
Modular Representations
of Algebraic Groups

BRIAN J.PARSHALL

These lectures provide an introduction to the modular

representation theory of semisimple algebraic groups.

Sections 1 and 2 assume only a basic acquaintance with the

theory of algebraic groups and with the standard language

of representation theory. Later sections, however, employ

the theory of group schemes, and so make more demands on

the reader. Nevertheless, it should become clear that the

study of positive characteristic phenomena is ideally

suited to the approach defined by these techniques.

Many important topics as well as many proofs are

omitted or only barely sketched due to lack of time. The

reader may consult the papers in the bibliography for

further information.

It is a great pleasure to thank Warren Wong and Alex

Hahn for inviting me to visit Notre Dame and for making

my stay there so pleasant.
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102 Representations of Algebraic Groups

1. ELEMENTARY THEORY

Throughout we will fix an algebraically closed field

k. Unless explicitly stated to the contrary, we assume

that k has positive characteristic p.

(1.1) RATIONAL MODULES. Let G be an affine algebraic

group defined over k. A finite dimensional kG-module V

is said to be rational if the associated homomorphism

Pv: G -»• GL(V) is a morphism of algebraic groups. By a

rational G-module we mean a kG-module V which is a union

of rational finite dimensional submodules in the above

sense. ¥e let M« be the category whose objects are the

rational G-modules and whose morphisms are the G-module

homomorphisms.

(1.2) EXAMPLES/REMARKS. (a) MQ is an abelian category

which is closed under the formation of tensor products9

direct limits, and duals of finite dimensional modules.

Further, it is easy to see that MQ possesses enough

infective objects.

(b) The coordinate ring k[G] of G is a rational

G-module relative to the left translation action of G:

(g»f)(x) = f(xg), f 6 k[G], g,x e G. We may also view

k[G] as a rational right G-module by using the right

translation action of G: (f-g)(x) = f(gx).

(c) k[G] has a well-known commutative Hopf alge-

Por the most part, all modules are taken to be left
modules.
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bra structure, with comultiplication A: k[G] •»• k[G] 8 k[G],

counit e: k[G] •> k, and antipode r\: k[G] •*• k[G], Then

MQ is isomorphic to the category of comodules for k[G]

(see [14; 1.1] for more details).

(d) Let Q be the Lie algebra of G, that is, the

Lie algebra of all k-derivations D of k[G] satisfying

the identity (18 D)A = AD. Then 3 becomes a rational

G-module, called the adjoint module, as follows. Take

g.D, g e G, D e 3, to be the derivation defined by

(g.D)(f) = g-(D(g"1-f)). It is easy to check that g.D

satisfies the required identity to be an element of Q .

(1.3) NOTATION. We now take up the case when G is a

(connected) semisimple algebraic group. For simplicity,

we will assume that G is simply connected. We list

below some of the standard notation that we will use

throughout:

B = T.U Fixed Borel subgroup with maximal
torus T, unipotent radical U

B" = T.U" Opposite Borel subgroup

$ Root system of T in G

$ Positive roots defined by B

U = {ou ,... ,otp} Fundamental roots in $

W Weyl group

w Long word in W

<,> W-invariant, symmetric, positive
definite bilinear form on
E = Z$ 8 E
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av coroot 2a/<a,a> , a e $

A Weight -lattice in E spanned by
the fundamental dominant weights

(i)-̂ ,...,̂ - (where <o>^,aY> = 6..»

I £ i,j £ A)

A Dominant weights

p o^ +...+ Co.

A* X e A+ satisfying 0 <_ <X,o?> <pr,r j
1 £ j £ A; r a positive integer

£ Partial order on A given by
X <_ y iff y-X is a sum of
positive roots

X •»• X Opposition involution on E
defined by X* = -wQ(X)

PT = LT.UT9 JS I Parabolic subgroup containingj u j
B with Levi factor Lj having
J as fundamental roots

If V is a rational G-module and X e A, let

V^ = {v 6 V|t.v = X(t)v, t 6 T} denote the X-weight space

for the action of T on V. If V^ / 0, we say that

^ is a weight of T in V. We can now state the

following basic result, due to Chevalley [12]:

(1.4) THEOREM. Let G be a semisimple, simply

connected algebraic group over k.

(a) Let V be an irreducible rational G-module.

Among the weights of T in V there is a unique maxi-

mal weight X (relative to <_ ), called the high weight

of V. Necessarily9 X e A . Any two irreducible rational
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G-modules with the same high weights are G-isomorphic.

(b) Conversely, given X 6 A4", there exists an

irreducible rational G-module, denoted S(X), of high

weight X.

Let us make several comments concerning the proof

of this result. The first part (a) is relatively straight-

forward and parallels closely the proof of the correspond-

ing result for complex Lie algebras. As for (b), there

are several ways to construct S(X), all of them important.

