From this it again follows that if a well-ordered set M is mapped with preservation of order onto an other well-ordered set M^{\prime}, then this mapping is unique. Indeed if f and g both map M onto M^{\prime}, then fg^{-1} maps M onto M so that $\mathrm{fg}_{(\mathrm{x})}^{-1}$ is x and therefore $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})$ for all x .

Theorem 12. If M is mapped by f with preservation of order into an initial part A of itself, then $A=M$ and the mapping is the identical one.
We may also say: M cannot be mapped onto an initial section of itself.
Proof: Let f map M onto A, A initial part of M . Then no element m of M can be $>$ every element x of A, because $f(m)$ should belong to A so that $m>f(m)$, which contradicts the previous theorem. Thus every $m \in M$ is \leqq an $\mathbf{x} \in \mathrm{A}$, whence $\mathrm{m} \in \mathrm{A}$, that is, $\mathrm{A}=\mathrm{M}$.

Noticing that an initial part of a well-ordered set M is either M itself or a section of M, we have that if $M \simeq N$ (meaning M and N are similar), then M is neither $\simeq N_{1}$ nor $N \simeq M_{1}, M_{1}$ and N_{1} denoting sections of M resp. N .

Theorem 13. Let M and N be well-ordered sets. Then either $M \simeq N_{1}$, N_{1} a section of N or $M \cong N$ or $M_{1} \cong N, M_{1}$ a section of M.

Proof: Let I be the set of all initial parts of M that are similar to initial parts of N constituting a set J. Then the union SI is in an obvious way similar to SJ. Now either SI must be $=\mathrm{M}$ or $\mathrm{SJ}=\mathrm{N}$. Else SJ will be the section belonging to an element i of M and SJ the section delivered by $j \in N$. But then $\mathrm{SI}+\{\mathbf{i}\}$ would be similar to $\mathrm{SJ}+\{\mathrm{j}\}$ which contradicts the definition of I. Now, if $S I=M$, either $M \cong N$ or $M \cong$ a section N_{1} of N according as SJ is N or N_{1}, else $S I$ is a section M_{1} of M while $S J=N$ so that $M_{1} \cong N$.

5. Ordinals and alephs

It is now natural to say that an ordinal α is < an ordinal β, if α is the order-type of a well-ordered set A, β the type of B, such that A is similar to an initial section of B. It is clear that $\alpha<\beta \& \beta<\gamma \rightarrow \alpha<\gamma$ and that $\alpha<\beta$ excludes $\beta<\alpha$. Thus all ordinals are ordered. However, this ordering is also a well-ordering. Let us namely consider an arbitrary set or even class C of well-ordered sets. Let M be one of the sets in C. Its ordinal number μ may be the least of all represented by the considered sets. If not there are other sets in C which are similar to sections of M . These sections are furnished by elements of M and among these there is at least one. The corresponding initial section represents then the least ordinal of all furnished by the sets in C .

Theorem 14. A terminal part or an interval of a well-ordered set is similar to some initial part of it.
It is obviously sufficient to prove this for a terminal part. According to the comparability theorem, otherwise the whole set M would have to be sim-
ilar to an interval of itself, but that contradicts the fact that we should have $x \leqq f(x)$ for all $x \in M$.

A consequence of this is that we always have $\alpha \leqq \alpha+\beta$ and $\beta \leqq \alpha+\beta$.
I have earlier defined addition and multiplication of ordered sets. We may define multiplication and exponentiation for well-ordered sets in such a way that well-ordered sets result. First I will repeat the definition of addition: Let T be a well-ordered set of well-ordered sets $\mathrm{A}, \mathrm{B}, \mathrm{C}, .$. which we assume mutually disjoint. Then the sum ST is well-ordered thus: Any two elements of the same element X of T retain their order in X. If X preceeds Y in T, then every element of X preceeds every element of Y in ST. It is indeed easy to see that ST is well-ordered in that way. Let namely M be $\subseteq S T$ and $\neq 0$. Then the diverse $X \in T$ which furnish elements of M constitute a non-void subset of T. Since T is well-ordered there is a least element of this subset, N say. Since N is well-ordered there is a least element m in the subset $M \cap N$ of N. Obviously m is the least element of M.

