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From this it again follows that if a well-ordered set M is mapped with
preservation of order onto an other well-ordered set Mf, then this mapping
is unique. Indeed if f and g both map M onto Mf, then fg'1 maps M onto
M so that fg (x) is x an(* therefore f(x) = g(x) for all x.

Theorem 12. If M is mapped by f with preservation of order into an
initial part A of itself, then A = M and the mapping is the identical one.
We may also say: M cannot be mapped onto an initial section of itself.

Proof: Let f map M onto A, A initial part of M. Then no element m
of M can be > every element x of A, because f(m) should belong to A so
that m > f(m), which contradicts the previous theorem. Thus every meM is
= an xeA, whence me A, that is, A = M.

Noticing that an initial part of a well-ordered set M is either M itself
or a section of M, we have that if M - N (meaning M and N are similar),
then M is neither - Ni nor N — MI, MI and NI denoting sections of M resp.
N.

Theorem 13. Let M and N be well-ordered sets. Then either M - NI,
Ni a section of N or M = N or Mi = N, Mi a section of M.

Proof: Let I be the set of all initial parts of M that are similar to ini-
tial parts of N constituting a set J. Then the union SI is in an obvious way
similar to SJ. Now either SI must be =M or SJ = N. Else SJ will be the
section belonging to an element i of M and SJ the section delivered by j eN.
But then SI + {i} would be similar to SJ + {j} which contradicts the definition
of I. Now, if SI = M, either M = N or M = a section NI of N according as
SJ is N or NI , else SI is a section MI of M while SJ = N so that MI = N.

5. Ordinals and alephs

It is now natural to say that an ordinal a is < an ordinal ft if a is the
order-type of a well-ordered set A, 0 the type of B, such that A is similar
to an initial section of B. It is clear that a < j 3 & j 3 < y - » a < y and that
a <jS excludes j3 <a . Thus all ordinals are ordered. However, this order-
ing is also a we 11-ordering. Let us namely consider an arbitrary set or even
class C of well-ordered sets. Let M be one of the sets in C. Its ordinal
number JLJ may be the least of all represented by the considered sets. If not
there are other sets in C which are similar to sections of M. These sections
are furnished by elements of M and among these there is at least one. The
corresponding initial section represents then the least ordinal of all furnished
by the sets in C.

Theorem 14. A terminal part or an interval of a well-ordered set is
similar to some initial part of it.

It is obviously sufficient to prove this for a terminal part. According to
the comparability theorem, otherwise the whole set M would have to be sim-
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ilar to an interval of itself, but that contradicts the fact that we should have
x i f ( x ) for all xeM.

A consequence of this is that we always have a = a + j8 and 0 = a + j3.
I have earlier defined addition and multiplication of ordered sets. We

may define multiplication and exponentiation for well-ordered sets in such a
way that well-ordered sets result. First I will repeat the definition of addi-
tion: Let T be a well-ordered set of well-ordered sets A,B,C,.. which we
assume mutually disjoint. Then the sum ST is well-ordered thus: Any two
elements of the same element X of T retain their order in X. If X pre-
ceeds Y in T, then every element of X preceeds every element of Y in ST.
It is indeed easy to see that ST is well-ordered in that way. Let namely M
be EST and 4= 0. Then the diverse XeT which furnish elements of M con-
stitute a non-void subset of T. Since T is well-ordered there is a least ele-
ment of this subset, N say. Since N is well-ordered there is a least element
m in the subset M n N of N. Obviously m is the least element of M.

Multiplication I will define as follows. Let us again consider a well-
ordered set T of mutually disjoint well-ordered sets A,B,C,... =)= 0. Let
ao, b0, CQ, ... be the least elements of A,B,C,.... Then I take a subset P of
A.B.C in the previous sense, namely the set P consisting of all ele-
ments of A.B.C which contain only a finite number of elements different
from ao,b0, c0,.... This set P is then ordered by the principle of last dif-
ferences, which means that if a,b,c,.. and a f ,b f , CT, ... are two elements of the
product, then a,b,c... < a^b^c*, if m < mf but no later element mi > miT .

Exponentiation is defined by letting all factors in a product be similar
well-ordered sets.

