C"-CAPACITY AND MULTIDIMENSIONAL
MOMENT PROBLEM

G. M. Henkin, A. A. Shananin
(Moscow)

Introduction

Let K be a compact set in the n-dimensional complex space C",
H (K) be a space of holomorphic functions on K, H'(K') be the space
of linear continuous functionals over H(K). We will write down the
value of the functional y € H'(K) on the function h € H(K) in
the form of <p,h>. The numbers of the form C,(u) = <p,Z">
are called the moments of the analytical functional p, where Z¥ =
Z{*...Z is a holomorphic monomial of the degree |v| =1 +...+
Uns Z = (Z1y...,2,) €C", v =(11,...,u) € Z].

The problem arising from a number of applications (computa-
tional tomography [1], inverse problem of the potential theory [2],
quadrature formulae [3], and even production functions theory [4]) is
to reconstruct a functional from H'(K) through its moments.

The necessary and sufficient condition of uniqueness of a func-
tional y € H'(K), which has the fixed moments {C, (1)} is polyno-
mial convexity of the compact set K, since polynomial convexity of
K is necessary and sufficient in order that any function from H(K)
will be approximated by holomorphic polynomials (A. Weil, 1932).

If a functional p is given by positive measure on the compact
set K C R™ C C" then the considered problem is called the classical
moment problem. This classical problem is effectively and completely
solved only for the case n = 1 (see [5]).

In connection with applications the problem of the approximate
reconstruction of the functional p € H'(K) through the finite num-
ber of moments C,, |v| < N is of particular interest. In the classical
theory this problem is called the Markov moment problem. In order
to solve this problem it is necessary to answer at least the following
questions:
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70 C"-capacity and Multidimensional Moment Problem

1. What is a guaranteed estimate of the accuracy of the pos-
sible reconstruction of the functional p € H'(K) if the moments
C,(p), |v| £ N and certain norm of the functional 4 are known?

2. How to find actually the functional y € H'(K) with a priori
given moment C,(u), |[v| < N and with some suitable norm?

It turned out that these questions are closely connected with sev-
eral modern themes from several complex variables.

Namely, for exact answer to the question 1, it is used the results
of the theory of extremal plurisubharmonic functions and of the com-
plex Monge-Ampere equation on the parabolic manifolds obtained in
the papers [6]-[22] and also the theory of the Fantappie-Martineau
analytical functional [23]-{27]. The modern variants of the interpola-
tional formulae of the Jacobi type for the holomorphic functions in
the hyperconvex domains [28], [29] are very useful for the answer to
the question 2.

In this article we give a suitable answer to the question 1 and
indicate the simplest applications. The constructive answer to the ques-
tion 2 will be given in the other paper.

§1. The results.

The compact subset K C C" is called regular (see [8], [9], [14])
if there exists (and unique) a continuous solution Ux of the following
exterior Dirichlet problem for the complex Monge-Ampere equation:
Uk(Z) is a plurisubharmonic function in C"\ K,

det [M(Z)] =0  inC"\K

874073
Ux(Z) =log|Z|+O(1) as|Z| — oo (1.1
Uk(Z) =0 if Z € OK.

The compact subset K C C" is called (see [23]-[26]) linear
convex if for any point W € C"\K a set of complex hyperplanes
passing through W and not crossing K is non-empty and contractible.

The compact K is called strictly linear convex if its boundary 0 K
is smooth and for any point W € 0K the complex tangent hyperplane
TS (0K) have the unique point of contact {W} with OK and this
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contact not higher than the first order. Any linear convex compact set
K may be represented in the form of

K=ﬁKj,

j=1

where K7 D Ky D ... is a sequence of strictly linear convex compact
sets. Besides, there takes place the monotonic convergence for regular
linear convex compact sets K

U,(Z) — Uk (Z) for j — 00,% € C"\K, (1.2)

where U;(Z) = Uk,;(Z)- smooth solutions of the type (1.1) of the
Monge-Ampere equation in C"\ K. Existence and uniqueness of such
solutions for strictly linear convex compact sets is proved in [17].

We suppose without loss of generality that a linear convex com-
pact K contains the origin of coordinates in C". We define a domain K’
dual to the compact set K by the formula

K ={pe(CY:pZ+1+#0 for Z € K}.

