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This is a survey of results centered around the problem of

describing automorphisms, isomorphisms, or homomorphisms

between subgroups of algebraic groups. An attempt was made

to follow the lectures rather closely. However some

material was added to give a broader view and other material

deleted in an attempt to stay within allotted space. I

apologize to all the people whose results are bypassed or

not fully represented.

It is a pleasure to acknowledge here my gratitude to

the members of the Mathematics Department at Notre Dame

for their invitation and warm hospitality and, also, to

Alex Hahn, Don James, Alex Lubotzky, and Ross Staffeldt

for many fruitful discussions and helpful suggestions.

NOTATION

Most of our notation and terminology is standard and

is explained at appropriate places; we record it here for the
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136 Homomorphisms of Algebraic Groups

benefit of a reader who does not want to search for these

explanations, k always denotes a field; it will be

infinite unless otherwise specified; its characteristic

is "char k"; k is its algebraic closure; 0 is the

field of p-adic numbers and Z is its ring of integers.

RK/k de]kotes Weil's restriction of scalars from a ring

K 2. k to ^S ^or a functor V from rings to sets one

has (RK/kV)(L) - V(L 0 K) . If G is a group then NQ(A)
K.

(resp. Z~(A)) is the normalizer (resp. centralizer ) in G

of a subset A; if G is an algebraic group then NQ(A) and

ZG(A) can be considered as algebraic groups. [A,B] is the

commutator of subgroups A and B of G. For an algebraic

or Lie group G, Lie G is its Lie algebra. For a Lie group G,

M.Q is its Haar measure. For SLn(k), S0(n,l) etc., PSLn(k) ,

PSO(n,l) etc., denote the quotients of the former groups by

their centers. A subset X of a topological space is locally

closed if it is open in its closure and it is relatively

compact if its closure is compact.

1. MOTIVATION

The problem we are concerned with belongs to the following

broad class: given an object having several structures, how

much information is lost if some of the structures are

forgotten? and what is the minimum informatipn required to

recover the complete information? Ours is the case of an

algebraic group G which we consider as a functor
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G: (fields) •* (groups). Take the value G(k) of G at a

fixed field k. Does it determine the functor? More

precisely: If a: G(k) -»• G'(k'') is an abstract group

homomorphism, does it come from a homomorphism of functors?

If it does one goes still further and asks: what are subgroups

H of G(k) and group horaomorphisms H -»• G'(k') that come from

a map of functors?

(1.1) A classical example of a problem of the same broad

class is the Fundamental Theorem of Projective Geometry

(PTPG for short). Consider the protective space Fn

n > 1, as an algebraic variety over k. It has a

distinguished family C of subvarieties: curves of degree 1

(called lines). Now consider an algebraic variety V as a

functor V: k -»• V(k) from fields to sets. Then we have a

functor 3Pn: (fields) -> (sets) and 3Pn(k) has, for any field

k, a distinguished family of subsets: sets L(k) for L € C,

L defined over k. Classically, UPn(k) is the set of

1-dimensional vector subspaces of k and distinguished

subsets, still called lines, are the sets of one-dimensional

subspaces of kn contained in a 2-dimensional subspace of

kn+1. Let a: Fn(k) -*!>m(k'), n,m > 2, be a bijection which,

together with its inverse, carries lines into lines. Then

the PTPG says that if m,n > 2, then m = n and there

exist a field isomorphism <p: k •* k and a bijective map

p: k31"1"1 -•> k'11"1"1 with p(ax+by) = cp(a)p(x) + q>(b)p(y) for
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a,b € k, x,y S kn+1, such that o(kx) = k'p(x) for

x € kn , x £ 0. (Recall that the above properties of p

are called (p-semilinearlty . ) We can reformulate this

result in a more invariant form.

(1.2) Assign (see [BT,l-7]) to an affine algebraic variety

V defined over k and to a field homomorphism <p: k -»• k'

the algebraic variety ^V defined over k' by taking for

the ring k'l^V] of regular functions the algebra

k[V] ® k' (cp is used to identify k as a subfield of k' ) .
k

For general V we cover V by open affine pieces

V - UV±, each defined over k, and set ^V

The natural injection V(k) -> (̂k') is denoted <p° (the

notation V(cp), the value of the functor V on the map (p,

is also used in the literature).

(1.3) Now the PTPG takes the form: Let a: Pn(k) -*pm(k')>

n,m > 2, be a bisection such that both a and a carry

lines into lines. Then there exist a field isomorphism

cp: k •* k' and a k' -isomorphism $: ?Pn -*• Pm of algebraic

varieties such that a = "p o cp° .

(1.4) Generalizations and interpretations of the FTPG are

closely related to different advances in and approaches to

the problem of abstract homomorphisms of subgroups of

algebraic groups. The reasons for this are many. But the

fact itself is not surprising at all if one remembers that

the first result in the area, a description by 0. Schreier
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and B.L. van der Waerden (Abh. Math. Sem. Univ. Hamburg

6(1928), 303-322) of the automorphisms of the projective

special linear groups PSL (k) was based on the FTPG:

for any automorphism a of PSL (k) with n £ 3,

there exist a field automorphism q>: k -»• k and a matrix

A € GLn(k) such that a(S) is either A cp (S)A""1 or

A cp (S*)""3 "̂1; here S is the image of S € SLn(k) in

PSL (k), S is the transpose of S, and <p(S) = (cp(s..))

if S = (s..). In the more abstract language (1.2) the

claim of this theorem is: There exist a field automorphism

cp: k -> k and an isomorphism £: ^PSL -*• PSL of algebraic

groups over k such that a(h) = pi o cj>°(h) for h € PSLn(k)

Since 1928 when this result was discovered the area has

been developed by many a mathematician of renown: E. Cartan,

H. Freudenthal, J. Dieudonne, Hua Lo-keng, Wan Zhe-xian,

I. Reiner, C. Rickart, O.T. O'Meara, A. Hahn, D. James,

B. McDonald, G. Mostow, A. Borel, J. Tits, G. Prasad,

G. Margulis, M. Raghunathan and many others. We will not

attempt here to give a historical survey. Instead we will

outline the major achievements in the subject and their

interrelation. The ideal goal of the theory would be to

obtain a theorem which includes all known results. This

goal is, of course, unrealistic. But it is good to keep

it in mind for orientation and proper perspective. For

this same purpose we discuss occasionally results from
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adjacent areas.

2. EVIDENT RESTRICTIONS

Let G and G' be connected algebraic groups defined

over fields k and k'. Let H be a subgroup of G(k) and

a: H -*• G'(k') a group homomorphism.

(2.1) Suppose that G = G" is the group e (so that
3L

<EQ(k) is the additive group of k). Let B be a basis of
8L

k over its prime field. Then any map B -* k gives rise to

a homomorphism GQ(k) -»• <BQ(k). Clearly, such homomorphismsa a
are too general to permit but superficial description. Since

similar constructions can be carried out for other

commutative groups, we do not want our group G to be

commutative. Neither do we want it to have commutative

quotients. This restricts us to the case when G coincides

with its own commutator subgroup. In particular, G is a

linear algebraic group. Actually we often restrict ourselves

to semi-simple groups.