The original method of Chevalley involves getting S(X)

from an appropriate linear system on the projective

variety G/B. This is closely related to the theory of

induced modules taken up in Section 2 below. Secondly,

one can obtain S(X) from the corresponding complex

irreducible module by reduction mod p (see [44; §12]).

Thirdly, there is a direct argument of Borel which uses

only the normality of k[G] and an elementary result of

Chevalley (see [27; 31.4] for details).

(1.5) THE PROBENIUS MORPHISM. The next basic result in

the modular representation theory is the tensor product

theorem. To explain this result, it is convenient to

assume that the semisimple group is defined and split

over the prime field kQ - GP(p). (It is always possible

to arrange this.) Thus, in particular, k[G] - k0C
Gl ® k*

where k [G] is the k -algebra of regular functions on

G defined over k . We consider the Probenius morphism
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a: G •*• G defined by means of its comorphism

a*: k[G] -*• k[G] (f 8 c + fp ® c, f e kQ[G], c 6 k).
2 Now

if V is a rational G-module, we can, for a positive

integer r, form a new rational G-module v^r' as follows.
fT\As a k-vector space Vx ' = V, but the effect of applying

g e G to v 6 V^r' is now ar(g).v. Thus, py(r) = p,,oar.

We say that V^r' is obtained from V by twisting by ar.

We may assume that T is defined and split over k . Then
(T\ r

clearly the weights of T in V ' are the p -multiples

of the weights of T in V. Thus, S(X)(r) a S(prX).

(1.6) TENSOR PRODUCT THEOREM. Let G be a semisimple,

simply connected algebraic group defined and split over k .

For X 6 A"1", let X = XQ + pX-j^ +...+ p
rXr be its p-adic

expansion (so that X. 6 A-,, cf. (1.3)). Then

S(X) s S(XQ) 8 S(X1)
(1) ®...8 S(Xr)̂

r).

This result was originally proved in general by

Steinberg. We will briefly sketch an argument from [15]-

It is given in two steps:

1) Let V(g) be the restricted enveloping algebra

of the Lie algebra g of G. The adjoint action of G

on Q induces a rational action of G on the quotient of

V(g) by its Jacobson radical J. Furthermore, since G

is connected, it must fix elementwise the finitely many

central primitive idempotents of V(g)/J. Given a

For example, if G = SL (k), then a is the endomorphism
of G which raises each matrix entry of g 6 G to the pth power
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restricted irreducible g-module S, it corresponds to a

central primitive idempotent of V(g)/J. It follows,

from the simple connectivity of G, that S extends

(uniquely) to an irreducible rational G-module.

2) If S is an irreducible rational G-module, let

S-^ be an irreducible g-submodule. We have a G-isomorphism

Horn (S-̂ S) 8 S^ -> S given by $ 8 s •*• <|>(s), <f> 6 Horn (S-̂ S),

s 6 S-ĵ . Here Horn (S-̂ S) is given its natural structure

as a rational G-module, using 1) above. Applying this to

S(X), X 6 A^, we see easily that S(X) is Q-irreducible.

Now, for arbitrary X 6 A , write X = XQ + p9 where

XQ e A-, and 9 6 A . Clearly, S(X) is a G-composition

factor of S(XQ) 8 S(9K , whence any irreducible g-sub-

module of S(X) is g-isomorphic to S(XQ). A bookkeeping

argument involving high weights establishes that

S(X) = S(XQ) 8 S(6)̂  . The proof can now be completed

by induction on r.

As a bonus of the above argument, we get the result

of Curtis that the S(X), X 6 A-,, are exactly the distinct

irreducible restricted ^-modules.

(1.7) FORMAL CHARACTERS. Given a finite dimensional

rational G-module V, we can form its formal character

ch V = dim Y eX

in the integral group algebra Z[A] of A (so e .ey =
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One is then led to ask for an explicit formula for ch S(X)

as well as for dim S(X). Both of these problems were com-

pletely solved in the case of k = ffi in a series of famous

papers written by Weyl in the 1920 Ts; for example, Weyl f s

character formula states that

ch S(X) - I det(w) e
w(X+pV I det(w) ew(p). At present

weW weW
no such formula is known in positive characteristic,

although a relevant conjecture has been formulated (cf.

Section 5). The answer is not even known in general for

G = SLn(k)!!

2. INDUCED MODULES

In this section, we will study the process of

obtaining rational modules for an algebraic group from

those of a closed subgroup.