For the domain K’ we have such a representation
00
1 __ !
K' =K,
j=1

where K| C K} C ... is a sequence of strictly linear convex domains
dual to K.

According to Lempert [11], [12] there exist smooth solutions
Vj = V; of the Monge-Ampére equations in the domains K7\{0}:
V;(p) is a plurisubharmonic function in K}\{0}

de[348] =0 in Kj{0)
Vi(p) = log|p| + O(1) forp—0 (1.3)
Vi(p) =0 for p € OKj.

Besides, O(1) = S;-(ﬁ)+0j(|p|), where S is a smooth function

on CP*, ie., Sj(A-p) = Sj(p),VA e C.
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The following nice formula is valid ([17], p. 882)

Vi(p) = -U;(Z(p)), (1.4)

where

267 240 (20

is a diffeomorphism of the domain K;\{0} on C"\Kj;
% _(2%,....2)
op op1’ T Opn)
It follows from (1.2), (1.4), in particular, that there takes place a
monotonic convergence

V7(p) - VK’(P), .7 — 00, pE K/\{O}a (15)

where Vk(p) is a continuous solution of the Monge-Ampére equation
of the type (1.3) in the domain K'\{0}.

For regular linear convex compact sets K so called [16], [22]
Robin functions of the compact set K and of the domain K’ are
defined and continuous on CP™!

8(¢) = lirArLs;}p(UK(/\C) — log |A])

(¢) = lmsup(Vie(X¢) ~ log A), (.9
where ¢ € C" : |¢| = 1 is identified with a point of CP"1,
Following Lelong [21] we shall call the functions y(¢) =
exp(—S(¢)) and v'(¢) = exp(—S5'(¢)), ¢ € CP™! capacitative indi-
catrices of the compact K and of the domain K’ respectively.
Due to the statement of convergence of the Robin functions from
Bedford-Taylor ([22], p. 163) it follows from (1.2) and (1.5) that

%(¢) = (), j—oo, (€CP™!

1.7
VO = 7(Q), j—o0, ¢e€CP, 7
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where ; and ny’~ are capacitative indicatrices of the compact set Kj;
and of the domain K7} respectively.

The following explicit relation between indicatrices v and '
implies from (1.3), (1.4), (1.6), (1.7)

_ €= g m(v'(©)’]
7 (¢) ’

1C = e Y (O 1.8
where ( € C": |{| = 1.

The most important examples of linear convex and simultane-
ously regular compact sets are compact sets in C", which are closures
of the bounded linear-convex domains in C" with smooth boundary
or closures of the bounded convex domains in R® C C". In partic-
ular, for the complex ball K = {Z € C" : |Z| < R} it is well
known that Ug(Z) = In [%L. W. Stoll [10] obtained necessary and
sufficient property of Uy (Z) which characterizes the manifolds equiv-
alent to the complex ball. For the real ball K = {Z =z +iy € C":
|z| < R,y = 0} M. Lundin [19] obtained the following nice formula
sh?Uk (Z) = 5(|1Z|* - R’ + |Z® — R?)).

The entire function /i({) of the variable ¢ € C" of the form

(¢) = <p,exp(i€ - Z)>, (1.9)

where (Z = (1Z1+. . .4+ (nZy, is called the Fourier-Laplace transform
of the analytical functional y € H'(K).

For the functional u € H'(K) where K is a regular compact set,
we define semi-norms of the form

lulls =sup |<p, h>|

heH(Ks): [WZ) <1, ZeKs (1.10)

where K5 = {Z € C" : Ug(Z) < 6}, 6§ > 0, Uk satisfies (1.1).

The following result gives a sufficiently exact answer to the ques-
tion 1 for functionals with support on the regular linear convex com-
pact.