(2.2) Next, if we want to recover G from a homomorphism

a: H -> G'(k'), where H is a subgroup of G(k), then H

should be Zariski-dense in G. This condition can some-

times be replaced by additional assumptions on a, H, and

k' (say, k and k' are finite, H = G(k), and a is an

isomorphism). But in general, it is a very reasonable

assumption.
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(2.3) By a theorem of J. Tits (J. Algebra 20(1972), 250-

270, Theorems 3â (vi)) G(k) contains Zariski-dense free

subgroups H if either char k = 0 or k is not algebraic

over its prime field. For a free H no good map of G

into G' can of course be recovered from a general

homomorphism H -*• G'(k'). This tells us that H must be

well embedded in G. To specify the meaning of this "well

embedded" is one of the problems of the theory. Examples

of relatively small but well-embedded subgroups are

(1) full (of transvections or of rotations) subgroups of

O.T. O'Meara and (2) lattices in semi-simple groups over

local fields (see §6 below). In a number of cases it has

been shown that groups of type (1) and (2) are actually

arithmetic (see (6.7) below and also [Va], [Se], and [VW]).

3. ISOTROPIC SEMI-SIMPLE GROUPS OVER FIELDS.

(3-1) This case can be considered as a paradigm because the

situation here is well-understood and can be completely

described. Let G be a connected semi-simple algebraic

group defined over k (or, shorter, k-group). G is called

absolutely almost simple if all normal subgroups of G(k)

are finite central; G is almost k-simple if only finite

central algebraic normal subgroups of G are defined over

k; G is k-isotropic if G contains a proper parabolic k-

subgroup; G+(k) is the normal subgroup of G(k) generated by

U(k) where U is the unipotent radical of a minimal parabolic
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k-subgroup. For example, SL (k) is a simply connected

k-group. Its subgroup U is the group of upper triangular

matrices with all diagonal entries equal to 1. Since SL (k)

is generated by transvections, it is generated by the

conjugates of U(k). Thus (SL̂ Ck) - SLn(k).

Another example is SO (f), the special orthogonal group

of a non-degenerate (and of defect at most 1 if char k - 2)

quadratic form f = Z a..x.x.. This group is defined
l<i<j<n XJ x J

over k if a... € k for 1 < i, j < n. It is k-isotropic

iff f represents zero non-trivially over k. In this latter

case (S0n(f))
+(k) = S0£(f,k), the spinorial kernel group.

The following theorem is a generalization of a

result previously known for "most" groups.

(3-2) THEOREM. (J. Tits, Ann. Math. 80(1964), 313-329)

Let G be an almost k-simple and isotropic over k algebraic

k-group.

(i) If H 2. G+(k) is a subgroup of G(k) then any

normal subgroup of H is either central or contains G (k).

(ii) One has G(k) = Z(k)'G+(k) where Z is the

centralizer of a maximal split k-torus of G.

(3.3) To see the relevance of this Theorem to our problem,

take a homomorphism a: H -> Q of H into a group Q.

Then by (3-2(1)) either Ker a is finite and central or

Ker a contains G (k). In other words, a is an almost

monomorphism or an almost trivial map. Let us look at the
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latter case first. The problem is to understand

G~(k) = G(k)/G+(k). This consists of two different

contributions .

(3-1*) Let TT: G -»• G be the universal cover of G. It is

easily seen that Tt(G(k)) £ G+(k) . Therefore G"(k) has

G(k)/Tr(G (k)) as a factor-group. This latter can be

easily bounded using the exact sequence of Galois cohomology

associated with the short exact sequence 1 •*• Ker TT -»• (* -»• G -*

->• 1. Namely, we get the exact sequence 1 -> H°(k,Kerrr) ->

-> H°(k,G) -> H°(k,G) 4 H^kjKer TT) or 1 -> (Ker Tt)(k) ->

•> G(k) -> G(k) ̂  H1(k,Ker TT). Thus 6 identifies

G(k)/Tt(G(k)) with a subgroup of H^CkjKer TT). This latter

is a commutative periodic group of exponent equal to the

exponent of (the finite algebraic group) Ker TT . For

example if G = S0n(f), n > 3, then G = Spinn(f) and if

char k £ 2 then 6 is the spinor norm homomorphism.

See J.-P. Serre, Cohomologie Galoisienne, (Lecture Notes

in Math., vol. 5, Springer, Berlin; 1964) for details and

additional examples.

(3.5) Another contribution, G~(k) « G(k)/S+(k) is much

more interesting. It comes from P(k)/(P(k) n G+(k))

where P - [Zg(T) ,Zg(T) ] (see (3-2)(ii)). It is a recent

and unexpected result that (f~(k) can be nontrivial. To

describe an example of such a G consider a central division
p

algebra D over k with dii%D = N < °°. Then there exists an
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(automatically simply connected) algebraic k-group G such

that G(k) ~ SLn(D)a n > 2, and G(k) ~ SLnN(k) . Set SKZ(D) »

D /[D*,D*] where D is the group of elements of reduced

norm 1 in D. The Dieudonne determinant establishes the

isomorphism G~(k) ~ SK,(D). Examples of D such that

SK-^D) # {1} were constructed by V. Platonov and

V. Yanchevsky, and somewhat later by P. Draxl. The simplest

example I know of a D with SK-^D) / 1 is described in

P. Draxl's lecture notes [Dr , §24], Moreover there are

fields k such that SK.,(D) runs over all commutative finite

groups when D runs over all division algebras over k5and for

every countable commutative torsion group C of bounded

period there is a field k and a central division algebra D

over k such that SK^D) = C. Nevertheless SK-^D) is

always trivial if k is a local (T. Nakayama and Y. Matsushima,

19̂ 3) or a global (S.S. Wang, 19̂ 9) field. It was because

of these results that the equality SK.,(D) = 1 was expected

to hold always. We refer the reader to [Dr], [DK], [T5H and

references therein for more information. We conclude by

mentioning that V. Voskresensky [Vo] gave an interesting

algebro-geometric interpretation of SK-^.

(3.6) To proceed we need certain notions. An algebraic

homomorphism p: G -*• G' is an isogeny if p is an

epimorphism with finite (schematic) kernel; an isogeny p

is special if its differential is not identically zero.
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If char k - p the Frohenius map Fr: SLn -> SLn given by

Fr(s ) SB Cs?.) is anon-special isogeny. The standard

(see e.g. [D]) map SOp +, -* Sp2 in characteristic 2

is a special isogeny; for pairs (G,G') a non-trivial (.i.e.,

not an isomorphism) special isogeny exists only when

char k < 3: if char k * 2 then CG,G') must have type

CBn,Cn),(Cn,Bn),0̂ ,F4) and if char k - 3 then only the pair

(G2,G2) can be involved. See [BT, §3] for more details.

Using these notions the situation when a is an "almost

monomorphism" (see (3-3) above) is completely described by

(3-7) THEOREM (A. Borel and J. Tits [BT]). Let G be an

absolutely almost simple algebraic group defined over an

(infinite) field k. Let k' be another field and let G'

be an absolutely almost simple algebraic group defined over

k'. Let H be a subgroup of G(k) containing G (k) and

let a: H -»• G'(k') be a homomorphism of abstract groups

such that a(G (k)) is Zariski dense. Assume that either

G is simply connected or G' is adjoint. Then there exist

a field homomorphism q>: k -»• k', a special k'-isogeny

P: ^G -»• G' and a homomorphism Y: H -* center (G'(k')) such

that a(h) = r(h) • p(cp°(h)) for all h € H.

