From this it again follows that if a well-ordered set M is mapped with preservation of order onto an other well-ordered set M', then this mapping is unique. Indeed if f and g both map M onto M', then fg^{-1} maps M onto M so that $fg^{-1}_{(x)}$ is x and therefore f(x) = g(x) for all x.

Theorem 12. If M is mapped by f with preservation of order into an initial part A of itself, then A = M and the mapping is the identical one. We may also say: M cannot be mapped onto an initial section of itself.

Proof: Let f map M onto A, A initial part of M. Then no element m of M can be > every element x of A, because f(m) should belong to A so that m > f(m), which contradicts the previous theorem. Thus every $m \in M$ is \leq an $x \in A$, whence $m \in A$, that is, A = M.

Noticing that an initial part of a well-ordered set M is either M itself or a section of M, we have that if $M \simeq N$ (meaning M and N are similar), then M is neither $\simeq N_1$ nor $N \simeq M_1$, M_1 and N_1 denoting sections of M resp. N.

Theorem 13. Let M and N be well-ordered sets. Then either $M \cong N_1$, N_1 a section of N or $M \cong N$ or $M_1 \cong N$, M_1 a section of M.

Proof: Let I be the set of all initial parts of M that are similar to initial parts of N constituting a set J. Then the union SI is in an obvious way similar to SJ. Now either SI must be = M or SJ = N. Else SJ will be the section belonging to an element i of M and SJ the section delivered by $j \in N$. But then SI + $\{i\}$ would be similar to SJ + $\{j\}$ which contradicts the definition of I. Now, if SI = M, either $M \cong N$ or $M \cong a$ section N₁ of N according as SJ is N or N₁, else SI is a section M₁ of M while SJ = N so that M₁ $\cong N$.

5. Ordinals and alephs

It is now natural to say that an ordinal α is \leq an ordinal β , if α is the order-type of a well-ordered set A, β the type of B, such that A is similar to an initial section of B. It is clear that $\alpha \leq \beta \& \beta \leq \gamma \rightarrow \alpha \leq \gamma$ and that $\alpha \leq \beta$ excludes $\beta \leq \alpha$. Thus all ordinals are ordered. However, this ordering is also a well-ordering. Let us namely consider an arbitrary set or even class C of well-ordered sets. Let M be one of the sets in C. Its ordinal number μ may be the least of all represented by the considered sets. If not there are other sets in C which are similar to sections of M. These sections are furnished by elements of M and among these there is at least one. The corresponding initial section represents then the least ordinal of all furnished by the sets in C.

Theorem 14. A terminal part or an interval of a well-ordered set is similar to some initial part of it.

It is obviously sufficient to prove this for a terminal part. According to the comparability theorem, otherwise the whole set M would have to be similar to an interval of itself, but that contradicts the fact that we should have $x \leq f(x)$ for all $x \in M$.

A consequence of this is that we always have $\alpha \leq \alpha + \beta$ and $\beta \leq \alpha + \beta$.

I have earlier defined addition and multiplication of ordered sets. We may define multiplication and exponentiation for well-ordered sets in such a way that well-ordered sets result. First I will repeat the definition of addition: Let T be a well-ordered set of well-ordered sets A,B,C,.. which we assume mutually disjoint. Then the sum ST is well-ordered thus: Any two elements of the same element X of T retain their order in X. If X preceeds Y in T, then every element of X preceeds every element of Y in ST. It is indeed easy to see that ST is well-ordered in that way. Let namely M be \subseteq ST and $\frac{1}{7}$ 0. Then the diverse X \in T which furnish elements of M constitute a non-void subset of T. Since T is well-ordered there is a least element of this subset, N say. Since N is well-ordered there is a least element m in the subset M \cap N of N. Obviously m is the least element of M.

Multiplication I will define as follows. Let us again consider a wellordered set T of mutually disjoint well-ordered sets A,B,C,... $\ddagger 0$. Let a_0, b_0, c_0, \ldots be the least elements of A,B,C,.... Then I take a subset P of A.B.C. in the previous sense, namely the set P consisting of all elements of A.B.C. which contain only a finite number of elements different from a_0, b_0, c_0, \ldots This set P is then ordered by the principle of last differences, which means that if a,b,c,\ldots and a',b',c',\ldots are two elements of the product, then $a,b,c\ldots < a',b',c',$ if m < m' but no later element $m_1 > m_1'$.