Theorem. Let K be a regular linear convex compact in C" and
v'(¢) be a capacitative indicatrix of the domain K'. Then
A) for any N € Z, any functional i € H'(K) with the moments
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Cy(p) =0 for|v| < N, any { € C*,|{| = 1, any X € C and for any
6 > 0 there takes place the following inequality

lel6 r”‘*' (1+0K'<('%'))]NH (111

B < Fk &Y | 70 N+ D)

where Ok ¢(e) — 0if e — 0; d(K1K5) =inf|1+p-2|,2€ K,p € K’

B) for any ¢ € C",|¢| = 1, any N € Z, there exists the func-
tional p = pn¢ € H'(K) with the moments C,(u) = 0 for [v| < N
and with estimates of the form

o =D A\
|2(X¢) = (N +n)! (I'Y’(C)l)

e~ %M (1 — Ok (D—%)) (1.12)
o [ Waenre@),  a

(2m)"
Z€0Ks

lllls <

where 1(Z) is any smooth C"-valued function of the variable Z €
0K with the property [26]: for all Z € 0Ks and W € K we have

147(Z2)-Z=0and 1+1(Z)-W # 0; w(Z) = /7{ dZ;; '(n) =
j=1

S (=1 A dnidi(¢) > 0.
Vi

For the case when the compact set K is a strictly linear convex
then the compact set K for any 6§ > 0 is also strictly linear convex
[17). Using in this case § = 0 and n(Z) = 2% / (7 - 252 we
obtain from: (1.13) that the functionals py ¢ have a uniformly bounded
norm |zjo.

The theorem, roughly speaking, means that if the moments
Cy,(u),|v| £ N are known for the finite measure p with the support

on the K then its Fourier-Laplace transform f(¢) is reconstructed
N+1
eld|

and not better, in
7 f ) (v+1)

general. It is important to express capacitative indicatrix 4'({/|¢]) in

with accuracy of the order ||u|| <
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geometric terms in order to use such an estimate. For general case
it is not simple. However, the following statement is valid for the
particular case when the compact set K and direction ¢ are real.

Proposition. Let K be a closure of the bounded convex domain
in R® C C". Then the following equality is valid

O = [speea) - i)

forany real { € R™,|(| = 1.

Remark. If we drop demand of the regularity of the linear convex
compact set in the theorem then the theorem is still valid if we will
write in the statement that { € CP" 1\ E where E is some polar
subset of CP™~1. In addition, instead of the function Uk (Z) of the
form (1.1) it is necessary to use extreme plurisubharmonic function
[8], [9] of the form

Ux(Z) = sup{U(Z) : U is plurisubharmonic on C"\ K}
U(Z) <log|Z|+0(1),U(Z) <0 on dK.
The necessary properties of the Robin function for such extremal func-
tions are obtained by P. Lelong [21] and E. Bedford, B. Taylor [22].
This theorem supposes may be more clear interpretation in terms
of the best approximations of the function exp(¢ - Z) by polynomials

on the compact set K.
Let us define the numbers

Ex(K, 1) = inf sup |£(2) ~ Pu(2))
N ZeK
where Py is a polynomial of the degree N in Z = (Z3,...,Z,).

Consequence 1. The following equality takes place

lim N - E¥Y(K, &%) =¢- |C|/’Y (¢/I¢<1)

N—oo

for any regular linear convex compact set K C C" and any ( € C".
Note, that the result of the consequence 1 may be considered as
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complement of the following general approximating result of Siciak
[6], [9]. In order that f € H(Kj) (see (1.10) it is necessary and
sufficient that

i pl/N -6
A}I_{EOEN (an)se :

Now we will give an application of the theorem to one of compu-

tational tomography problem—to an estimate of the accuracy of the

Radon transform inversion through the finite number of directions.
The transform of the type

R =5 [ u)

{reRMwz<s}

where s € R,w € S" ! = {w € R" : |w| = 1} is called the Radon
transfrom for a finite measure p with compact support in R".

The finite subset {2 of the sphere S™! is called N-solvable [1]
if any polynomial Py(z) of the degree N is represented in the form

Py(z) =) Pyu(w- ), (1.15)

wed
where Py, is a polynomial of degree N of the variable w - z. For the
number of elements || in 2 we have the estimate

Q> Crii (1.16)

Conversely, if the inequality (1.16) is held and elements in 2 are in
the general position then 2 is N-solvable (see [1]).

If the Radon transform R, (w, s),w € €2 is known for the measure
w and Q is N-solvable, then the moments C, () of the order [v| < N
are known for the measure y due to (1.15).

Hence from the theorem we obtain the following consequence.