Note that Y here (classically called a radial

homomorphism) is an almost trivial map. Therefore (3-*0

and (3-5) can be used to study Y- The ideas, as well as

important technical steps, of the proof of (3-7) are outlined
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on pp. 502,503 of the Introduction to [BT] and by

R. Steinberg in his Bourbaki seminar report [St2] on the

paper [BT].

Theorem (3-7) was, even in the case of SLn, a vast

technical and conceptual generalization of previously

known results on homomorphisms of isotropic groups over

fields. It opened new avenues of research and set new

standards. Among its most important achievements was a

uniform treatment of all (isotropic'semi-simple) algebraic

groups (including exceptional ones) and all homomorphisms

between them (including isomorphisms PSLj,~ PSOg,

SOc ~ PSPii* triality for Dh , and the non-trivial special

isogeny Ŝ n+l "* Sp2n ln cnaracteristlc 2) • But still

more remarkable was the step from isomorphisms and

automorphisms to homomorphisms with dense image.

(3-8) Among crucial technical tools the proof of (3-7)

uses are the existence of Bruhat decomposition in H and the

algebraic geometry of the target group G'. These tools are

still available if H is replaced by a (non-algebraic) group

with a BN-pair (say by an isotropic classical group over

an infinite-dimensional division algebra or by the infinite

P 2 P
twisted groups Bp, G2»

 and Fii of M" Suzuki and R-

see [Stl, §11]). But it is difficult to see how the

assumptions on G' can be weakened unless methods

compensating for the absence of algebraic geometry are

devised.
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(3-9) To conclude this discussion of isotropic groups we

remark that (3-7) implies (see [Tl, no. 10]) a generalization

of the PTPG to irreducible Tits buildings of spherical type

(the particular case of (3-7) when a is an isomorphism,

G = SL , G' = SLm, m,n > 3> is equivalent to the PTPG as

stated in (1.1)). Conversely, an analogue of the FTPG for

Tits buildings would, it seems, imply (3.7) in relative

rank > 2.

4. SHORT REMARKS ON OfMEARAfS METHOD

The lectures did not cover work of O.T. O'Meara and

his school. There are excellent books [0!M1] and [0*M2]

by OfMeara himself which have made his theory accessible to

a wider audience than these notes can hope for. Therefore

we discuss OfMearafs approach only briefly to indicate the

features which make it conceptually different. OfMearafs

method associates with a subgroup of G(k) a certain

geometry. This is, roughly, a Tits geometry if G is isotropic

But it is some other yet mysterious geometry if G is

anisotropic. In this latter case the geometry is constructed

from a group having no parabolic k-subgroups. This geometry

(and the rule used to construct it from the group) are

therefore very fascinating. On th.e other hand 0!Mearafs

method permits one to probe into which groups are well

embedded (in the sense of (2.3) above). This is another

conceptually important feature of the 0fMeara"method.
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One class of such well-embedded subgroups are the full

subgroups of GLn(D), D a division ring. We recall that

a subgroup H of GL (D) is full (.of transvections) if forn ~""™""""~*""" """"""™ -

every hyperplane h in Dn and every vector v # 0, v € h,

there exists A € H such that Im(A - Id
n)

 = Dv and

Ker(A - Idn) = h. A sample result of O.T. O'Meara [O'MS],

as extended in [So], is

(4.1) THEOREM. Let H and H" be full subgroups in

PGL (D) and PGL (̂D̂ ) respectively, where D and D^

are division rings. Let a : H •*• H' be an isomorphism.

If n,n' £ 3 then n = n^ and there exist a ring

isomorphism q> : D •* D' (or qp : D° •*• D') and a q>-

semilinear map & : Dn -»• D"n (or 3 : D°n + D"n) such

that a(h) » F ° h « 3" "1 (Or a(h) - f « h « F"1) for

all h € H. (Here "3 is the map induced by 3 on pro-
V

jective spaces and h is the protective contragredient of h.)

(4.2) It has been proven in [Va] and [Se] that a full

(of transvections) subgroup H of GL (D), n £ 3, contains a

congruence subgroup of GL (0) where 0 is a subring of D

whose field of quotients is D. This is a kind of

"arithmeticity" result. It has been extended to appropriately

interpreted full subgroups of Chevalley groups, see [VW].

(4.3) We remark that O'Meara's method can be (as a paper

[Hal] of A. Hahn shows) applied to groups which are not

quite full. Finally, we want to point out a similarity
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between O'Meara's and Mostow's C6.5) results -—both

impose the same conditions on both H and a("_H) — whereas

Margulis1 superrigidity (.6.6) is more akin to Borel-Tits1

Theorem (3-7): only the condition of Zariski density is

imposed on a(.H).

5. TITS1 RESULTS ON. HOMOMORPHISMS OP-LIE GROUPS

Again, as with OfMearafs method, the author's exposition

in [T3] is beyond imitation, but, on the other hand, the

results and ideas are so substantial that they may not be

bypassed.

(5.1) THEOREM. Let G be an algebraic simply connected group

defined over 3R, the reals. Suppose G = CG,G] (see

(2.1)). Let H be a Lie group countable at infinity (.e.g.,.

H = G'(B) where G' is an algebraic H-group) and let

a: G(B)° -* H be a group homomorphism. Then there exist

a finite-dimensional E-algebra K, a homomorphism of rings

<p: B •*• K with dense tin the Hausdorff topology) image,

and a homomorphism of Lie groups p: (pG(K) -*• H such that

a = p o cp°. (Here ^G and cp° are defined in the same

way as they were defined before for field homomorphisms.)

(5.2) The following example outlines the meaning of (5.1).

Let K =B[e] where e2 - 0 and let S0n be the special
2

orthogonal B-group of the form 2 x. . Thus SO^CR)
x n
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is the usual special orthogonal group. SO (B[e]) is also

a Lie group, an extension of SO (B) by a vector group

V 2:ii
32n(n"1) with SOn(B) acting on V via the adjoint

representation. (Actually, the Lie algebra Lie G(B) of

G(B) can be defined by Lie G(B) = Ker(G(B[e]) Gir) G(B)),

where r: B[e] -»• B is given by r(a + be)=a.) Let

d € Der~.B be a derivation of B and q>: B -*-B[e] the

ring homomorphism given by <p(X) = X + d(X)e. The image

of <p is dense in B[e] if d 9* 0. In this

case <p°: SO (B) -»• SO (B[s]) is a homomorphism of

Lie groups with dense image. To conclude this example we

remark that dim Der~ B = °° so that "bad" homomorphisms

do exist. To construct one of them one takes a trans-

cendental element, say t, in B over <$, and then

extends the differentiation d/dt from Q(t) to B.

(5-3) Below we reproduce Tits1 outline of the proof of

(5-1). We suppose for simplicity that (G/Rad G)(B)

has no compact factors. Then there exist algebraic B-

subgroups F.^ of G, i = 1,..., d = dim G, isomorphic

to a semi-direct product GQ * G^ of the additive andd m

multiplicative groups such that Lie G = © Lie [P.,P.].