(2.1) BASIC DEFINITIONS. Let H be a closed subgroup of

an affine algebraic group G over k. Let -rr: G •*• G/H

be the quotient morphism, where G/H denotes the variety

of right cosets Hg. Given a rational H-module W, we

will construct a sheaf L,, on G/H. First suppose W

is finite dimensional. For U an open subvariety of

G/H, set rCU,!) = Mapdr^OOjW), the space of all

morphisms f : IT (U) •»• W (of varieties) such that

f(hg) - h.f(g), h e H, g e iT̂ U). In general, set

L.T » llm L,TI , the direct limit taken over all finite
W fit *

dimensional submodules W1 of W. We call L the
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sheaf induced from W. It is clear that L... is actually

a module for the structure sheaf ^G/H of G/H, and in

fact one can show it is quasi-coherent (and coherent if

dim W < «).3

The space w| = MapH(G,W) of global sections of L.,

carries a natural G-module structure by setting

(g.f)(gf) = f(gfg), f e W|G, g,g' e G. Since MapH(G,W)

is clearly a G-submodule of Homk_al (k[W],k[G]) = k[G] 8 W,

it follows that wIG is in fact rational for W finite

dimensional, hence rational in general by (1.2). Also, it

is clear that the map Ev(W) : wlG -* W (f •> f(l)) is H-

equivariant, and it follows directly that given any

rational G-module V and H-module homomorphism $: V •*• ¥,

there exists a unique G-module homomorphism $: V -*• w|

such that Ev(W)o§ = $. This fact (Frobenius reciprocity)

merely expresses the fact that I , which is called the

induction functor, is the right adjoint to the restriction

functor MQ •* MJJ (V -*• V!H). At times we will denote |G

by |G when H needs to be mentioned.

(2.2) EXAMPLES AND ELEMENTARY PROPERTIES. We give below

an number of examples involving induced modules.

(2.2.1) TENSOR IDENTITY. If V 6 Ob(MQ), W 6 Ob

then W|G ® V = (W 8 V|)|G. To establish this, we canH

quasi-coherence is straightforward if TT is locally
trivial in the Zariski topology. If W is finite dimen-
sional, one can show in general that LTT is locally free,
cf. [18], w
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reduce to the case in which V is finite dimensional.

For K 6 ObCMg), we have HomG(K,w|
G 0 V) = HomG(K 8 V*,W|

G)

= HomH(K 8 V*)|H,¥) s HomH(K|H,W 8 V|H) s HomG(K, (W ® V|R) |
G),

whence the conclusion.

(2.2.2) COORDINATE RINGS. We have k[H]|G s k[G];
n pi

k| = k[G/H]. Here k in k| denotes the one-dimensional

trivial H-module.

(2.2.3) PARABOLIC INDUCTION. Suppose that H is a

parabolic subgroup of G. Since G/H is complete, it

follows that W| = T(G/E9L^) is finite dimensional for any

finite dimensional rational H-module W. Let us consider

the case in which G is semisimple, simply connected,

and H = B is a Borel subgroup. For a rational character

X on B, it will be convenient to let X also denote the

one-dimensional rational B-module defined by X. Now for

H and G arbitrary, it follows immediately that Ev(W) =

0 iff W|G = 0, for any rational H-module W. In particu-

lar, if X| / 0, we see the image of the dual map Ev(X)*

is a B-stable line in (X|G)* of weight -X. Hence, -X|G ̂

implies that X 6 A . Conversely, if X e A , the existence

of a nonzero B-module homomorphism

S(X)* -> S(X)*/[U ,S(X)*] = -X guarantees that-X|G ^ 0.

Below are some basic properties of -X| for X 6 A .

a) -X|G has the irreducible module S(X)* = S(X*)

as its socle (= maximal completely reducible submodule).
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<«!

Hence , -X | is indecomposable.

This is immediate from reciprocity.

b) -X| has a unique B-stable line

X* and X* is the maximal weight in -X | (with respect to

b) -X| has a unique B-stable line. It has weight

If -X| has B-stable line isomorphic to y, then the

G-submodule D it generates is a cyclic U~-module. This

follows easily from the Bruhat decomposition of G. Prom

a) it follows that X* £ y. Now (2.2.1) above and
/*!

reciprocity imply that -y| also has a B-stable line,

isomorphic to X. Thus, X* = y and D is the socle of

-X| . The desired result follows.
rt

c) The formal character ch -X| is given by Weylfs

formula (1.7) (with X* in place of X). Hence, dim -X | G

is given by Weyl's dimension formula.

This is more difficult, cf. (3-3-*) below.

It follows that ch -X|G = M 7 , m, (y)ch S(y),
X*^y e A"*" A

where mx(y)=[-X|
G: S(y)] is the multiplicity of S(y)

as a composition factor of -X| . Over the years there
r%

has been intense interest in the structure of -X | (or

equivalently in the duals (-X| )*, popularly known as

Weyl modules) . In particular, an explicit determination

of the matrix [m, (y)] (or its inverse) would essentially
A

solve the above problem of calculating ch S(X), cf. (1.7).
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(2.2.4) SMITH'S THEOREM [43]. Fix a parabolic subgroup

P = Pj and let P~" = LJ-UJ be the opposite parabolic sub-

group. Fix S(X) and let V be the LT-socle of the space_ d

S(X) J of U~-fixed points. We make several observations:j

a) V is irreducible as an Lj-module.