Consequence 2. Let a support of the finite measure p belong to
the closure of the bounded convex domain K C R" and let the Radon
transform R,(w, s) of the measure p is equal to zero for directions w
belonging to N-solvable subset ). Then the Fourier-Laplace transform
((C) for any ¢ € C" admits the estimate of the form (1.11).
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Note, that due to (1.14) we have 7'(¢) = 2 for the real unit
sphere K! = {z € R™ : |z| < 1} and for real directions { € S™ 1,
So, for this case the consequence 2 yields a preciser estimate:

. o(1) (96)N+1
su Ol —=—= = .
{(eRﬂ:[(II)goN} ‘”( )| \/N—+1 2 ||M||o

for any 6 < 2/e.

It is interesting to associate this result with the following Logan-
Louis estimate (see [1]):
under the conditions of the consequence 2 we have

8(¢)|d¢ < BO)e CON |

{¢eiRm:|¢|<ON}

for K = K! and for any 6 < 1.

§2. The proof of the theorem.

This proof essentially uses the notion of the Fantappie indicatrix
of the analytical functional.
The holomorphic function of the type

1
®,(p) = <u, A +p2) > (2.1)

in the domain K’ is called the Fantappie indicatrix of the analytical
functional y € H'(K). Immediately from the definition (2.1) it follows
that the equality C,(p) = <p, Z¥> = 0 for |v| < N is equivalent to
the equalities

o,

2% __(0)=0 2.2
a0 =0 22)

a1)(0) =
for |v| <N, v=_(n,...,tn).
The Fantappie transform ®,,(p) is simply expressed through the
Fourier-Laplace transform /i(()
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®,u(p) = z/ e " i(rp)dr, peK. (2.3)
0

Martineau [24] obtained a general formula expressing /()
through ®,(p) on the basis of the Cauchy-Fantappie-Leray formula
(see [27], [29]). Here we will have a need of the following elemen-
tary formula.

N 1 1 g (S
= — —e P, | = .
{AeC:|A|=R}
where R is such that (/) € K’ for any A : |\ =
The formula (2.4) is a simple consequence of the classical
Cauchy formula. In fact, substituting the Cauchy representation

ez — 1 / eldA
© 2mi A—i(Z

AEC:|\|=R

in the equality (1.9) we obtain

| AGA 1 1 erd) i€
M(C)— i 67<“71_i€)‘g> ) p( )

T 2mi
[Al=R |A|=R

The formula (2.4) allows to obtain necessary estimate for ji(¢). on
the basis of suitable estimates for ®,({/)). We will obtain estimates
for ®,(¢/\) from equalities (2.2) and from the following immediate
estimate.

(2.5)

1
1+pZ|’

where ||p||o is @ norm of the form (1.10), K, = {Z € C" : Ux(Z) <
a}, peK'.

Suppose, further, K; = {Z € C" : Ux(Z) < 6}, Kz ={p €
K' : Vg(p) + 6 < 0}, § > 0, where Ug and Vg are the functions
satisfying (1.1), (1.5).

12u@)l < llnlla sup
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Consider now the plurisubharmonic function

_ 1 'q)#(p)ld(K’ Kﬁ)
Us(p) = N1 In il . (2.6)

This function is negative in the domain Ky C K’ due to (2.5). The
estimate ¥s(p) < In|p| + O(1), p € Kj also takes place due to
(2.2). Due to (1.5) the function Vi (p)+6 satisfies the Monge-Ampere
equation (1.3) in the domain Kj. As it was shown in [18], [20] such a
function is extremal plurisubharmonic function in the following sense:

Vi (p) + 6 = sup{V/(p) : V is plurisubharmonic
V(p) <0and V(p) <Inlp|+O@) in K}} (2.7)

So, Us(p) < Vi (p) + 6. From (2.6), (2.7) it follows that

ll4lls
=" ' .
2u0)| < g gy SR N+ D Vi) +6)] @B)
for p € Kj.
Substitute now the estimate (2.8) in the formula (2.4). Taking
into account (1.3), (1.5) we obtain the following inequality

d(K1 K5) pel0,2n]

(| (<
'R“( 1°g"’(|<|)+5

o) < e 7 1 ey [(N+ D s Vie (57) +)

= GRE(—E{% exp [(N + 1)(log
)]

O (

for any ¢ € C", § > 0 and for such R that (Re* € Kj for all
¢ € |0, 2r]. Suppose R = N + 1, we obtain

[2(¢)] < Il s/l 5 eI¢|(1 + Ok ey (|Ng+_1|) (N+1)
K ~ d(K, Ks) ,Yl(l_g_l) (N +1) .