Set G± - £
Fi>Fil and ai = a I GiCR). Since G±(B) ~ B

we have a.:B -* H. Let A^ be the Hausdorff closure of

a.(B). It is a commutative group. Denote by K^ the
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(commutative) subring of the endomorphism ring of Ai

generated by the automorphisms a *-»• a(x)a a(x ) for

x € P., a € A. . This gives us, for all i, homomorphisms

of algebras cp.̂ : B •*• K.^ with dense image, and homomorphisms
*PJI

of Lie groups pf.: G.(K.) •* H such that a. = pf. o q>°

Consider q> = wcp.̂ : B -»• <£K., and denote by K the closure

of cp(B) in *K. . Since each K. is still a quotient of

K and q^: B -*• K^ factors through B •*• K •+- K. , there still

are p. : ̂ G.CK) -*• H such that a. = p. <> cp° for all i.

Since Lie G(B) = e,Lie G±(B) we have Lie ^GCK) = eLiê Ĝ K).

Therefore U = nu.̂  is a neighborhood of identity e in

0̂(10 if the U± are neighborhoods of e in (̂K). We

can take U. to be so small that IIU. -»• U is a homeomorphism

Since the p. are analytic we recover an analytic map

Py = np. : U -* H. Take connected open V. £ U. so that,

e € V±, V -V £ U, and V"1 £ U for V = nv±. Then

a o cp°: v n cp°(G(B)) -»• H coincides with py on V. Since

a is a homomorphism and cp°(G(B)) is dense in ^GCK) it

follows that Py is a local homomorphism. Therefore py

°extends to a homomorphism p: GCK) -*• H. Since p o cp

coincides with a on U n q>°(G(B)) and since ^GCK) is

connected (use the simple connectedness of G) it follows

that a = p ° cp°.
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(5.4) Going over Tits1 proof C5-3) of C5-D the reader is

most impressed by the contrast between the simplicity of the

ideas and power of the result. One would expect, therefore,

that the methods of [T3] would have wider applicability.

And indeed they do. Tits points out in [T3, 5-1] that

results similar to (5.1) can be obtained for homomorphisms

of simply connected.Chevalley groups over fields of

characteristic different from 2 into arbitrary algebraic

groups. He mentions that in characteristic 2 there are

counter-examples.

6. RIGIDITY, STRONG RIGIDITY, AND SUPERRIGIDITY OP LATTICES

Let G be a semi-simple algebraic group defined over

B. Then G(E) is a Lie group. Let T be a lattice in

G(B) (i.e., a discrete subgroup such that the volume

/ dg of G/r is finite; here dg is induced by a Haar
G/r

measure, see [Hu, (1.1)]). Then r is finitely generated

(see [Hu, (1.3)]). Let x1,...,xn be a set of generators.

Every homomorphism a: T -* G(E) determines a point

(a(x1),...,a(xn)) € G(E)
n. Let R(T,G) be the set of

(ŝ ) € G(E)n for which x.̂ 1-*- s.̂  determines a homomorphism,

say p: r -> G(B), such that p(r) is a lattice. (This is

a variation of the usual definition of R(r,G)). The

Hausdorff topology of G(R)n induces a topology on R(T,G),

and G(B) acts on R(r,G) continuously via
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(Ad g)(s±) - (g ŝ "
1). Call a € R(r,G) locally (or

weakly) rigid if the orbit AdG(R)(a) of a is open in

R(r,G).
We recall that a lattice r in G(B)° is irreducible

if the projection of r on every simple factor of

GCH)° is dense, see [Hu, (1.5)1; uniform if G/r is

compact; and torsion free if r contains no elements of

finite order (this condition always holds for an appropriate

subgroup of finite index in r by [R, Theorem 6.11]). For

a lattice r in G(B)° let idp denote the identity

embedding of r.

(6.1) THEOREM. (A. Weil, see [R, Theorems 6.7, and 7-66]).

Let r be a uniform irreducible lattice in Q(E)°. If G

is adjoint semi-simple and GQR)° has no compact factors and is

not isomorphic to PSL2CR) then idr is locally rigid.

This theorem was first established by A. Selberg [S]

for G = PSL , n > 3. There he also pointed out an

application:

(6.2) THEOREM. (Weak arithmeticity, see [R, Proposition

6.6]). Let G be as in (6.1). If r is a locally rigid

lattice in G(E)°, then there exist a number field k £ B,

a structure of an algebraic group defined over k on G,

and an element g € GCR) such that g r g" £ G(k).

(6.3) REMARK. Actually, see e.g., [M2, Lemma 1], the

field (Q(tr Ad r) generated over dj by the traces of all
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Ady* Y € r, can be taken as k.

Weil's theorem (6.1), and therefore its corollary

(6.2), were extended to certain non-uniform latticesby H. Bass,

A. Borel, H. Garland, and M. Raghunathan. The methods of

A. Weil were cohomological — it was at the time when

deformations and their relation to cohomology were

intensively explored. The proof consisted: of two steps.

One of them was to show that H (J,Ad) = 0 Ccohomology of

r with coefficients in Lie G(B), and the second one was

to establish that the existence of deformations implies

H1(r,Ad) # 0.

In the same groundbreaking paper [S], A. Selberg

conjectured that any uniform irreducible lattice r in a

group G(E)° assumed adjoint, semi-simple, without compact

factors and different from PSLpCR) is arithmetic.

(6.4) Recall that a lattice T in G(B)° is called

arithmetic if there exist an algebraic group H defined

over Q and an epimorphism of Lie groups IT: H(B)° •* GOO °

with compact kernel such that r fl rr(H(Z)) is of finite

index in both r and Tr(.H(22)). (H(Z) is the set of

integral matrices in <p(H(.Q)) where <p is a faithful

^-representation of H; this definition of arithmeticity

does not depend on cp or on the choice of a Q-basis in the

representation space of cp.) An example: let k be a

totally real number field, 0 the ring of integers in k,
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f(x) = Z a. xif, a. £ k*, a quadratic form on kn,

G - S0n(f) and T = S0n(f,0). Let CTO = 1,̂ , . . . ,am be

the embeddings of k into II . Suppose that
CT.

a.<0, l < i < r < n , a. J >0 for r < i < n, j > 0,
cr.

and a . *J > 0 for all i and all j > 0 . Then r is

an arithmetic lattice in G(B) (take H = RWQG> then our

choice of the a,, implies that H(IR) = G(R) x (compact group))

This lattice is uniform if f (x) = 0 has no non-zero

solutions, in particular, if [k: Q] > 1. It is not

uniform if k = Q and f(x) = 0 for some x € Qn, x ^ 0.

In the late sixties counter-examples to the conjecture

in [S] were found in the groups S0(n,l), 3 < n < 55 see

§8. New versions of the conjecture were proposed by

A. Selberg and I. Piatet ski-Shapiro. The latter fs version

was very general, it included lattices in products of groups

G1(k.), G. semi-simple over k.^ and k^ locally compact. It

was essentially I. Piatet ski-Shapiro's conjecture that was

subsequently established by G. Margulis (see (6.7)).