This is clear since B~ has a unique fixed line in

S(X), and, a fortiori, in V.

b) Now view V as a rational P-module by making Uj

act trivially. Then Ev(V) maps (V|p) J injectively into

V.

In fact, if f 6 ker Ev(V), then f(l) - 0. Thus, for

g e P, u e U~, f(gu) = (u.f)(g) = f(g) = g.f(l) = 0, so

f = 0 on the dense subset Pj.Uj of G. Hence, f = 0.

(Notice b) holds for an arbitrary rational P-module.)

c) Since -X* is the "low" weight in V, we get a non-

zero B-module homomorphism V •*• -X* which lifts to a non-

zero P-module homomorphism V •> -^*IB3 necessarily an

inclusion by a). Similarly, there is a nonzero P-module

homomorphism S(X) •*• -X*|B, whose image is contained in V

since S(X) is a cyclic B-module, generated by a nonzero

-X*-weight vector.

d) Thus, by c), S(X) £ V|£. Hence, S(X)UJ s (V|p)UJ,

an Lj-submodule of V by b).

It follows therefore that S(X) J is an irreducible

Lj-module.



B. J. Parshall 113

(2.2.5) ITERATED INDUCTION. If P1,...,Pn is any sequence

of parabolic subgroups containing B and if V is a
P ... P P P P

rational B-module, let VJ 1'""' n denote v| 1|B|
 2-.-l Bl

 n,

the result of successively restricting to B then inducing

1 * " * " * n G
to P.. Then V| = V| as P -modules provided thati - —— jj - "
Pl'"Pn = G' The reader wil1 find a proof of this fact in

[16], Let us merely point out an application. Let

w« = SQ - - - S Q be a reduced expression for the long word
0 *! PN

w . Setting P. = P/g j, we have P.,...PN = G. Now if V

is a rational B-module which extends to a rational P.-

module, we have from (2.2.1) and the isomorphism kCP./B] = k
P, x

that V|D = V. Thus, we get the following extension
D

theorem [16]: A rational B-module extends to ci rational

G-module iff ±t extends to a, rational P-module for each

minimal parabolic subgroup P SB.

3. INFINITESIMAL METHODS

The theory of group schemes aims to rehabilitate in

positive characteristic the classical algebraic group-Lie

algebra correspondence. Below we will indicate several

applications of this point of view. First, we introduce

some preliminary terminology, mostly taken from [20].

Let MJE denote the category of k-functors: an

object in M,E is a functor from the category M^ of

commutative k-algebras to the category E of sets. The
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category Sch/k of k-schemes embeds naturally in M,E:

to the k-scheme X we associate the functor (still denoted

X) R + X(R) = Homk(Spec R,X), R 6 Ob(Mk). Intermediate

between Sch/k and M, E is the full subcategory M, E of
———— •—"J£ •-""tC"~~

sheaves in the fppf topology on M?P« The inclusion

morphism M.E •*• M^E admits a left adjoint *>: M.E •»• KE

(X •*• X) commuting with finite projective limits, called

sheafification. The point behind the introduction of MkE

here is roughly to enlarge Sch/k suitably in order to

facilitate many natural constructions (especially of a

group-theoretic nature).

Next, recall that a k-group G is a functor from M.

to the category Gr of groups. An affine k-group (or

affine k-group scheme) G is a k-group which is represen-

table (by its coordinate ring k[G]). An affine algebraic

group G in the classical sense defines an affine k-group,

still denoted G, by setting G(R) = Homk_al (k[G],R),

R 6 Ob(Mk). The Hopf algebra structure on k[G] endows

G(R) with a group structure in a well-known way. The

standard notions of rational representations, etc., all

apply in the more general setting of affine k-groups.

We cannot enter into further details of the above

here. The reader may wish to consult [20], especially

Ch. II,§1, and Ch. II,§§1,2,3, for more details. The

formalism involving MfcE. will enter only in a technical

way below which the reader may wish to ignore at first
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reading.

(3-D PROBENIUS KERNELS. Let G be an affine k-group.

Assume G is defined over the prime field k , and let

a: G •*• G be the Probenius morphism (1.5). Now let H be

a closed subgroup scheme of G. For a positive integer r,

we define the rth infinitesimal thickening of H, denoted

HG , by means of the pull-back diagram

Thus, HG is a closed subgroup scheme of G. When

H = {e}, the trivial subgroup, we denote HG by just

G^ and we call it the rth Probenius kernel of G.r —

EXAMPLES, a) Let G = SL . Then G is given by

QPCR> = {[ajj] e SLn(R) |a£ = «±J).

b) Assume G is connected. For r = 1, the dual

Hopf algebra k[G-,]* of k[Gn] is isomorphic to the

restricted enveloping algebra V(g) of the Lie algebra

of G. In particular, M_ is isomorphic to the category
"*!

of restricted g-modules.