Exponentiation is defined by letting all factors in a product be similar well-ordered sets.

Lemma. Let T be a well-ordered set of well-ordered sets A,B,C,... such that if X and Y are elements of T and $X \le Y$ in T, then $X \subseteq Y$ and the order of the elements of X remain unaltered in Y. Then the union ST is well-ordered and two elements of ST are ordered as in some element X of T.

Proof: If T contains a last (greatest) element M, then the truth of the lemma is immediately clear, because in this case ST = M. Therefore we may assume that T does not contain any last element. Let us then consider a subset N of ST, O \subset N. There will be elements X of T containing elements belonging to N. Let X_0 be the first of these X. Then $X_0 \cap N$ is a subset $\frac{1}{7}$ 0 of the well-ordered set X_0 so that there is a first element in $X_0 \cap N$ which obviously is the first element in N. Thus it is proved that ST is well-ordered. It is evident that two elements of ST will both occur in some element of T and have there the same relation of order.

Now let us consider the product P of the well ordered set T of well ordered factors A,B,C,.... The product belonging to an initial section of T may be called a partial product and be denoted by P_X , if the section of T is given by X. It is understood that the elements of P_Y shall, for each $Y \ge X$ in T, contain y_0 only. I shall first prove that if all these partial products are well-ordered, so is P. Indeed as often as $X \le Y$, $P_X \subseteq P_Y$ so that the partial products constitute a well-ordered set of well-ordered sets of the kind considered in the lemma. Now if there is no last element in T (no last factor in P) then P is the union of all P_X and is therefore well-ordered according to the lemma. If there is a last factor F then $P = P_F$. F where P_F is well-ordered according to supposition, and since the product of two well-ordered sets is well-ordered, P is well-ordered. Now let us look at the case that some partial products were not well-ordered. There must then be a least X_0 among all the $X \in T$ for which P_X is not well-ordered. Then P_{X_0} is the union of all P_Y , where Y preceeds X_0 in T if X_0 has no predecessor, else, if F is the predecessor, we have $P_{X_0} = P_F F$ where P_F and F are well-ordered. Further all these P_Y are well-ordered. But then again according to the lemma P_{X_0} is well-ordered which is a contradiction. There-

fore all partial products are well-ordered, which as we just saw implies that P itself is well-ordered. Thus we have proved:

Theorem 15. The product P of a well-ordered set of well-ordered sets is well-ordered.

I would like to prove that the product $\alpha\beta$ can be conceived as the result of adding β sets each of ordinal number α . Let A have the ordinal α ,B the ordinal β . Then $\alpha\beta$ is the ordinal number of the set P of pairs (a,b) ordered according to last differences as explained. Let M_b be the set of all pairs with the last element b and T the set of all these M_b . Then ST, well-ordered as explained above, is just the sum P of all M_b . Each of these has the ordinal α .

It is easy to verify that the associative laws hold for addition and multiplication. Also the distributive law $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$ is seen to be valid. On the other hand, the commutative laws do not hold, nor does the distributive formula $(\alpha + \beta)\gamma = \alpha\gamma + \beta\gamma$. I shall give some examples.

$$1 + \omega = \omega < \omega + 1$$

 $2.\omega = \omega \leq \omega 2$ and therefore $(1 + 1)\omega = \omega \leq 1.\omega + 1.\omega$.

One can also notice that not always

$$(\alpha \beta)^{\gamma} = \alpha^{\gamma} \beta^{\gamma}$$

For example

$$(2.2)^{\omega} < 2^{\omega} \cdot 2^{\omega}, \quad (2.(\omega+1))^2 > 2^2(\omega+1)^2$$

On the other hand, if $\lambda = \sum_{\eta \leq \mu} \beta_{\eta}$, then $\alpha \lambda = \sum_{\eta \leq \mu} \alpha \beta_{\eta}$ and

$$\alpha^{\lambda} = \prod_{\eta < \mu} \alpha^{\beta} \eta, \quad \text{in particular} \quad \alpha^{\beta + \gamma} = \alpha^{\beta} \cdot \alpha^{\gamma}$$
$$\alpha^{\beta\gamma} = (\alpha^{\beta})^{\gamma}$$