However, a breakthrough was achieved by G. Mostow whose

results are summed up by

(6.5) THEOREM (Strong rigidity). Let G and G' be

connected adjoint algebraic semi-simple groups over IR.

Suppose that G(B)° and G'(B)° have no compact factors and

are not isomorphic to PSLp(B). Let a: r -»• I" bean
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isomorphism between irreducible lattices of GCR)° and

G'CR)° respectively. Then there exists an B-isomorphism

P: G -*• G' such that a(g) = p(.g) for g € T.

[The absence of a field homomorphism <p is explained

by AutJEl = {1} and the absence of a "radial" homomorphism
*0

Y is ensured by the assumption that G' is adjoint,

compare with (3-7). Note also that strong rigidity implies

rigidity.] Mostow's original proof of C6.5) worked only

for the uniform lattices. But the missing pieces for an

extension to all lattices were localized and were later

provided by G. Margulis, G. Prasad, and M. Raghunathan.

Mostowfs results led to a number of spectacular developments

which culminated in Margulis1

(6.6) THEOREM (.Superrigidity, see [M2]). Let G be a

connected semi-simple adjoint B-group such that

rkpG > 2 and G(B)° has no compact factors. Let G' be

a connected k-simple adjoint algebraic group defined over a

local field k of characteristic 0. Let a: r -*• G'(k)

be a homomorphism with Zariski-dense image of an irreducible

lattice r c G(B)° into G'(k). Then either

(i) a(r) is relatively compact in the Hausdorff

topology of G'(k), or

(ii) k = B or (D, G' = G£ x G£ (direct product of

algebraic k-groups), pr., o a: r -»• G£(k) has relatively
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compact image, and there exists a homomorphism of algebraic

k-groups p: G -* G£ such that pr2 « a(g) = p(g) for

g € r.

This theorem implies (6.5) if rk~G > 2. Indeed, for

a from (6.5) we have that I" = a(r) is Zariski-dense and

therefore (6.6)is applicable with k = B if rk.̂  > 2. We

must have by the assumption of (6.5) on G' that G£ = {!}.

But then (6.6) reduces to (6.5). The general version of

(6.6) (see [Ml] and [T2]) implies (see [T2] and [T4])

a perfect analogue of (3-7) for homomorphisms (with Zariski

dense image) of lattices r such as in (6.6) into k-simple

k-groups over an arbitrary (infinite) field k. To see the

relevance of the different conditions and implications of

(6.6) one need only look (and we will in (6.12)) at

Margulis1 proof of

(6.7) THEOREM (Arithmeticity theorem) Let G and r be

as in (6.6). Then r is arithmetic.

This theorem was first proven by G. Margulis in special

cases; in one of these cases a similar result was obtained by

M. Raghunathan. The counter-examples in S0(n,l) and SU(n,l)

(see §8) show that the gap between (6.5) and (6.6) can not be

closed without additional (as compared with (6.6)) assumptions

on G or a or both.

(6.8) Before proceeding further we mention several related

developments. G. Prasad has contributed very much,
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especially in the non-archimedean case, to the study of

lattices, see e.g. [Pr],

There is an ongoing investigation, led by R. Zimmer

(see [Z] and [P]), of generalizations of Margulis1 results

to ergodic actions.

On the other hand, Y.-T. Siu has generalized the

geometric version of (6.5)- This version considers two

compact locally symmetric spaces X and X' of non-positive

sectional curvature, of dimension ̂ 2, and having no global

totally geodesic factors. The claim then is that

any isomorphism of fundamental groups of X and X' extends,

modulo normalizing factors, to an isometry X -*• X'.

Y.-T. Siu [Sil,Si2] drops the assumption that X is locally

symmetric but assumes that both X and X' are compact

Kahlerian. He also proves in CSil] other generalizations

of (6.5). An example, by G. Mostow and Y.-T. Siu [MS],

shows that non-locally symmetric X exist for which the

conditions of CSil] are satisfied.

P. Parrell and W.-C. Hsiang, e.g. [PH],studied

topological generalizations of the geometric version of

(6.5).

A class of compact manifolds M, dim M = n, whose

universal covers are contractible but not homeomorphic

to Bn is constructed in [Da] for n > 4. The

fundamental groups rr-CM) of such M are generated by
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"reflections". In view of (8.7). it is improbable that these

ir-jCM) are isomorphic to lattices in Lie groups for n > 30.

However, such M defy the usual techniques to establish

topological rigidity.

(6.9) Margulis1 proof in [M2] of C6.6) splits naturally into

two parts. The first part constructs a measurable map co

between algebraic varieties, and the second part shows that

co is essentially algebraic. The first part was somewhat

streamlined and conceptualized by R. Zimmer, see [Z]; we

follow his exposition. In the notation of (6.6), let

P(resp. P') be a minimal B - (resp., k-) parabolic

subgroup of G (resp., G'). Then, by a theorem of C. Moore,

r acts ergodically on G(H)/P(H). Then a result of

H. Purstenberg ensures the existence of a measurable r-map

co: G(E)/P(1R) •+ M(.G'(k)/P'(k)) 'from G(B)/P(H) into the

space of probability (positive of total mass 1) measures

on G'(k)/P'(k). The orbits of G'(k) on M(G'(k)/P'(k))

are locally closed. This implies that co(.G(B)/P(B)) is

(up to measure 0) contained in an orbit, say G'(k)/D, of

G'(k). It was shown by C. Moore and R. Zimmer that D is

either compact, or the Zariski closure H' of D is a proper

algebraic k-subgroup of G'. In the first case a(r) is

relatively compact. In the second case we combine co with

the natural map G'(k)/D -+ G'(k)/H'(k) to obtain a

measurable r-map (also denoted by co) co: G(E)/P(E) •*
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•* G'(k)/H'(.k). Assume for tlue rest of this outline that

a(r) is not relatively compact.

(6.10) Then one must recover from co a rational map

G -»• G' of algebraic k-varieties Cor show that co is

essentially a map into a point if k ̂  B or C). To

succeed one must find a link connecting objects of

absolutely different nature: measurable maps and rational

maps. Let \|r: XQR)° -> Y(.k) be a measurable map of points

of algebraic varieties X and Y defined over B and k

respectively with XCR) assumed to have a measure nx-

Call t M-y-rational if, up to measure 0, \|r is a map

into a point when k # B or (C and \|r is the restriction

of a rational k-map X -*• Y when k = E or C. To establish

a link between "measurable" and "rational1^ Margulis considers

a measurable (with respect to the Lebesgue measure M-m+n

on Em+n) map f: Km+n -> Y(k). Then he proves that if for

almost all x € Rm, y € Bn the restrictions of f to

x te En and Bm ^ y are rational with respect to the

Lebesgue measures on Mn and IRm, then f is

[im+n-rational. To make the above theorem applicable,

Margulis proves that for any B-split subtorus T £ G the

map cpg: Z - ZQ(1R)o(T(B)) -> G'(k)/H'(k) given by

cp (z) = cp(gz) is Hy-rational for any unipotent subgroup

U of Z and for almost all g € G (where ^ is the

Haar measure on U). The above statement is vacuous if
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rkr,G = 1 — hence the restriction that r f c G > 2 . Now one

increases the unipotent subgroup IL- \ , the restriction

of q> (where q> (u) = q>(gu)) to which is (in -rational
5 S U

for almost all g, by adding new root subgroups UQ one
cL

after another and applying the Pubini theorem and the

theorem about maps Bm x Bn -* Y(k) to the

^g1 U(r+l) = U(r) x Ua "* G'(k)/H'(k)- Thls completes

the proof in the case when k ? E,<D. In cases k = 1R or

<C one identifies a maximal unipotent subgroup U of

G(B) such that tl • P(B) is a big Bruhat cell with an

open subset of G(JR)/P(E). Thus one gets a n^-irational

map G(B) -* G'(k)/H'(k). It is not difficult to lift it

to a k-rational homomorphism G •+ G'.