Multiplication I will define as follows. Let us again consider a wellordered set T of mutually disjoint well-ordered sets $\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots \neq 0$. Let $a_{0}, b_{0}, c_{0}, \ldots$ be the least elements of A, B, C, \ldots. Then I take a subset P of A.B.C. in the previous sense, namely the set P consisting of all elements of A.B.C. which contain only a finite number of elements different from $a_{0}, b_{0}, c_{0}, \ldots$. This set P is then ordered by the principle of last differences, which means that if $a, b, c, .$. and $a^{\prime}, b^{\prime}, c^{\prime}, \ldots$ are two elements of the product, then $\mathrm{a}, \mathrm{b}, \mathrm{c} \ldots<\mathrm{a}^{\prime}, \mathrm{b}^{\prime}, \mathrm{c}^{\prime}$, if $\mathrm{m}<\mathrm{m}^{\prime}$ but no later element $\mathrm{m}_{1}>\mathrm{m}_{1}{ }^{\prime}$.

Exponentiation is defined by letting all factors in a product be similar well-ordered sets.

Lemma. Let T be a well-ordered set of well-ordered sets $\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots$ such that if X and Y are elements of T and $\mathrm{X}<\mathrm{Y}$ in T , then $\mathrm{X} \subseteq \mathrm{Y}$ and the order of the elements of X remain unaltered in Y . Then the union ST is well-ordered and two elements of ST are ordered as in some element X of T .

Proof: If T contains a last (greatest) element M, then the truth of the lemma is immediately clear, because in this case $S T=M$. Therefore we may assume that T does not contain any last element. Let us then consider a subset N of $\mathrm{ST}, \mathrm{O} \subset \mathrm{N}$. There will be elements X of T containing elements belonging to N. Let X_{0} be the first of these X. Then $X_{0} \cap N$ is a subset $\neq 0$ of the well-ordered set X_{0} so that there is a first element in $X_{0} \cap N$ which obviously is the first element in N. Thus it is proved that ST is wellordered. It is evident that two elements of ST will both occur in some element of T and have there the same relation of order.

Now let us consider the product \mathbf{P} of the well ordered set T of well ordered factors $\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots$. The product belonging to an initial section of T may be called a partial product and be denoted by P_{X}, if the section of T is given by \mathbf{X}. It is understood that the elements of $\mathrm{P}_{\mathbf{Y}}$ shall, for each $\mathbf{Y} \geqq \mathbf{X}$ in T , contain y_{0} only. I shall first prove that if all these partial products are well-ordered, so is P. Indeed as often as $X<Y, P_{X} \subseteq P_{Y}$ so that the partial products constitute a well-ordered set of well-ordered sets of the kind considered in the lemma. Now if there is no last element in T (no last factor in P) then P is the union of all P_{X} and is therefore well-ordered according to the lemma. If there is a last factor F then $P=P_{F} . F$ where
P_{F} is well-ordered according to supposition, and since the product of two well-ordered sets is well-ordered, P is well-ordered. Now let us look at the case that some partial products were not well-ordered. There must then be a least X_{0} among all the $X \in T$ for which P_{X} is not well-ordered. Then $P_{X_{0}}$ is the union of all P_{Y}, where Y preceeds X_{0} in T if X_{0} has no predecessor, else, if F is the predecessor, we have $P_{X_{0}}=P_{F} F$ where P_{F} and F are well-ordered. Further all these P_{Y} are well-ordered. But then again according to the lemma $\mathrm{P}_{\mathrm{X}_{0}}$ is well-ordered which is a contradiction. There-
fore all partial products are well-ordered, which as we just saw implies that P itself is well-ordered. Thus we have proved:

Theorem 15. The product P of a well-ordered set of well-ordered sets is well-ordered.

I would like to prove that the product $\alpha \beta$ can be conceived as the result of adding β sets each of ordinal number α. Let A have the ordinal α, B the ordinal β. Then $\alpha \beta$ is the ordinal number of the set P of pairs (a, b) ordered according to last differences as explained. Let Mb_{b} be the set of all pairs with the last element b and T the set of all these M_{b}. Then ST, wellordered as explained above, is just the sum P of all Mb . Each of these has the ordinal α.