The estimate (1.11), i.e. the part A) of the theorem is proved.
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In order to prove the part B) of the theorem we shall have need
of one more formula for the capacitative indicatrix:

Y= sup

{FeH(K"):F(0)=0,|F({)|<1{eK"}

OF
453(0)1. 29

The proof of (2.9) is based on the Lempert results [15]. Due to
(1.3), (1.5) for the solution V(p) of the Monge-Ampere equation in
the domain we have an asymptotic equality

V(X() =log |A| —log7'(¢) + O(|A|) for A -0,  (2.10)

where p=A(,( € C",|{|=1; AeC.
Further, the following equality is valid (Lempert [15])

Vi(p) = sup In|F(p)|, 2.11)
{FeH(K}):F(0)=0, [FI<1}

where functions V; satisfies (1.3).
Taking into account (1.5) from (2.11) we obtain also the equality

V(p) = supln |F(p)|. (2.12)
{FeHK'): F(0)=0,|F| <1}

The equality (2.9) follows from (2.12).

Now we prove part B) of the theorem. We fix ( € C" : [¢| =1
and N € Z,. Due to (2.10) there exists a function F' € H(K') with
the property

|F(p)| <1, peK' and F(X) = (Y(¢))'A+ Ogc(3?)

2.13
for A\— 0 ( )

Consider, further, a holomorphic function ¥(p) = FN*1(p). We
have

[¥(p)| <1, pe K and

v
9% (0= <N _
o, o (0)=0for [v| <N (2.14)
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Due to the Martineau theorem [23], [24] refined in [25], [26],
there exists a functional x € H'(K) such that its indicatrix ®,(p)
satisfies the equality

1
(n—1)!

D"'®,(p) = ¥(p), (2.15)

where D® = & + p%g. It follows from (2.14), (2.15) that C,,(p) =0
for |[v| < N. We will prove the estimate (1.13).
Let,

(n—1)

b= W‘I’(U(Z)) AN (n(2)) Aw(Z),

where Z — n(Z) is any smooth mapping with the property: for any
Ze€OKsand W e K wehave 1+1n(Z)-Z =0and 14 n(Z)W #
0. Let h be any bounded holomorphic function on Kj. Due to the
Cauchy-Fantappie-Leray formula we have (see [24]-[26]):

<, h>= / Ly A h. (2.16)
ZEaK5
The estimate (1.13) is an immediate consequence of (2.16). We will

prove now the estimate (1.12). Taking into account formulae (2.4),
(2.15) we obtain the equality

g = BTN ety (X)e em

211

{teC:|t|=R}

Due to (2.13) for the function ¥ (¥> and [t| = N + 1 we have
inequalities

v (%) = [0 (3 a0) +ouc (3]

- (7,(2‘).t)N+1 1+d(C) + Ok (Ni—l) ]NH
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“(r) [(ra0)”

2
+ Ox ¢ (_’J,)\_'I_ 1)] (2.18)

Substituting (2.18) into (2.17) we have

R = (n— DYI(-1)"'[F + T, (2.19)
where
1 e—it )‘ N+1 A N+1

5= | (fy'(c) -t) (1 +d(4)¥> a

[t|=R
_ 1 e it A N+l I/\|2

= | (ae) oxe(ii)e

[tl=N+1

Computing exactly J; and estimating J, we find

v

_ (@)WY (= R (—id - A n+v—1
S= T W)l 2 H(l_N+n+j)
= 1
_ L ()AL e A2
It follows from (2.19), (2.20) that
— DY+ -1 A N+1

(N +n)!

[(1 — Ox¢ (\/J'VL_;)) e HOHN _

(N + n)lelN+! IA]2
(N + 1)V (n — 1)!0’“ (N+ 1)}
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The estimate (1.12), and consequently, the theorem is proved.
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