Needless to say, the complete proof is extremely

intricate both conceptually and technically. The fact

that it, together with the necessary definitions, occupies

just 35 pages is due to Margulis1 very condensed style

of writing and his ability to extract the "concrete essence"

out of every notion and proof he uses. His results are

also much more general than the versions we gave here,

see [M1],[T2],

(6.11) Let us outline now a derivation of (6.7) from (6.6).

Since superrigidity implies local rigidity, G is defined

over a number field k and r is contained, by (6.2), in

G(k). Set H = H ( G - Let *: T •+ H(Q) - G<k) be the
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natural embedding. If we take k = Q(trAd D , see (6.3),

then, modulo replacing r by a subgroup of finite index,

ip(r) can be assumed Zariski-dense in H. On the other

hand, by the definition of R,,/̂  we have that H ~ n UG,
K-/W - a

a direct product of k-groups where a runs over all

embeddings of k into (C and aG is defined in (.1.2).

If we identify the k-group G as the factor G, then we get

a k-map K: H •* G. Moreover K « t = id on r- ket now

G' £ G be another non-trivial simple E-factor of H and

let tr be the projection H -+ G'; ir(r) is Zariski-dense

in G' since it is dense in H. Suppose that

a = IT o \|r: r -* G' extends to a rational map p: G -»• G'.

Then the .diagram H 5- G commutes since K o ̂  = id . Let

ir \ / P
G'

us restrict it to Ker K £ H. Then rc(Ker K) = G' by

our choice of G' and IT. On the other hand

p(ic(Ker K)) = p(eQ) =
 eQ'> a contradiction. Thus a does

not extend to p: G ->• G' and therefore, by (6.6(11)),

tr(r) is relatively compact in G' . Hence H(B) ~ G(B)x

x (compact group).

(6.12) The final step is simple. Consider the natural map

H(Q) -*H(<Qp). Since r is finitely generated x|r(D £ H(Z )

for almost all p (namely, for all p which do not enter

in the denominators of entries of generators of
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considered as matrices}. By C6.6CO1 we know that for all

primes p, the closure r/- * of tCr) in the Hausdorff

topology of H(̂ L) is compact. Therefore

|r(p)/(r( x n H(Z ))| < - since H(* ) is open in HtQ ).

Thus HCZ) fl r = fl CKr) n H(Z )) is of finite index, say
P P

m, in r. Since H(2Z) is a lattice we have that H(Z) n r

is of finite index m-vol(GCR)/H(2E))(vol GGED/r)"1 in

H(Z). Thus we have the situation described in C6.4).

7. QUOTIENT GROUPS OF LATTICES

The next theorem, which is a particular case of a much

more general theorem due to G. Margulis [M3] and £M4],

establishes a dichotomy similar to that of section (3-3)•

(7-1) THEOREM. Let G and r be as in C6.6). Then every

normal subgroup of r is either central or of finite index.

In view of the Arithmeticity Theorem (6.7) one can

deduce (7-1) from a positive solution of the Congruence

Subgroup Problem CCSP) in the cases where this latter has

been established (see [Hu, §§3,^1 for a discussion of

isotropic groups and [Kn ] for the only known solution of the

CSP for anisotropic groups). However, Margulis!s proof is

much more uniform than the other known proofs of the CSP, and

it is applicable to a wider class of groups of B-rank £ 2.

A more general form of the above theorem was used by

Margulis [M5] to solve the CSP positively for the group D of

elements of reduced norm 1 in a central quaternion division
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algebra over a number field; this extended an earlier

partial result of V. Platonov and A. Rapinchuk. The

corresponding local result was obtained by B. Pollak CPo]

and, for general division algebras, by C. Riehm CRi].

(7-2) The proof of (.7.1) uses two representation-theoretic

notions pertaining to a locally compact group H:

Property (T) Cintroduced and used by Kazhdan, and

therefore referred to as Kazhdan1s property (T)): the identity
A

representation of H is an isolated point of the set H

of all irreducible unitary representations of H, ajid

Amenability: H is amenable if for every action of H

on a non-empty compact X there is an invariant (under H)

probability measure on X.

(7-3) It can be shown that an amenable group has property

(T) iff it is compact, and that solvable Lie groups are

amenable. Also we have

(7.4) THEOREM CD. Kazhdan [Kal]).If a locally compact

group H has property (T),then so does any lattice T in

H. Therefore r/[F,r] is finite for such r.

To apply this theorem one must exhibit Cor, better,

characterize) a class of groups H having property CT).

This is done in

(7-5) THEOREM. A semi-simple adjoint connected Lie group

H has property (T) iff it does not have PSO(n,l)° n > 2,

or PSU(n,l), n > 1, as factors.
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Here S0(n,l) = {A € SLn+1CB) | AJA
t » J} and

SU(n,l) • {A € SLn+1(<D) | AJA = J} where

J = diag(l, .. .,!,-!). (1.5) was proven [Kal] by

D. Kazhdan for H which do not have simple factors of

R-rank 1 (.actually, Kazhdan fs proof was for "most" simple

Lie groups of B-rank > 2; it was extended to full

generality by L. Vaserstein (Punct. Anal. Appl. 2(1968),

17*0. Then B. Kostant showed [Ko] that a simple connected

Lie group G(B) of B-rank 1 has property (T) iff it is not

locally isomorphic to S0(n,l), n > 2, or SU(.n,l). Recall

that the family of simple Lie groups G(B), rkG = 1,

consists of PSO(n,l)°, n > 2; PSU(n,l), n > 1; PSp(n,l),

n > 1, (the unitary group of a skew-Hermitian form of Witt

index 1 over the Hamilton quaternions H) 9 and of a group of

type Fjj. (There are the following low-dimensional

isomorphisms: PSO(2,1)0- PSU(1,1) ~PSL2(B), PSO(3,D°2l

-PSL2(C), PSO(4,1)°- PSp(l,l)» PSO(5,D°21 PSL2(E).)

Finally, note that compact groups have (T) — for them
A
H is discrete. The following theorem follows from (7-3)

and (7-1*) if GCR) satisfies the conditions of (7-1*). In

general it follows from (7.1) •

(7.6) THEOREM. If H is an adjoint semi-simple connected

Lie group which is not locally isomorphic to PSO(n,l),

n > 2, or PSU(n,l), n > 1, and has no compact factors,
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then r/[T5r] is finite for any irreducible lattice r in

H.