It is easy to verify that the associative laws hold for addition and multiplication. Also the distributive law $\alpha(\beta+\gamma)=\alpha \beta+\alpha \gamma$ is seen to be valid. On the other hand, the commutative laws do not hold, nor does the distributive formula $(\alpha+\beta) \gamma=\alpha \gamma+\beta \gamma$. I shall give some examples.

$$
\begin{gathered}
1+\omega=\omega<\omega+1 \\
2 . \omega=\omega<\omega 2 \text { and therefore }(1+1) \omega=\omega<1 . \omega+1 . \omega .
\end{gathered}
$$

One can also notice that not always

$$
(\alpha \beta)^{\gamma}=\alpha^{\gamma} \beta^{\gamma}
$$

For example

$$
(2.2)^{\omega}<2^{\omega} \cdot 2^{\omega}, \quad(2 \cdot(\omega+1))^{2}>2^{2}(\omega+1)^{2}
$$

On the other hand, if $\lambda={ }_{\eta} \Sigma_{\mu} \beta_{\eta}$, then $\alpha \lambda={ }_{\eta} \sum_{\mu} \alpha \beta \eta$ and

$$
\begin{gathered}
\alpha^{\lambda}=\prod_{\eta<\mu} \alpha^{\beta} \eta, \quad \text { in particular } \quad \alpha^{\beta+\gamma}=\alpha^{\beta} \cdot \alpha^{\gamma} \\
\alpha^{\beta \gamma}=\left(\alpha^{\beta}\right)^{\gamma}
\end{gathered}
$$

We have seen that the ordinal numbers are well-ordered by the relation $<$. It is then natural to ask how the cardinal numbers behave. Because of the comparability of the ordinals it is immediately clear that the cardinal numbers are comparable; indeed, if M and N are any two sets and they are in some way well-ordered, then either M is similar to, and thus equivalent to, some initial part of N or inversely. Thus we have either $\overline{\overline{\mathrm{M}}} \leqq \overline{\overline{\mathrm{N}}}$ or $\overline{\overline{\mathrm{N}}} \leqq \overline{\overline{\mathrm{M}}}$. Now let T be a set of sets. I assert that the cardinal numbers represented by the elements $\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots$ of T are well-ordered by the relation $<$ as earlier defined. Evidently it suffices to prove that there is a least cardinal represented
by the elements of T, because then the same will be true for every subset of T. Now let M be $\in T$. If M is the smallest cardinal represented by any element of T, then our assertion is correct. Otherwise there will be some elements X of T representing smaller cardinals. All these X we may assume well-ordered. Then each of them is similar to an initial section of M given by an element m of M . Among these m there will be a least one m_{0}. The section given by m_{0} then furnishes the least cardinal number among the mentioned X .

Thus the cardinal numbers are also well-ordered by the relation $<$. More exactly expressed: All cardinals \leqq a given cardinal constitute a wellordered sequence according to their magnitude. The least of the transfinite ones, the cardinal of the denumerable sets, we denote, as Cantor did, by \aleph_{0}, the following by \aleph_{1}, and so on.

If α is a transfinite ordinal, i.e. $\omega \leqq \alpha$, then we have $1+\alpha=\alpha$, because we may write $\alpha=\omega+\beta$, whence $1+\alpha=1+(\omega+\beta)=(1+\omega)+\beta=\omega+\beta=\alpha$. More generally we have of course $\mathrm{n}+\alpha=\alpha, \mathrm{n}$ finite. Further it may be noticed, that if α is the ordinal of a set M without last element or in other words α is without immediate predecessor, then for every finite ordinal n we have $\mathrm{n} \alpha=\alpha$. We can first prove that $\alpha=\omega \beta$, whence $\mathrm{n} \alpha=\mathrm{n}(\omega \beta)=(\mathrm{n} \omega) \beta=$ $\omega \beta=\alpha$ since $n \omega$ is evidently $=\omega$. That α indeed is a multiple of ω is seen by distributing the elements of M into classes by putting any two elements into the same class which are either neighbors or have only a finite number of elements between them. It is clear that every class is of type ω, and the whole set is the sum of a well-ordered set of these classes, which means that $\alpha=\omega \beta, \beta$ denoting the ordinal of the set of the classes.

Among all ordinals whose cardinal number is \aleph_{α} there will be a least, usually written ω_{α}. This ω_{α} belongs to a very remarkable class of ordinals called principal ordinals. The definition is:

An ordinal α is a principal one, if the equation. $\alpha=\beta+\gamma$ only has the solutions $\beta<\alpha, \gamma=\alpha$ and $\alpha=\beta, \gamma=0$. One may also say that the ordinal represented by a well-ordered set M is principal, if M is similar to every terminal part of itself.