Lemma. Let T be a well-ordered set of well-ordered sets A,B,C,...
such that if X and Y are elements of T and X < Y in T, then X £ y and
the order of the elements of X remain unaltered in Y. Then the union
ST is well-ordered and two elements of ST are ordered as in some ele-
ment X of T.

Proof: If T contains a last (greatest) element M, then the truth of the
lemma is immediately clear, because in this case ST = M. Therefore we may
assume that T does not contain any last element. Let us then consider a
subset N of ST, OCN. There will be elements X of T containing elements
belonging to N. Let X0 be the first of these X. Then XoflN is a subset =1= 0
of the well-ordered set Xo so that there is a first element in X0ON which
obviously is the first element in N. Thus it is proved that ST is well-
ordered. It is evident that two elements of ST will both occur in some ele-
ment of T and have there the same relation of order.

Now let us consider the product P of the well ordered set T of well
ordered factors A,B,C,.... The product belonging to an initial section of T
may be called a partial product and be denoted by PX, if the section of T is
given by X. It is understood that the elements of Py shall, for each Y = X
in T, contain y0 only. I shall first prove that if all these partial products
are well-ordered, so is P. Indeed as often as X < Y, PX£PY so that the
partial products constitute a well-ordered set of well-ordered sets of the
kind considered in the lemma. Now if there is no last element in T (no last
factor in P) then P is the union of all PX and is therefore well-ordered
according to the lemma. If there is a last factor F then P = Pp. F where
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PF is well-ordered according to supposition, and since the product of two
well-ordered sets is well-ordered, P is well-ordered. Now let us look at the
case that some partial products were not well-ordered. There must then be
a least Xo among all the XeT for which PX is not well-ordered. Then PXO
is the union of all Py, where Y preceeds Xo in T if Xo has no predecessor,
else, if F is the predecessor, we have PY^ = PpF where PF and F are
well-ordered. Further all these Py are well-ordered. But then again ac-
cording to the lemma PY is well-ordered which is a contradiction. There-

fore all partial products are well-ordered, which as we just saw implies that
P itself is well-ordered. Thus we have proved:

Theorem 15. The product P of a well-ordered set of well-ordered sets
is well-ordered.

I would like to prove that the product a j3 can be conceived as the result
of adding /3 sets each of ordinal number a . Let A have the ordinal a,B the
ordinal 0. Then a/3 is the ordinal number of the set P of pairs (a,b) ordered
according to last differences as explained. Let Mb be the set of all pairs
with the last element b and T the set of all these Mfc. Then ST, well-
ordered as explained above, is just the sum P of all Mb- Each of these has
the ordinal a .

It is easy to verify that the associative laws hold for addition and multi-
plication. Also the distributive law o(j3 +y) = a/3 + ay is seen to be valid.
On the other hand, the commutative laws do not hold, nor does the distributive
formula (a + #)y = a y + j3y. I shall give some examples.

1 + co= a* < w+ 1

2.w = cu <cu2 and therefore (1 + l)co= w < l.w + l.cu.

One can also notice that not always

For example

(2.2)°° < 2W • 2W, (2.(u> + I))2 > 22(u + I)2

On the other hand, if A = £ 0^ , then a A = £ t a $ r ] and

17, in particular ff0 + ^ = (*£ • cr?

We have seen that the ordinal numbers are well-ordered by the relation
< . It is then natural to ask how the cardinal numbers behave. Because of
the comparability of the ordinals it is immediately clear that the cardinal
numbers are comparable; indeed, if M and N are any two sets and they are
in some way well-ordered, then either M is similar to, and thus equivalent

to, some initial part of N or inversely. Thus we have either M = N or N = M.
Now let T be a set of sets. I assert that the cardinal numbers represented by
the elements A,B,C,.... of T are well-ordered by the relation < as earlier
defined. Evidently it suffices to prove that there is a least cardinal represented
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by the elements of T, because then the same will be true for every subset of
T. Now let M be e T. If M is the smallest cardinal represented by any
element of T, then our assertion is correct. Otherwise there will be some
elements X of T representing smaller cardinals. All these X we may as-
sume well-ordered. Then each of them is similar to an initial section of M
given by an element m of M. Among these m there will be a least one mo.
The section given by mo then furnishes the least cardinal number among the
mentioned X.