We have seen that the ordinal numbers are well-ordered by the relation <. It is then natural to ask how the cardinal numbers behave. Because of the comparability of the ordinals it is immediately clear that the cardinal numbers are comparable; indeed, if M and N are any two sets and they are in some way well-ordered, then either M is similar to, and thus equivalent

to, some initial part of N or inversely. Thus we have either $\overline{M} \leq \overline{N}$ or $\overline{N} \leq \overline{M}$. Now let T be a set of sets. I assert that the cardinal numbers represented by the elements A,B,C,.... of T are well-ordered by the relation < as earlier defined. Evidently it suffices to prove that there is a least cardinal represented

ORDINALS AND ALEPHS

by the elements of T, because then the same will be true for every subset of T. Now let M be ϵ T. If M is the smallest cardinal represented by any element of T, then our assertion is correct. Otherwise there will be some elements X of T representing smaller cardinals. All these X we may assume well-ordered. Then each of them is similar to an initial section of M given by an element m of M. Among these m there will be a least one m₀. The section given by m₀ then furnishes the least cardinal number among the mentioned X.

Thus the cardinal numbers are also well-ordered by the relation \leq . More exactly expressed: All cardinals \leq a given cardinal constitute a wellordered sequence according to their magnitude. The least of the transfinite ones, the cardinal of the denumerable sets, we denote, as Cantor did, by \aleph_0 , the following by \aleph_1 , and so on.

If α is a transfinite ordinal, i.e. $\omega \leq \alpha$, then we have $1 + \alpha = \alpha$, because we may write $\alpha = \omega + \beta$, whence $1 + \alpha = 1 + (\omega + \beta) = (1 + \omega) + \beta = \omega + \beta = \alpha$. More generally we have of course $n + \alpha = \alpha$, n finite. Further it may be noticed, that if α is the ordinal of a set M without last element or in other words α is without immediate predecessor, then for every finite ordinal n we have $n\alpha = \alpha$. We can first prove that $\alpha = \omega\beta$, whence $n\alpha = n(\omega\beta) = (n\omega)\beta = \omega\beta = \alpha$ since $n\omega$ is evidently = ω . That α indeed is a multiple of ω is seen by distributing the elements of M into classes by putting any two elements into the same class which are either neighbors or have only a finite number of elements between them. It is clear that every class is of type ω , and the whole set is the sum of a well-ordered set of these classes, which means that $\alpha = \omega\beta$, β denoting the ordinal of the set of the classes.

Among all ordinals whose cardinal number is \aleph_{α} there will be a least, usually written ω_{α} . This ω_{α} belongs to a very remarkable class of ordinals called principal ordinals. The definition is:

An ordinal α is a principal one, if the equation, $\alpha = \beta + \gamma$ only has the solutions $\beta < \alpha, \gamma = \alpha$ and $\alpha = \beta$, $\gamma = 0$. One may also say that the ordinal represented by a well-ordered set M is principal, if M is similar to every terminal part of itself.

Proof that ω_{α} is principal: Let $\omega_{\alpha} = \beta + \gamma, \gamma > 0$. We know that γ is the ordinal of some initial part of M, if M has the ordinal ω_{α} . If this initial part of M is not M itself, it is an initial section, so that $\gamma \leq \omega_{\alpha}$, and according to the definition of ω_{α} we have that the cardinal number γ of γ must be $\langle \aleph_{\alpha}$. Further $\overline{\beta}$ is also $\langle \aleph_{\alpha}$, because β is the ordinal of some initial section of M. But the sum of two alephs $\langle \aleph_{\alpha}$ is again $\langle \aleph_{\alpha}$. Thus γ must be $= \omega_{\alpha}$.

Since it is clear that every transfinite cardinal \aleph may be given by a wellordered set without last element, indeed the least ordinal with cardinal number \aleph cannot have a predecessor because $1 + \aleph = \aleph$, we obtain from the relation $n\alpha = \alpha$ just mentioned that always

for finite n. Hence for every aleph \aleph_{α} in particular $\aleph_{\alpha} + \aleph_{\alpha} = \aleph_{\alpha}$. Further if $\aleph_{\beta} < \aleph_{\alpha}$, we obtain

$$\aleph_{\alpha} \leq \aleph_{\alpha} + \aleph_{\beta} \leq \aleph_{\alpha} + \aleph_{\alpha} = \aleph_{\alpha}$$

which means that

,

$$\aleph_{\alpha} + \aleph_{\beta} = \aleph_{\alpha}$$

Thus the sum of two alephs is the greater one of them. Further, if \aleph_{β} and \aleph_{γ} are both $< \aleph_{\alpha}$, also $\aleph_{\beta} + \aleph_{\gamma} < \aleph_{\alpha}$.