Proof that ω_{α} is principal: Let $\omega_{\alpha}=\beta+\gamma, \gamma>0$. We know that γ is the ordinal of some initial part of M , if M has the ordinal ω_{α}. If this initial part of M is not M itself, it is an initial section, so that $\gamma<\underline{\omega}_{\alpha}$, and according to the definition of ω_{α} we have that the cardinal number γ of γ must be $<\aleph_{\alpha}$. Further $\bar{\beta}$ is also $<\aleph_{\alpha}$, because β is the ordinal of some initial section of M . But the sum of two alephs $\left\langle\aleph_{\alpha}\right.$ is again $<\aleph_{\alpha}$. Thus γ must be $=\omega_{\alpha}$.

Since it is clear that every transfinite cardinal \aleph may be given by a wellordered set without last element, indeed the least ordinal with cardinal number \aleph cannot have a predecessor because $1+\boldsymbol{N}=\boldsymbol{\aleph}$, we obtain from the relation $\mathrm{n} \alpha=\alpha$ just mentioned that always

$$
\mathrm{n} \aleph=\aleph
$$

for finite n . Hence for every aleph \aleph_{α} in particular $\aleph_{\alpha}+\aleph_{\alpha}=\aleph_{\alpha}$. Further if $\aleph_{\beta}<\aleph_{\alpha}$, we obtain

$$
\aleph_{\alpha} \leqq \kappa_{\alpha}+\kappa_{\beta} \leqq \kappa_{\alpha}+\kappa_{\alpha}=\aleph_{\alpha}
$$

which means that

$$
\kappa_{\alpha}+\kappa_{\beta}=\kappa_{\alpha} .
$$

Thus the sum of two alephs is the greater one of them. Further, if \aleph_{β} and \aleph_{γ} are both $<\aleph_{\alpha}$, also $\aleph_{\beta}+\aleph_{\gamma}<\aleph_{\alpha}$.

The division of ordinals may be performed thus. Let α be given and $\beta>0$. We consider the ordinals γ which are such that for some δ

$$
\alpha=\beta \gamma+\delta
$$

I assert that there is a greatest value of γ here. Indeed the assumption that $\beta \gamma_{\lambda}$ where $\gamma_{1}<\gamma_{2}<\ldots$, are all $\leqq \alpha$ yields β lim $\gamma_{\lambda} \leqq \alpha$, where lim γ_{λ} is the least ordinal $>$ every γ_{λ}. This is perhaps most easily seen by writing $\gamma_{2}=\gamma_{1}+\gamma_{2}{ }^{\prime}, \gamma_{3}=\gamma_{2}+\gamma_{3}{ }^{\prime}, \ldots .$. and generally $\gamma_{\lambda+1}=\gamma_{\lambda}+\gamma_{\lambda^{\prime}+1}$. Then lim $\gamma_{\lambda}=\sum_{\lambda} \gamma_{\lambda}{ }^{\prime}$ putting $\gamma_{1}=\gamma_{1}{ }^{\prime}$, and we have by the distributive law for multiplication ${ }^{\lambda}$

$$
\beta \sum_{\lambda} \gamma_{\lambda}^{\prime}=\sum_{\lambda} \beta \gamma_{\lambda^{\prime}} .
$$

But the several $\beta \gamma_{\lambda}$ ' will represent the ordinals of different disjoint intervals of a well-ordered set of ordinal α. Thus $\sum_{\lambda} \beta \gamma_{\lambda}{ }^{\prime} \leqq \alpha$.

If κ is the greatest value of γ, we have

$$
\alpha=\beta \kappa+\rho, \rho<\beta .
$$

Indeed, if ρ were $=\beta+\rho^{\prime}$, we should obtain $\alpha=\beta(\kappa+1)+\rho^{\prime}$ so that κ would not be the maximal γ.

In the particular case $\beta=\omega$ we get

$$
\alpha=\omega \kappa+\mathrm{n}, \mathrm{n} \text { finite } .
$$

Thus we again get the above result, that if α is the ordinal of a well-ordered set without last element, it is of the form $\omega \kappa$.