Thus the cardinal numbers are also well-ordered by the relation < .
More exactly expressed: All cardinals = a given cardinal constitute a well-
ordered sequence according to their magnitude. The least of the transfinite
ones, the cardinal of the denumerable sets, we denote, as Cantor did, by N0,
the following by NI , and so on.

If a is a transfinite ordinal, i.e. w= a, then we have 1 + a = a, because
we may write a = w+ j3, whence l + a = l + ( w + |8) = (l + w) + j3 = co + /3 = a.
More generally we have of course n + a = a, n finite. Further it may be
noticed, that if a is the ordinal of a set M without last element or in other
words a is without immediate predecessor, then for every finite ordinal n we
have net = a . We can first prove that a = o;/3, whence na = n(o;/3) = (no;)j3 =
w/3 = a since nco is evidently = co. That a indeed is a multiple of o> is seen
by distributing the elements of M into classes by putting any two elements in-
to the same class which are either neighbors or have only a finite number of
elements between them. It is clear that every class is of type co, and the
whole set is the sum of a well-ordered set of these classes, which means that
a = (jo (3, j3 denoting the ordinal of the set of the classes.

Among all ordinals whose cardinal number is $a there will be a least,
usually written co^. This WQ belongs to a very remarkable class of ordinals
called principal ordinals. The definition is:

An ordinal a is a principal one, if the equation, a = (3 + y only has the
solutions j8 <a, y = a and a = j3 , y - 0. One may also say that the
ordinal represented by a well-ordered set M is principal, if M is sim-
ilar to every terminal part of itself.

Proof that u>o is principal: Let ua = (3 + y, y > 0. We know that y is
the ordinal of some initial part of M, if M has the ordinal wa. If this initial
part of M is not M itself, it is an initial section, so that y <wa, and accord-
ing to the definition of w^ we have that the cardinal number y of y must be
< tia. Further J3" is also <N0 , because j3 is the ordinal of some initial sec-
tion of M. But the sum of two alephs < N a is again < N a . Thus y must be
= ua.

Since it is clear that every transfinite cardinal N may be given by a well-
ordered set without last element, indeed the least ordinal with cardinal num-
ber N cannot have a predecessor because 1 + N = N, we obtain from the re-
lation not = a just mentioned that always

for finite n. Hence for every aleph $a in particular $a + tia = $a. Further
if tip <tia, we obtain
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which means that

Thus the sum of two alephs is the greater one of them. Further, if N0 and
Ny are both < $a , also N0 + Ky < tf ff.

The division of ordinals may be performed thus. Let a be given and
0 > O. We consider the ordinals y which are such that for some 6

a = j8y +6

1 assert that there is a greatest value of y here. Indeed the assumption that
0y^ where n < y2 < ...., are all ^ a yields 0 lim yx = #, where lim y\
is the least ordinal > every yx- This is perhaps most easily seen by writing
72 = n + "X21, 7a = 72 + ra1, ..... and generally y^+i = r\ + rx+i- Tnen lim

yx = S y^f putting y\ = yi1, and we have by the distributive law for multiplica-
tion A

But the several j3yxf will represent the ordinals of different disjoint intervals
of a well-ordered set of ordinal a. Thus 5 j3y\f = a.

If K is the greatest value of y, we have

a = PK + p, p < 0.

Indeed, if p were = /3 + pf , we should obtain a = j3(* + 1) + p' so that K would
not be the maximal y.

In the particular case 0 = co we get

a = GUK + n, n finite.

Thus we again get the above result, that if a is the ordinal of a well-ordered
set without last element, it is of the form w*.

It is easily seen that /3lim 7^ lim jS^ . As a consequence of this there
is a maximal power jS^1 = a. Then the division of a by jS^i yields

a =

Now again there is a maximal power of ft /3^2 say = af. Then we obtain

af = /3y2 1/2 + a f f , <*"< )Sy2, 1^2 < ft

Since the sequence a, af, a",., is decreasing, there is a least one which must
be O. Then we have

m
a = Z 0rrrr, m finite, all i/r < 0 .

r =1

Of particular interest is the case 0 = w. We obtain the result that every
ordinal can be written in the form

m
a= YJ cjyrnr, yi > y2 > ...

r =1

m positive and finite, all nr positive and finite. It is clear by the method of
construction that this form is unique.
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It is seen that a cannot be principal without being simply a power of cu
On the other hand every power of a; is easily seen to be principal.