c) Let G be a semisimple, simply connected alge-

braic group defined and split over k . It is easy to
*\f f\f

see that G/Gp = G for all r. Here G/Gr is the

sheafification of the k-group G/Gr defined by
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(G/G r)(R) = G(R)/G r (R) , R e Ob(^). Similarly,

Gr/Gg = Gr_g for r > s (cf. [23; 3-6]). It is then

easy to extend the argument of (1.6) to see that the map

X + S(X)|Q , X e A*, is a bijection between A* and
r

representatives from the distinct isomorphism classes of

irreducible rational G -modules. (In a different form,

this result is due to Humphreys [26] for r > 1.) More

generally, for an arbitrary closed subgroup scheme H of
<\, ^

G, one has that HG /G = H/H x G , and the irreducible

rational HG -modules have the form V 8 ¥ where V is
*\j

an irreducible rational H/H x G -module and W = S(X)|tI«Gr r ' HG
+ r

for some X e Ar .

(3-2) MACKEY THEORY. Let f : H •* G be a morphism of

affine k-groups. Given a rational G-module V, we can

regard it as a rational H-module by means of the morphism

f . Thus, we obtain a restriction functor f*: IYL -> MH

which, as in Section 2, admits a right adjoint, called

induction, f^: MJJ -»• Mg (see [l4;1.2] for more details).

The functor f^ is left exact, and, as usual, we let

Rnfs: MH -*• MQ denote its nth right derived functor. When

no confusion results, we often write V| for f*(V) andH

¥|G or W|G for f* (W) .

Now fix f : H -> G and let L be a closed subgroup

scheme of G. Let i: L •* G be the inclusion morphism.

Consider the morphism (*) L x H + G (in Sch/k) given
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by the composition of i x f with the multiplication map

in G. Let j : L x H •»• H be the natural inclusion mor-

phism of affine k-groups and let fT: L x H •*• L be the

morphism obtained by restricting f to L x H. Now we

can state

(3-2.1) THEOREM [18]. With the above notations, assume in
'b

addition that the morphism (*) is an epimorphism in M^E..

Then we have a natural isomorphism of functors

Rnj'*of'* s f*oRrilt: ML + M, n >_ 0.

We remark that the morphism (*) is an epimorphism in

case G is a reduced algebraic group and G(k) = L(k)f(H(k)),

If H is a closed subgroup scheme of G and if we write

H n L for H x L, we can express the n = 0 case of

(3-2.1) as V|G|H a V|HnL!
H for V 6 Ob(ML) !!.

Now assume that G is reduced and of finite type over

k, and that H and L are closed subgroups such that L

^has an open orbit Q in G/H. Choose f e Q(k) and let

x be a representative for f in G(k). Let L = Hx x L,

where Hx = x~ Hx, be the stabilizer of x in L. For

V 6 Ob(MH), let Vx denote the rational H-module obtained

by making Hx act on V through the morphism Hx + H (hx-»-h),

Now we have

(3.2.2) THEOREM [18], Assume that G/H - ft has codimen-
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sion >_ 2. Then for a rational H-module V, we have

X

In addition to the proofs of (3-2.1) and (3-2.2), [18]

gives a version of (3-2.2) valid for the higher derived

functors of induction.

(3-3) APPLICATIONS. Let G be a semisimple, simply

connected algebraic group, defined and split over k .

a) PARABOLIC INDUCTION THEOREM. Let PT and Pv beJ A

two standard parabolic subgroups such that J* U K = n.

One verifies that the P^-orbit 8 of w PT/P, in G/PT
K O d d J

is open and that codim(G/P- - fl) >_ 2. Therefore, we_
w P

obtain from (3-2.2) that V|G[p = V °|p np
wo| K for

V 6 Ob(Mp ) [18].

b) THE STEINBERG MODULES. For each positive

integer r, define the rth Steinberg module St(r) to be

S((pr-l)p). Below we sketch a proof that

St(r) = -(pr-l)plS- The argument is given in several

steps:

1) dim St(r) = prN, N = 1$+I. This follows from

the r = 1 case (in view of (1.6)) where one argues

directly, cf. [18] for details.

2) Since St(r) is G -irreducible (3-D, reciprocity
G

gives an inclusion 1: St(r)L —*- -(pr-l)p|R
r of G -

r r
modules.