The division of ordinals may be performed thus. Let α be given and $\beta > 0$. We consider the ordinals γ which are such that for some δ

 $\alpha = \beta \gamma + \delta$

I assert that there is a greatest value of γ here. Indeed the assumption that $\beta \gamma_{\lambda}$ where $\gamma_1 < \gamma_2 < \ldots$, are all $\leq \alpha$ yields $\beta \lim \gamma_{\lambda} \leq \alpha$, where $\lim \gamma_{\lambda}$ is the least ordinal > every γ_{λ} . This is perhaps most easily seen by writing $\gamma_2 = \gamma_1 + \gamma_2'$, $\gamma_3 = \gamma_2 + \gamma_3'$, and generally $\gamma_{\lambda+1} = \gamma_{\lambda} + \gamma_{\lambda+1}'$. Then $\lim \gamma_{\lambda} = \sum \gamma_{\lambda}'$ putting $\gamma_1 = \gamma_1'$, and we have by the distributive law for multiplication λ

$$\beta \sum_{\lambda} \gamma_{\lambda}' = \sum_{\lambda} \beta \gamma_{\lambda}'.$$

But the several $\beta \gamma_{\lambda}$ ' will represent the ordinals of different disjoint intervals of a well-ordered set of ordinal α . Thus $\Sigma \beta \gamma_{\lambda}$ ' $\leq \alpha$.

If κ is the greatest value of γ , we have

$$\alpha = \beta \kappa + \rho, \rho < \beta$$

Indeed, if ρ were = $\beta + \rho'$, we should obtain $\alpha = \beta(\kappa + 1) + \rho'$ so that κ would not be the maximal γ .

In the particular case $\beta = \omega$ we get

$$\alpha = \omega \kappa + n$$
, n finite.

Thus we again get the above result, that if α is the ordinal of a well-ordered set without last element, it is of the form $\omega \kappa$.

It is easily seen that $\beta^{\lim \gamma_{\lambda}} = \lim \beta^{\gamma_{\lambda}}$. As a consequence of this there is a maximal power $\beta^{\gamma_1} \leq \alpha$. Then the division of α by β^{γ_1} yields

$$\alpha = \beta^{\gamma_1} \nu_1 + \alpha', \ \alpha' < \beta^{\gamma_1}, \ \nu_1 < \beta.$$

Now again there is a maximal power of β , β^{γ_2} say $\leq \alpha'$. Then we obtain

 $\alpha^{\prime} = \beta^{\gamma_2} \nu_2 + \alpha^{\prime \prime}, \ \alpha^{\prime \prime} < \beta^{\gamma_2}, \nu_2 < \beta.$

Since the sequence α , α' , α'' ,... is decreasing, there is a least one which must be O. Then we have

$$\alpha = \sum_{\mathbf{r}=1}^{m} \beta^{\gamma} \mathbf{r}_{\gamma}, \text{ m finite, all } \nu_{\mathbf{r}} < \beta.$$

Of particular interest is the case $\beta = \omega$. We obtain the result that every ordinal can be written in the form

$$\alpha = \sum_{\mathbf{r}=1}^{\mathbf{m}} \omega^{\gamma_{\mathbf{r}}} \mathbf{n}_{\mathbf{r}}, \ \gamma_1 > \gamma_2 > \dots$$

m positive and finite, all n_r positive and finite. It is clear by the method of construction that this form is unique.

26

It is seen that α cannot be principal without being simply a power of ω . On the other hand every power of ω is easily seen to be principal.

If γ_1 is kept fixed in the above expression while $\gamma_2, \gamma_3, \ldots$ m, and the n_r vary, we get all numbers $\langle \omega \gamma_1 + 1$. If also γ_1 varies but is kept $\langle \alpha, \alpha \rangle$ a limit number, we get all ordinals $\langle \omega \alpha$. I will show how we can set up a very simple one-to-one correspondence between the elements of a well-ordered set M of ordinal equal to a power of ω on the one hand and the ordered pairs (a,b) which are the elements of M^2 on the other. To every pair

$$\alpha = \sum_{k \leq q} \omega^{\sigma k} m_k, \quad \beta = \sum_{k \leq q} \omega^{\sigma k} n_k$$

we let correspond the number

$$\gamma = \sum_{k \leq q} \omega^{\sigma k} f (m_k, n_k)$$

where $f(m_k, n_k)$ is a one-to-one correspondence between the non-negative integers and their pairs. We set $\gamma = 0$ for $\alpha = \beta = 0$.