In the case when r is cocompact and G has no

R-factors of rank 1, (7-6) was previously proven by

S. Kaneuki and T. Nagano [KN]. For uniform lattices it was

proven by J. Bernstein and D. Kazhdan [BK]. The latter's

proof is extendable to non-uniform lattices.

(7-7) The proof of Kaneuki and Nagano was based on

Y. Matsushima1s fundamental interpretation [Ma] of

H^rjR) ~ Cr/[r,T]) <?> R through certain representation-
2

2
theoretic properties of L (G/r) (the space of square-

integrable functions on G/r). Matsushima1s results are

described in [BW, Ch. II].

(7.8) We will now give a short sketch of Margulisf proof

of (7.1). See also [T2] and [Z]. First, if G has no

factors PSO(n,l)° or PSU(n5l) then every amenable

quotient of r is finite by (7-2), (7-3), and (7.4). The

remaining cases of rank s> 2 groups are more difficult, they

are taken care of in [M4], In [M3] Margulis shows that

non-amenable quotients of r from (7-1) are central. To

do this he shows that for any non-amenable group N there

exists a metrizable compact X on which N acts without
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fixing any probability measure on X. (Note that a

compact X exists by definition of non-amenability in (7.2);

the problem is to find a metrizable compact.) Suppose that

N = r/Î , r; < r, N non-amenable. Then by a theorem of

Furstenberg (which was already used in (6.9) in the case

X = G'(k)/P'(k)) there is a measurable r-map

co: G(R)/PCR) -^M(X); P and M here have the same

meaning as in (6.9) and r acts on X via N. Let M- be

the natural quasi-invariant measure on G(B)/P(B). To move

further we need a difficult and remarkable result of

Margulis which enables us to identify (M(X), co#(n.)) as a

measurable T-space with G(E)/?CR) where P is a proper

H-parabolic subgroup of G. But then r^ acts trivially

on GCR)/P(H), which implies that T^ is central. Of

course, the result we have used is the heart of the

argument, and the assumption rk̂ G > 2 is used in its

proof.

8. LATTICES IN PSO(n,l) AND PSU(n,l)

In this section k is always a number field.

(8.1) Theorems (6.6), (6.7), (7.1), (7.4), (7.5), and (7.6)

are not applicable to the simple Lie groups G = PSO(n,l) ,

n > 2, and G = PSU(n,l), n > 1. Recall that

(i) PSO(2,1)° - PSU(1,1)- PSL2CR);
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(ii) PSO(3,1)° ~

(iii) PSO(n,l)°, n > 2, is the connected component

of the group of isometries of an n-dimensional

Lobachevsky space An;

(iv) PSU(n,l) is the connected component of the group

of holomorphic automorphisms of an n-dimensional ball

Bn = {(x±) € (D
n, Z|x±|

2 < 1}; it also coincides with the

connected component of the group of isometries of the

Bergman metric on Bn.

(8.2) The uniform torsion-free lattices T in PSO(2,1)°

are the fundamental groups of the compact Riemann surfaces

r\A . Therefore they are 2r-generator-l-relator groups
2

(where r is the genus of r\A ) . Non-uniform lattices

are even worse: they contain a free subgroup of finite

index. We assume in the sequel that G T^ PSL2CR).

(8-3) Counter-examples to (.7.6) in PSOCn3l)°a n > 3, were

constructed by E. Vinberg for special lattices when

3 < n < 10. For arithmetic lattices r of the type

described in (6.3) (with r » 1) J. Millson [Mi] showed

that. a congruence subgroup A of r contradicts (7.6).

The corresponding cohomological statement — H (AJR) * 0

— was generalized in [MR]; e.g. H (A,R) * o for

1 < 1 < n. Note that if A/ [A, A] is infinite, then the

same holds for all subgroups of finite index in A.
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(.8.4) Millsonfs proof of |A/[A,A]| - - is based on a

simple topological observation. Namely, the fact that An

contains totally geodesic subspaces of codimension 1 makes

it possible to construct a non-trivial homology class

c € Hn""1CA\An^R). By Poincare" duality this implies that

0 # H1CA^E) ~ (A/[A,A]) SB. Millson's ideas do not apply
7L

to PSU(n,l) because the ball Bn Cwith Bergman metric! has

no totally geodesic subspaces of codimension 1.

(-8.5) Counter-examples to* (7.6) in PSU(nal) a n > 2.

Consider arithmetic subgroups in PSU(n,l) constructed as in

(6.3). Namely, take an imaginary quadratic extension K of a

totally real number field k and denote by ~~

the complex cpnjugation in (D. Then f = Z â x̂̂ , a^ € k,

is a Hermitian form on Kn. if the a.^ satisfy the same

conditions a.s in C6.3) and if, moreover, r = 1 then

T = PSU(f,0) is an arithmetic lattice in PSU(n,l). If k # Q

D. Kazhdan has shown Csee [Ka 2] and [B¥, Ch. VIII]) that the

lattices PSU(f,0) have congruence subgroups A with

infinite A/[A,A]; these A are automatically uniform.

To prove that such A exist Kazhdan uses powerful

techniques — properties of the Weil representation of

Sp2n and Matsushima1s [Ma] interpretation of homology

of a lattice. G. Shimura [Sh] removed the condition

k * ft (thus A can be non-uniform); his construction

is more explicit and gives more information.
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(8.6) Counter-examples t£ (6 . 6 ) and (6.7) In PSO(nal) were

first constructed by P. Lanner in 1950 > but he did not know

that they were counter— examples to a conjecture stated much

later. Then V. Makarov constructed infinitely many non-

arithmetic lattices in PSO(.3,1)° ~ PSL2(C). E. Vinberg

[Vi 1] understood the nature of the known examples and

developed general techniques to construct more. His

lattices are groups generated by reflections in totally

geodesic hypersurfaces in An. Such groups are easily

described in terms of generators and relations. Vinberg

distinguished two ways in which arithmeticity and

superrigidity can break down. Namely, suppose that r is a

lattice in PSO(n,l)°. Let k = Q(tr Ad r) . Then, as in

(6.11), it can be assumed that G is defined over k, r is

contained in G(k) and is, moreover, Zariski-dense in

M - R
k
G - Cal1 r Quasi-arithmetic if M(B)° ~ PSO(n,l)°

x( compact group). By (.6.4) any arithmetic lattice is quasi-

arithmetic. For a quasi-arithmetic r the first step (6.11)

of Margulis1 proof of arithmeticity works. Therefore if

r is not arithmetic, the second step (6.12) must break down

This means that for some prime p the matrix entries of the'

y € r contain arbitrary large powers of this prime in the

denominators. This contradicts also (6.6(1)). On the

other hand:, if r is not quasi-arithmetic then (6.11) does
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not work. This shows, as in (6.11), that (6.6(ii)) fails

too. Vinberg gives in CVi 1] examples of both uniform (for

n = 3 and 4) and non-uniform (for n = 3) non-arithmetic,

quasi-arithmetic lattices; he also gives examples of both

uniform (for n = 3*4 and 5) and non-uniform (for n = 3

and 4) non-quasi-arithmetic lattices. A recent result

CVi 2] of Vinberg, extending his own work, and also that

of V. Nikulin, and proving a conjecture of his, is

(8.7) THEOREM. There are neither uniform nor arithmetic

lattices generated by reflections in PSO(n,l)°, n > 30.