3) Applying (3-2.1) for L = Bp, H - U~, we obtain,
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using (2.2.2) and the fact that Br x u~ is the

G r

trivial group, that -(pr-l)p |B
r | a k[lT], so has
r r

rN
dimension equal to p . Thus, i is an isomorphism by 1)

above.
BG G

4) Similarly, -(pr-l)p|B
 r!Q = -(pr-l)p| r , so

r r
BG

there is an isomorphism j: StCr)!-,^ = -(pr-l)p|ri
 r

BGr 'B

which factors as St(r)|BQ £ -(p
r-l)p |B|BQ 5 -(pr-l)p|B

 r.
r r

By (2.2.3b), a is an injection on its B-socle, so a is an

injection. It follows that B is an isomorphism, which

clearly proves our claim.

c) BUNDLE COHOMOLOGY. Consider the following commu-

tative diagram, the square being a pull-back:

Here a,af,b are the natural inclusion morphisms. By

(3.2.1), we have that Rnb*oc* = ar*oRna* = a
r*oRnbxoai

(since a^ is exact [l4;4.2]) for all n >_ 0. Let

V 6 Ob(EB). If we apply the above to V(r) ® -(pr-l)p,

using b) above and the fact (2.2.1) that the exact

functor - 8 St(r) commutes with induction, we obtain

immediately that
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(3.3-1) Rna*(V(r) ® -(pr-l)p) = Rna*(V) ( r ) 8 St(r), n >_ 0.

(This argument was first discovered by E. Cline and repro-

duced in [18] in detail.) Using the easily derived fact

that Rnax(V) = H
n(G/B,Lv) (sheaf cohomology, cf . [19]

for example) we obtain from (3-3.1) the following impor-

tant result discovered independently by H. Andersen [5]

and W. Haboush [253:

(3-3-2) THEOREM. For a rational B-module V, we have an

isomorphism of rational G-modules:

Hn(G/B,Ly)
(r) 0 St(r) s H

n(G/B,Lv(r) ̂ ̂(pr.1)p), n^

This theorem has several important consequences.

(3-3-3) COROLLARY. Let X e A+. Then Hn(G/B,L_x) = 0

for all positive integers n.

This result, due to G. Kempf [36], follows easily

from (3-3-2) using the ampleness of the line bundle L_ ,

cf. [5] for more details.

(3. 3.4) COROLLARY. For X 6 A+, ch -X|G is given by

Weylfs formula (1.7) (with X* in place of X).

This is a well-known consequence of (3-3-3), cf.

for the argument.

(3-3.5) COROLLARY. For V 6 Ob(Mg), there is an injec-
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tion Hn(G/B,Lv)
(r) -»• Hn(G/B,Lv-(r)) of rational G-modules

for all n ̂  0, r ̂  0.

This result, which had been conjectured earlier by

Cline, Scott, and the author, was proved by Andersen in [5].

It follows easily from (3-3.2).

4. RATIONAL COHOMOLOGY

The rational cohomology of affine algebraic groups was

first studied by Hochschild in the early 1960fs. It plays

an important role in the representation theory, and in this

section we will survey some of the work done to date.

(4.1) BASIC DEFINITIONS. Let G be an affine k-group.

Let FQ be the functor from the category M« to the cate-

gory of k-vector spaces which assigns to each V B Ob(M~)

G 4
the space V of G-fixed points. It is trivial to see

that MQ possesses enough injectives, so we can speak of

the nth right derived functor RnFQ of FQ, n >_ 0. For

V 6 Ob(MQ), write Hn(G,V) - RnFQ(V), the nth rational co-

homology group of_ G with coefficients in V. Similarly,

we can define the rational ExtG-groups, Ext̂ (V,-)

= RnHomG(V,-), V 6 ObCMg).

Now let H be a closed subgroup scheme of G and

let W be a fixed rational G-module. By reciprocity, we

have that HomH(W,-) = Koj, where J = |H is induction

More precisely, if we view V as a k[G]-comodule with
structure map Ay: V + k[G] 8 V, then VG = {v 6V|Ay(v) =

1 3 v}.
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from MJJ to Mg and K = HoraQ(w>-)- Ifc is immediate that

J takes injective objects in MIT to injective objects in

MQ, so there is a Grothendieck spectral sequence

(4.1.1) E^ = Ext^(W,RtJ(V)) «>Ext|+t(W,V)

for all rational H-modules V.

(4.2) SOME BASIC RESULTS. In this section G will be a

fixed semisimple, simply connected algebraic group, defined

and split over k .

(4.2.1) TRANSFER THEOREM [19]. Let V be a rational G-

module. Then the restriction map on cohomology induces a

natural isomorphism Hn(G,V) •* Hn(B,V), n >_ 0, of cohomo-

logy groups.

To prove this result, we will use the spectral sequence

(4.1.1) with H = B. It is not hard to see that RtJ(Z) a

H (G/B,LZ) for every rational B-module Z. Now if

Z - V e Ob(MQ), we obtain from (2.2.1) that RtJ(V) =

V 8 RtJ(0̂ ), where £ denotes the one-dimensional trivial

B-module. It follows from (3-3-3) that HG/B^) = 0

for t > 0. Taking W to be the trivial G-module, our

spectral sequence collapses to give the desired result .

(4.2.2) REMARKS: a) The same argument shows that for

V e Ob(MG) and X 6 A+, we have that ExtQ(V3-x|
G) =

Extg(V,-X), n ̂  0. See [19]-
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b) One can also show for r a positive integer and

V e ObfM^) that there is an isomorphism

Hn(G,V) •*• Hn(BGp,V), n ̂  0.