It is easily seen that $\beta^{\lim \gamma \lambda} \lim \beta^{\gamma} \lambda$. As a consequence of this there is a maximal power $\beta^{\gamma_{1}} \leqq \alpha$. Then the division of α by $\beta^{\gamma_{1}}$ yields

$$
\alpha=\beta^{\gamma_{1}} \nu_{1}+\alpha^{\prime}, \alpha^{\prime}<\beta^{\gamma_{1}}, \nu_{1}<\beta .
$$

Now again there is a maximal power of $\beta, \beta^{\gamma_{2}}$ say $\leqq \alpha^{\prime}$. Then we obtain

$$
\alpha^{\prime}=\beta^{\gamma_{2}} \nu_{2}+\alpha^{\prime \prime}, \alpha^{\prime \prime}<\beta^{\gamma}, \nu_{2}<\beta .
$$

Since the sequence $\alpha, \alpha^{\prime}, \alpha^{\prime \prime}, .$. is decreasing, there is a least one which must be 0 . Then we have

$$
\alpha=\sum_{\mathbf{r}=1}^{\mathrm{m}} \beta^{\gamma_{\mathbf{r}_{\gamma_{\mathbf{r}}}}, \mathrm{m} \text { finite, all } \nu_{\mathbf{r}}<\beta . . . ~ . ~}
$$

Of particular interest is the case $\beta=\omega$. We obtain the result that every ordinal can be written in the form

$$
\alpha=\sum_{\mathbf{r}=1}^{\mathrm{m}} \omega^{\gamma \mathbf{r}_{\mathrm{n}_{r}}}, \gamma_{1}>\gamma_{2}>\ldots
$$

m positive and finite, all n_{r} positive and finite. It is clear by the method of construction that this form is unique.

It is seen that α cannot be principal without being simply a power of ω On the other hand every power of ω is easily seen to be principal.

If γ_{1} is kept fixed in the above expression while $\gamma_{2}, \gamma_{3}, \ldots . m$, and the n_{r} vary, we get all numbers $<\omega^{\gamma_{1}}+1$. If also γ_{1} varies but is kept $<\alpha, \alpha$ a limit number, we get all ordinals $<\omega \alpha$. I will show how we can set up a very simple one-to-one correspondence between the elements of a well-ordered set M of ordinal equal to a power of ω on the one hand and the ordered pairs (a, b) which are the elements of M^{2} on the other. To every pair

$$
\alpha=\sum_{\mathrm{k} \leqq \mathrm{q}} \omega^{\sigma \mathrm{k}} \mathrm{~m}_{\mathrm{k}}, \quad \beta=\sum_{\mathrm{k} \leqq \mathrm{q}} \omega^{\sigma \mathrm{k}_{\mathrm{n}_{\mathrm{k}}}}
$$

we let correspond the number

$$
\gamma=\sum_{\mathrm{k} \leqq \mathrm{q}} \omega^{\sigma \mathrm{k}} \mathrm{f}\left(\mathrm{~m}_{\mathrm{k}}, \mathrm{n}_{\mathrm{k}}\right)
$$

where $f\left(m_{k}, n_{k}\right)$ is a one-to-one correspondence between the non-negative integers and their pairs. We set $\gamma=0$ for $\alpha=\beta=0$.

If this is applied to ω_{α} considering the cardinal number \aleph_{α} we obtain

$$
\kappa_{\alpha}^{2}=\kappa_{\alpha}
$$

Of course we then also get $\aleph_{\alpha}^{n}=\kappa_{\alpha}$ by an easy induction.
Because of the well-ordering theorem we then have that $\mathfrak{m}^{2}=\boldsymbol{m}$ for every transfinite cardinal m . It is now very remarkable that, if inversely it is presupposed that this formula is valid for every transfinite cardinal number \mathfrak{m}, then every set can be well-ordered. Thus we have

Theorem 16. The general validity of $\mathfrak{m}^{2}=\mathfrak{m}$ implies the general principle of choice and inversely.
If we look at the proof of the earlier theorem stating that \mathfrak{m} and \mathfrak{n} are comparable when $\mathfrak{m}+\mathfrak{n}=\mathfrak{m} \mathfrak{n}$, we notice that if \mathfrak{n} say is an aleph, then we need not use the axiom of choice in the proof. Further, if simultanously it is known that \mathfrak{n} is not $\leqq \mathfrak{m}$, we get $\mathfrak{m} \leqq \mathfrak{n}$ and then \mathfrak{m} is an aleph.

