism of g implies
that [h; p] � p, and [p; p] � h. Thus we may rearrange the above series
to get

X +
1

6
[[X; Y ]; X] + � � �+ Y �

1

6
[[X; Y ]; Y ] + � � �+ � � �+H(X; Y )

= (I +
1

6
[X; Y ] + � � �+)X + (I �

1

6
[X; Y ] + � � �+)Y +H(X; Y );

= h:X + k:Y +H;

where H 2 h.
The result now follows. (For a fuller proof, and for computations of

the series, see [14].)
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4. Symmetric spaces of the compact type

The question I would like to address in this section is: can we �nd a
global version of Rouvi�ere's formula in the case of a symmetric space
of the compact type?
Let (G;K) be a Riemannian symmetric pair of the compact type.

Then K is the set of �xed points of the Cartan involution �, and
g = k + p is the Cartan decomposition. Choose a maximal abelian
subalgebra q of p and let A be the corresponding subgroup of G. We
then have the Cartan decomposition of G, G = KA+K, where A+ =
exp(a+). Here a+ is the positive Weyl chamber for a set of positive
restricted roots �+

r . Let m� denote the multiplicity of � 2 �+
r .

We may identify p as the tangent space at eK of X = G=K, and
have the standard exponential map Exp : p ! X. The square root of
the Jacobian of Exp is AdK invariant of p, and is given by

j(H) =
Y
�2�+

r

�
sin�(H)

�(H)

�m�=2

; (H) 2 a+:

For X; Y 2 p, let X = Ad (k1)H1, Y = Ad(k2)H2 and X + Y =
Ad(k3)H3. We de�ne

e(X; Y )

= j(H1)j(H2)
j(H3)

Q
�2�+

r

Q
w;w02Wr

�
cos 1

2
(�(H1)+�w(H2)+�w

0

(H3))

�(H1)+�w(H2)+�w
0 (H3)

�m�=2

;

where Wr denotes the restricted Weyl group and �w(H) is the image
of the root � by the Wr-action. The following theorem then holds.
Theorem (i) e is de�ned on all of p.
(ii) Let � and � be K-invariant distributions of compact support on p.
Then

�� �X �� = �(� �p;e �):

Details of the proof of this theorem will appear in [7]. In order to
prove it, we need to �nd explicitly the hypergroup convolution of K-
orbits in p and of K-orbits in X. The e-function is then found by
comparing the two structures.
The gist of the calculation is already present in the case of the sphere

X = SO(3)=SO(2), which is discussed in [15]. We brie
y describe this
calculation here.
Let us discuss the convolution of two circles (radii r1 and r2) in the

plane. (This corresponds to K-orbits in p.) One needs to write

r1 + r2e
i� = rei 
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and then compute \dr"in terms of \d�". (It is obvious that the resulting
measure is rotationally invariant.) A little �rst year calculus yields

2r

2r1r2 sin �

dr

�
=
d�

�

and one identi�es the denominator on the left-hand side as the area
of a triangle in the complex plane with vertices at 0, r1 and r2e

i�. By

Heron's formula, this is given also by [(r2�(r1�r2)
2)((r1+r2)

2�r2)]
1

2 ,
which we may write as �Y

�

(r � r1 � r2)

� 1

2

;

where the product is over all choices of � signs.
Thus, the convolution of two circles of radius r1, r2 is a rotationally

invariant density given by

fr1;r2(r) =
2rY

�

(r � r1 � r2)
1

2

�
[jr1�r2j;r1+r2]

(r):

If one now carries out the same calculation on the surface of the sphere
S2 | there is a convenient version of Heron's formula for spherical
geodesic triangles | one obtains the density function:

gr1;r2(r) =
sin r

�

[(cos(r1 � r2)� cos r)(cos r � cos(r1 + r2))]
1

2

sin r1 sin r2

=
1

�

sin r

sin r1 sin r2

�Y
�

cos
1

2
(r � r1 � r2)

�1

2

using the half-angle formula for cosine.
The e-function is now given by the ratio g=f

e =
sin r

sin r1 sin r2

Y
�

� 1
2
cos 1

2
(r � r1 � r2)

1
2
(r � r1 � r2)

� 1

2

:

In essence, the proof for the symmetric space case is to reduce ev-
erything to two dimensions and to use these elementary ideas.
For the n-dimensional sphere, one obtains

e(X; Y ) =

"Y
�

2 cos(r � r1 � r2)=2

(r � r1 � r2)

#n�3

2

�
(jr1�r2j;r1+r2)

(r):

These formulae will have interesting consequences for harmonic anal-
ysis | for example in �nding fundamental solutions of K-invariant
di�erential operators on X.
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One can also prove a compact version of the Gindikin-Karpilevi�c
formula for the Harish-Chandra c-function.

c(�) =
Y
�2�+

r

c�(��);

where the right-hand side is the c-function for each of the symmetric
spaces G�=K�, � 2 �+

r . It seems most likely that the proof will also
go through in the non-compact case and yield an elementary proof of
this formula.
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