Thus the methods used to construct non-arithmetic

lattices in PSO(n,l)° do not work for n > 30. An optimist

can consider this as an indication that all lattices in

PSO(n,l)° are arithmetic for large n.

(8.8) Counter-examples to (6.6) and (6.7) in PSU(n.l).

n > 23 are much more difficult to construct. The walls

of a fundamental domain have codimension 1 but can not be

totally geodesic (compare (.8.4) and (8.6)). G. Mostow

developed [Mo 2] a very deep theory of certain polyhedra

in Bn. The walls of his polyhedra are surfaces of points in

B equidistant from two given points (in the Bergman

metric). These polyhedra are used to construct and study

uniform non-arithmetic subgroups in SU(n,l), n = 2. Mostowfs

subgroups in [Mo 2] are uniform and contained in the group

of integral points of an appropriate algebraic group. Thus



172 Homomorphisms of Algebraic Groups

they are not quasi-arithmetic, Mostow's polyhedra were

also used to construct interesting Kahler manifolds see

[MS] and (6.8).

Using completely different ideas going back to E. Picard,

Mostow constructed new both uniform and non-uniform

non-quasi-arithmetic lattices in PSU(2,1); these new groups

2are monodromy groups of certain branched covers by B . The

lattices mentioned above are all in PSU(2,1). However,

G. Mostow has an example of a non-uniform lattice in

PSU(3,1) as well.

(8.9) Counter- examples t£ a generalization ojT the strong

rigidity theorem (6.5). By (6.5) isomorphisms of lattices

in PSO(n,l)°, n > 3, and PSU(n,l), n > 2, can be

extended to isomorphisms of Lie groups. Mostow, using

a generators and relations description of lattices,

constructed in [Mo 2] two uniform arithmetic lattices

T^ and T2 of PSU(.2,1) and an epimorphism a: T^ -*• T2

with infinite kernel. Clearly such a can not be

extended to an automorphism of PSU(2,1).

Similarly, if one looks at Vinberg's examples [Vi 1],

one can find many pairs of lattices A-, and A« in

PSO(3*1)° such that there exist epimorphisms a: A-, •*• A2

with infinite kernels. Moreover, there are sequences of

epimorphisms -* A^ -*• A. ., -+...-* A., infinite to the left
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and all having infinite kernels. For example, in the

notation of [Vi 1] , one can take A. = I1'. or
r m

A. = r~. where r and m are fixed integers, r > 1,
r m

m > 4. I was not able to find in [Vi 2] such examples

in PSO(n,l)°, n > 4.

(8.10) The attention given at present by topologists to

3-manifolds has led to many results and conjectures about

lattices in PSO(3A)0 = PSL2((C). One should consult

work of W. Thurston (but I can not give an exact reference).
•

On the other hand, lattices in PSL2(<C) are Kleinian groups,

and there is a wealth of material about them, see e.g. [B ].

We will stop here with a few recent results.

We say that a group M is an FQ-group if it has a free

non-abelian quotient. F. Grunewald and J. Schwermer

showed in [GS] that arithmetic lattices in PSL2(<C) have

an FQ-subgroup of finite index. A. Lubotzky proved that a

lattice r in PSLp(^) has a subgroup A of finite index

such that the normal closure in r of any element x # 1,

x € A, is a normal subgroup of infinite index. He also

mentions that M. Gromov has proved similar results for

lattices in PSO(n,l)°, n > 3-

(8.11) The notion of an FQ-group can be useful, as was

pointed out to me by A. Lubotzky, in explaining the examples

described in (8.3), (8.5), (8.9). Indeed, if a lattice r

is an FQ-group, it or its subgroup of finite index can be
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mapped onto any finitely generated group. This

would mean that the information about the commensurability class

of r (and by (6.5) not all r in PSO(n,l)° or PSU(n,l)

are commensurable) is contained in the kernel N of a

homomorphism onto a free group and in the extension of N by

a free group. It would be then interesting to find out what

this information is and how it is carried. (We say here that

two groups are commensurable if they have isomorphic subgroups

of finite index.)

9. CONCLUDING REMARKS

(9.1) Recently V. Petechuk [Pe] concluded investigation of

automorphisms of SLn(A), GLn(A), and En(A), A an arbitrary

commutative ring: if n > 4 they are "standard"; for n = 3

see Petechuk, Math. Notes 31(1982). The proof is based on a

description of the normal subgroup structure of E (A). In a

rough outline it goes as follows: normal subgroups correspond

to ideals; therefore an automorphism a induces a bisection a*

of Spec A; for p € Spec A it induces isomorphisms

En(A/p) ~ En(A/a*Cp)) which are standard and can be glued

together to give a "standard" automorphism-

(.9-2) A. Hahn [Ha2] has found a new setting —Morita

equivalence — for the isomorphism theory of the classical

groups over rings.

(9-3) D. James [J] and myself [We] have obtained results

about homomorphisms (possibly with infinite kernels) of
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anisotropic algebraic groups.

(9.4) Reference [JWW] contains a list of problems

pertaining to the present survey.

SUMMARY TABLE FOR §6,7,8
LATTICES IN ADJOINT SEMI-SIMPLE LIE GROUPS

In this table G Is an adjoint semi-simple connected Lie group and
r Is an Irreducible lattice In 0

^xGroup G

Property^.

Kazhdan ' s
property (T) ,
see (7.2)

r/[r,n

Quotients

Strong
rigidity,
see (6.5)

Superrigidity,
see (6.6)

Quasl-arlthmsti
non-arithmetic
lattices,
see (8.6}

non-quasi-
arithmetic
lattices
see (8.6)

S0(n,l)°, n > 3 see

SU(n,l), n > 2 (7-5)

o, see (7-5)

an be Infinite, see
8.3), (8.5).

There are both amenable,
see (8.3), C8.5), and
non-amenable , see (8.9),
infinite quotients
Some lattices have other
lattices as non-trivial
quotients, see (8.9),
(8.10)
see also (8.11)

yes, see (6.5)

no, -see (8.6). (8.8),
but..., see (8.7)

in PSO(n,l)
uniform (n • 3,4)
non-uniform (n • 3)
see (8.6), (8.7)

in PSO(n,l)
uniform (n - 3,4,5)
non-uniform (n • 3,4)
seeja î̂ iS..!!
in PSU(n,l)
uniform (n - 2)
non-uniform (n • 2,3)
see (8.8)

PSp(n,l) , n >2 see

Fl| of rank 1 (7.5)

yes, see C7.5)

finite, see (.7.4)
and (7.6)

every finite
quotient is
not amenable
see (7.2)
and (7.3)

yes, see (6.5)

unknown

unknown

unknown

rkRG>2

'yes", if
G does not
have PSO(n,l)
or PSU(n,l)
as factors;
'no" other-
wise,
see (7.5)

finite,
see (7.4)
and (7.6)

every
quotient
is finite,
see (7.1)

yes,
see (6.6)

yes,
see (6.6)

no,
see (6.7)

no,
see (6.7)
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