Now \mathfrak{m} being an arbitrary cardinal number, it is always possible to define an aleph which is not $\leqq \mathfrak{m}$. This was first done by F. Hartogs (Math. Ann. $76,438,1915$). Let M be a set such that $\overline{\overline{\mathrm{M}}}=\mathrm{m}$. There are some subsets of M which can be well-ordered. We take into account all well-orderings of all these subsets and distribute these well-ordered subsets into classes of similarity. Every such class is then a set corresponding to an ordinal and these sets constitute again a certain set. To the ordinals represented by the members of this set there exist always greater ordinals e.g. the sum of all the ordinals. Among these greater ordinals there is a least one λ say. Then $\bar{\lambda}$ is not $\leqq \mathfrak{m}$, because this would mean that there exists a subset of M which can be well-ordered with ordinal number λ, whereas λ is greater than every ordinal α for which this was the case. Thus $\bar{\lambda}$ is an aleph which cannot be \leqq m.

Hence the correctness of our assertion, that if always $\mathfrak{m}+\mathfrak{n}=\boldsymbol{m} \mathfrak{n}$ then every set is well-ordered. However, to be perfectly correct we must assume $\mathfrak{m}^{2}=\mathfrak{m}$ for any inductive infinite cardinal number.

Now if always $\mathfrak{m}^{2}=\mathfrak{m}$, we have $(\mathfrak{m}+\mathfrak{n})^{2}=\mathfrak{m}+\mathfrak{n}$, whence at any rate

$$
\mathfrak{m} \mathfrak{n} \leqq \mathfrak{m}+\mathfrak{n}
$$

However we have proved earlier that if \mathfrak{m} and \mathfrak{n} are $\geqq 2$, then $\mathfrak{m}+\mathfrak{n} \leqq \mathfrak{m} \cdot \mathfrak{n}$. Thus we obtain $\mathfrak{m} \mathfrak{n}=\mathfrak{m}+\mathfrak{n}$.

6. Some remarks on functions of ordinal numbers

A function $f(x)$ is called monotonic, if $(x<y) \rightarrow(f(x) \leqq f(y))$. It is called strictly increasing, if

$$
(x<y) \rightarrow(f(x)<f(y))
$$

The function is called seminormal, if it is monotonic and continuous, that is if $f\left(\lim \alpha_{\lambda}\right)=\lim f\left(\alpha_{\lambda}\right), \lambda$ here indicating a sequence with ordinal number of the second kind, i.e., without immediate predecessor, while $\left(\lambda_{1}<\lambda_{2}\right) \rightarrow\left(\alpha_{\lambda_{1}}<\right.$ $\alpha_{\lambda_{2}}$).

The function is called normal, if it is strictly increasing and continuous; ξ is called a critical number for f, if $f(\xi)=\xi$.

Theorem 17. Every normal function possesses critical numbers and indeed such numbers $>$ any α.
Proof: Let α be chosen arbitrarily and let us consider the sequence α, $\mathrm{f}(\alpha), \mathrm{f}^{2}(\alpha), \ldots$ Then if $\alpha_{\omega}=\lim _{\mathrm{n}<\omega} \mathrm{f}^{\mathrm{n}}(\alpha)$, we have $\mathrm{f}\left(\alpha_{\omega}\right)=\mathrm{f}\left(\lim \left(\mathrm{f}^{\mathrm{n}}(\alpha)\right)=\lim \right.$ $f^{\mathrm{n}+1}(\alpha)=\alpha_{\omega}$, that is, $\alpha_{\omega}{ }^{\mathrm{IS}}$ a critical number for f .
Examples.

1) The function $1+x$ is normal. Critical numbers are all $x=\omega+\alpha, \alpha$ arbitrary.
2) The function $2 x$ is normal. Critical numbers are all of the form $\omega \alpha$, α arbitrary.
3) The function $\omega^{\mathbf{x}}$ is normal. Critical numbers of this function are called ε-numbers. The least of them is the limit of the sequence $\left.\omega, \omega^{\omega}, \omega^{(\omega}{ }^{\omega}\right), \ldots$.
I will mention the quite trivial fact that every increasing function f is such that $\mathrm{f}(\mathrm{x}) \geqq \mathrm{x}$ for every x .

Theorem 18. Let $g(x) \geqq x$ for all x and α be an arbitrary ordinal; then there is a unique semi-normal function f such that

$$
\mathrm{f}(0)=\alpha, \mathrm{f}(\mathrm{x}+1)=\mathrm{g}(\mathrm{f}(\mathrm{x}))
$$

Proof clear by transfinite induction.
Theorem 19. Iff is a semi-normal function and β is an ordinal which is not a value of f, while f possesses values $<\beta$ and values $>\beta$, then there is among the x such that $f(x)<\beta$ a maximal one x_{0} such that $f\left(x_{0}\right)<\beta<f\left(x_{0}+1\right)$.