(4.2.3) THEOREM [193- Let V 6 ObCMg), X 6 A+. Suppose

that -X is not strictly greater (in the partial order >^

(1.3)) than any weight n of T in V. Then

Ext£(V,-X|G) =0, n > 0.

For the proof see [19;3-2]. This result has the

following important consequence (also taken from [19]):

(4.2.4) COROLLARY. Let X,y 6 A+.

a) -X|G 8 -y|G is G-acyclic, i.e., Hn(G,-X|G 8 -y|G)

= 0 for all positive n.

b) -X| 8 -y is B-acyclic.

(4.2.5) REMARK. Recent work of Wang Jain-pain [45] shows

that -X|G 8 -y|G (X,y 6 A+) has a G-filtration with

sections isomorphic to induced modules -co| (o> 6 A ),

at least as long as p is sufficiently large. It follows

from (4.2.4) therefore that an arbitrary tensor product

-X-J0 8...® -*n!
G U± 6 A"1") is G-acyclic. Using the

parabolic induction theorem (3.3a)a D. Vella has deter-

mined (unpublished as yet) conditions which guarantee that

-X| , X e A , has an L-filtration with sections isomorphic

to induced modules -o>| (co a dominant weight for L),

where L is a Levi factor of a suitable parabolic sub-
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group of G. In particular, this means -X|G is L-acyclic.

The above results have an interesting (though formal)

application, observed first in [42] (and motivated by

similar results in characteristic 0), to the representation

theory. For V,W finite dimensional rational B-modules,

we define

X(V,W) = I (-1)1 dim ExtJ(V.W).
1-0 B

(It is not hard to see that the Ext-groups here are finite

dimensional and vanish for i sufficiently large, cf .

[19].) Now for X,u 6 A+, (4.2.4) implies that

X(y*,-X|G) - 6, (Kronecker delta). Thus,
A ,11

ch -X|G - I x(y*,-X|G) ch -y|G, and so, by the
X eA+

additivity of X, we get that

(4.2.6) ch S(X) - I . X(U*,S(X)) ch -y|
G.

(4.3) FURTHER RESULTS. Let G be a semisimple, simply

connected algebraic group, defined and split over kQ.

(4.3-D GENERIC COHOMOLOGY . For q - pd, let G(q)

denote the subgroup of G consisting of GF(q) -rational

points. Then, given a rational G-module V, we can con-

sider the classical discrete cohomology groups Hn(G(q),V).

The "generic cohomology" arises from the stability of

these groups. More precisely:
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(4.3-1.1) THEOREM [19]. Let V be a finite dimensional

rational G-module. For a fixed n, the cohomology groups

Hn(G(q),V) achieve a stable value Hnen(G,V) as d -» «>

which is given in terms of rational cohomology by Hn(G,V^r')

for r » 0.

Besides the proof of this result, [19] contains arith-

metic conditions on r and d which guarantee that

H!Lv^G>v) ~ Hn(G(q),V) = Hn(G,V(r)). The above result hasgsn

also been extended to include the twisted groups [9].

We next introduce a variation on the Kostant partition

function P. Namely, for n « 0,1,..., and X e A, let

P (X) denote the number of ways X can be written as a

sum of n positive roots. Thus, we have that

P = PO + P-, + ... . In the following result, we assume G

is of simple type.

(4.3.1.2) THEOREM [22], [23]. Let X 6 A* satisfy the

condition <X+p,a^> £ p, where aQ is the maximal short

root in $*. Assume also that p >^ 2h, where h is the

Coxeter number of $. Then for 0 <_ n < (p-2h+2)/4 and

all r >_ 1,

0 n odd

det(w)p (w(X+p)-p),

n=2m is
even.

In view of (4.3.1.1), the above formula calculates
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also the generic cohomology of S(X) in a range of degrees.

(4.3.2) INFINITESIMAL COHOMOLOGY. Let G be as above,

and consider the relationship between the cohomology of G

and that of its Probenius kernels G (3.1).

(4.3.2.1) THEOREM [14]. Let V be a finite dimensional

rational G-module.

a) The natural restriction map Hn(G,V) •> llm Hn(Br,V)

is an isomorphism for each n.

b) The natural restriction map H^G^V) + llm Hn(Gr,V)

is an isomorphism for n <_ 2, and an injection for all n.

In b) above, it turns out that H^G/V) = H1(Gr,V)

for r » 0, at least so long as p 7* 2 or G has no com-

ponent of type C . In general, stability does not hold
J6

in a) or in b) (for n = 2).

We also would like to mention the following result.

(4.3.2.2) THEOREM [8]. Assume that p ̂  2 or that G

has no component of type C0. Then for X e A_, we haveXf r

that Extp (S(X),S(X)) = 0.
r

Finally, we remark that [23] contains a calculation

(in a range) of the cohomology H*(Gr,k). This in fact

plays an important role in the proof of (4.3.1.2).
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5. LUSZTIG'S CONJECTURE

Throughout this section, G will be a fixed simple,

simply connected algebraic group over k.