If yi is kept fixed in the above expression while y2, Ys, • ••. m, and the nr
vary, we get all numbers < w^i + 1. If also yi varies but is kept < a, a a
limit number, we get all ordinals < co^. I will show how we can set up a very
simple one-to-one correspondence between the elements of a well-ordered
set M of ordinal equal to a power of w on the one hand and the ordered pairs
(a,b) which are the elements of M2 on the other. To every pair

kiq kiq

we let correspond the number

y = £ u a k f (m k , %)
k ^ q

where f(mk,nk) is a one-to-one correspondence between the non-negative
integers and their pairs. We set y = 0 for a = |3 = 0.

If this is applied to cuff considering the cardinal number $a we obtain

Of course we then also get tfj = $a by an easy induction.
Because of the well-ordering theorem we then have that m2 = m for

every transfinite cardinal m. It is now very remarkable that, if inversely it
is presupposed that this formula is valid for every transfinite cardinal num-
ber m, then every set can be well-ordered. Thus we have

Theorem 16. The general validity of m2 = m implies the general princi-
ple of choice and inversely.

If we look at the proof of the earlier theorem stating that m and n are
comparable when m + ti = mn, we notice that if n say is an aleph, then we
need not use the axiom of choice in the proof. Further, if simultanously it is
known that n is not = m, we get m = n and then m is an aleph.

Now m being an arbitrary cardinal number, it is always possible to de-
fine an aleph which is not = m. This was first Jpne by F. Hartogs (Math.
Ann. 76, 438, 1915). Let M be a set such that M= m. There are some sub-
sets of M which can be well-ordered. We take into account all well-order-
ings of all these subsets and distribute these well-ordered subsets into
classes of similarity. Every such class is then a set corresponding to an
ordinal and these sets constitute again a certain set. To the ordinals repre-
sented by the members of this set there exist always greater ordinals e.g.
the sum of all the ordinals. Among these greater ordinals there is a least
one A say. Then A is not = m, because this would mean that there exists a
subset of M which can be well-ordered with ordinal number A, whereas A is
greater than every ordinal a for which this was the case. Thus A is an
aleph which cannot be = m.

Hence the correctness of our assertion, that if always m + n = mn then
every set is well-ordered. However, to be perfectly correct we must assume
m2 = m for any inductive infinite cardinal number.

Now if always m2 = m, we have (m + it)2 = m + n, whence at any rate
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mn i m + n.

However we have proved earlier that if nt and n are = 2, then tn + n = m • it.
Thus we obtain mn = m + n.

6. Some remarks on functions of ordinal numbers

A function f(x) is called monotonic, if (x< y) -»(f(x) ^ f(y)) . It is called
strictly increasing, if

The function is called seminormal, if it is monotonic and continuous, that is
if f(lim a\) = lim t(a\), A. here indicating a sequence with ordinal number of
the second kind, i.e., without immediate predecessor, while (\i< A.2) ~*(a\l<
<*A2)-

The function is called normal, if it is strictly increasing and continuous;
| is called a critical number for f, if f(|) = £ .

Theorem 17. Every normal function possesses critical number sand in-
deed such numbers > any a.

Proof: Let a be chosen arbitrarily and let us consider the sequence a,
i(a), I2 (a),.... Then if a^= lim fn(o), we have f(aw) = f (lim (fn(a)) = lim

(a) = aw, that is, a^ is a critical number for f.

Examples.

1) The function 1 + x is normal. Critical numbers are all x = w + a, a
arbitrary.

2) The function 2x is normal. Critical numbers are all of the form wa,
a arbitrary.

3) The function wx is normal. Critical numbers of this function are
called £ -numbers. The least of them is the limit of the sequence

I will mention the quite trivial fact that every increasing function f is
such that f(x) = x for every x.

Theorem 18. Let g(x) ~ x for all x and a be an arbitrary ordinal; then
there is a unique semi-normal function f such that

f(0) = or, f (x-f l )=g(f(x)) .

Proof clear by transf inite induction.

Theorem 19. Iff is a semi-normal function and /3 is an ordinal which
is not a value off, while f possesses values < )3 and values >#, then
there is among the x such thatf(x) < $ a maximal one XQ such that