(5-1) THE AFFINE WEYL GROUP. Let E = Z$ 8 B be the

Euclidean space associated to the root system $ of G

(1.3). Let s (a 6 $, n e Z) be the reflection of Eex ,n
about the hyperplane Ha = {x 6 E|<x,av> = np}, and let

¥Q (the "affine Weyl group") be the subgroup of Aut(E)a
generated by these s . If a denotes the maximal short

root in $+, and if S = {sa Q,. . ., sa Q, s -J 9 then
1* jl5 o9

(¥&,S) is a Coxeter system. Clearly, ¥ is a semidirect

product ¥.T, where T is the normal subgroup generated by

the translations of E by p-multiples of roots. In

addition to the usual action of ¥0 on E, there is thea
"dot" action defined by wX = w(X+p) - p.

For u,X e E, write p t X provided that p = s «X

<_ X for some a e $ and integer n. ¥e say that y and

^ are strongly p-linked (resp. p-linked) provided there

is a sequence p= yQ *^ t...* un = X (resp. X = w-p,

for some w 6 ¥_).a

(5.1.1) THEOREM [3]. Let X 6 A and let S(y) be a G-

composition factor of Hn(G/B,L *) (cf. (3-3c)) for
"~A

some non-negative integer n. Suppose that w-X = X1 6 A ,

w e ¥. Then p is strongly p-linked to Xf.

It follows easily from (5.1.1) and (2.1) that the
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high weights of the G-composition factors of an indecompos-

able rational G-module are p-linked.

(5.2) THE GENERIC HECKE ALGEBRA. Let A = %tq*9q.'^ be

the ring of integral Laurent polynomials in the indetermi-

^nate q . Given the Coxeter system (¥_,S) of (5.1) (ora

any Coxeter system for that matter) we define its generic

Hecke algebra H to be the free A-algebra with basis T ,_______ •yy

w 6 WQ, and multiplication defined bya

W = Tww' if *<wwf) = £(w> + *(wf)

(T +1)(T -q) =0, s e S.
O D

(Here fc denotes the usual length function on W .) Associ-a

ated to H , Kazhdan and Lusztig [3̂ ] have constructed for

each pair w,z e W , with w < z in the Bruhat order ona -—

W , a polynomial P (q). These can be described in terms

of certain symmetric elements in H : Namely, the involution

a •* a of A defined by q^ = q"^ extends to an involu-

tion of the Hecke algebra by putting I a._ T_T = Z a__ T" n .W W W •nr—.L

Then there exists for each w e WQ a unique element Ca w

such that

5w= Cw

c = y (.
w y <_w

where PTT TT 6 Z[q] has degree at most U(w)-Jl(y)-l)/2y9w

and Pw,w = ̂
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The reader will find details of the above in [34], as

well as equivalent descriptions of the Kazhdan-Lusztig poly-

nomials P . Part of the motivation behind these poly-y >w
nomials in general lies in the role they play in measuring

the failure of Poincare duality in the closures of the cells

BwB/B (w e W) in G/B (the so-called Schubert varieties).

In fact, P (q) turns out to be (at least for W andy»"
k = ffi) the Poincare polynomial for a geometric cohomology

(due to Goreski, MacPherson, and Deligne) of these Schubert

varieties.

(5-3) THE CONJECTURE. Choose X e A such that -p< <X+p,ou> <0

for i = 0, !,•••,A. (The existence of X requires that

p > h, the Coxeter number of §.) Let wX e A , w e W .a

According to (5.1.1), if S(u*) is a G-composition factor

'a*

/!

of -(wX)| , then y = yX, some y 6 W . Now assume that

<w(X+p),av> < p(p-h+2). Then the conjecture is that

(5-3.1) ch S((w-X)«) - E ( - i ) w y p (i) ch -(yX)[
G,y ,w

where on the right side the summation is over all y £ w

satisfying y*X e A .

In view of (4.2.4) above, we could also express

(5-3-1) in terms of an identity involving the T__ w(l)
fsy jW

and certain rational Ext-groups. For further results

along these lines see [42], [7].

Although it is not yet clear where a proof of this

conjecture might lie, it is tempting to speculate that
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some connection between rational cohomology and a geometric

cohomology which involves the P fs might do the trick.y * ™
This was, in fact, essentially the case in the Kazhdan-

Lusztig conjecture [3̂ ] concerning Verma modules in char-

acteristic 0 (proved independently by Brylinski and

Kashiwara [11] and by Beilinson and Bernstein [10]), where

(very roughly speaking) the connection between the alge-

braic cohomology (in the category 0 of BGG) and the

geometric cohomology (alluded to above in (5-2)) was

obtained via homological properties of the sheaf of

algebras of differential operators on G/B.
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