If this is applied to ω_{α} considering the cardinal number \aleph_{α} we obtain

$$\aleph_{\alpha}^2 = \aleph_{\alpha}$$
.

Of course we then also get $\aleph_{\alpha}^{n} = \aleph_{\alpha}$ by an easy induction.

Because of the well-ordering theorem we then have that $\mathbf{m}^2 = \mathbf{m}$ for every transfinite cardinal \mathbf{m} . It is now very remarkable that, if inversely it is presupposed that this formula is valid for every transfinite cardinal number \mathbf{m} , then every set can be well-ordered. Thus we have

Theorem 16. The general validity of $\mathfrak{m}^2 = \mathfrak{m}$ implies the general principle of choice and inversely.

If we look at the proof of the earlier theorem stating that \mathbf{m} and \mathbf{n} are comparable when $\mathbf{m} + \mathbf{n} = \mathbf{mn}$, we notice that if \mathbf{n} say is an aleph, then we need not use the axiom of choice in the proof. Further, if simultanously it is known that \mathbf{n} is not $\leq \mathbf{m}$, we get $\mathbf{m} \leq \mathbf{n}$ and then \mathbf{m} is an aleph.

Now **m** being an arbitrary cardinal number, it is always possible to define an aleph which is not $\leq \mathbf{m}$. This was first done by F. Hartogs (Math. Ann. 76, 438, 1915). Let M be a set such that $\overline{\mathbf{M}} = \mathbf{m}$. There are some subsets of M which can be well-ordered. We take into account all well-orderings of all these subsets and distribute these well-ordered subsets into classes of similarity. Every such class is then a set corresponding to an ordinal and these sets constitute again a certain set. To the ordinals represented by the members of this set there exist always greater ordinals e.g. the sum of all the ordinals. Among these greater ordinals there is a least one λ say. Then $\overline{\lambda}$ is not $\leq \mathbf{m}$, because this would mean that there exists a subset of M which can be well-ordered with ordinal number λ , whereas λ is greater than every ordinal α for which this was the case. Thus $\overline{\lambda}$ is an aleph which cannot be $\leq \mathbf{m}$.

Hence the correctness of our assertion, that if always $\mathbf{m} + \mathbf{n} = \mathbf{mn}$ then every set is well-ordered. However, to be perfectly correct we must assume $\mathbf{m}^2 = \mathbf{m}$ for any inductive infinite cardinal number.

Now if always $m^2 = m$, we have $(m + n)^2 = m + n$, whence at any rate

However we have proved earlier that if m and n are ≥ 2 , then $m + n \leq m \cdot n$. Thus we obtain mn = m + n.

6. Some remarks on functions of ordinal numbers

A function f(x) is called monotonic, if $(x \le y) \rightarrow (f(x) \le f(y))$. It is called strictly increasing, if

$$(x < y) \rightarrow (f(x) < f(y)).$$

The function is called seminormal, if it is monotonic and continuous, that is if $f(\lim \alpha_{\lambda}) = \lim f(\alpha_{\lambda})$, λ here indicating a sequence with ordinal number of the second kind, i.e., without immediate predecessor, while $(\lambda_1 < \lambda_2) \rightarrow (\alpha_{\lambda_1} < \alpha_{\lambda_2})$.

The function is called normal, if it is strictly increasing and continuous; ξ is called a critical number for f, if $f(\xi) = \xi$.

Theorem 17. Every normal function possesses critical numbers and indeed such numbers > any a.

Proof: Let α be chosen arbitrarily and let us consider the sequence α , $f(\alpha)$, $f^2(\alpha)$,.... Then if $\alpha_{\omega} = \lim_{n < \omega} f^n(\alpha)$, we have $f(\alpha_{\omega}) = f(\lim_{n < \omega} (f^n(\alpha)) = \lim_{n < \omega} f(\alpha)$.

 $f^{n+1}(\alpha) = \alpha_{\omega}$, that is, α_{ω} is a critical number for f.

Examples.

- 1) The function 1 + x is normal. Critical numbers are all $x = \omega + \alpha$, α arbitrary.
- 2) The function 2x is normal. Critical numbers are all of the form $\omega \alpha$, α arbitrary.
- The function ω^x is normal. Critical numbers of this function are called ε-numbers. The least of them is the limit of the sequence ω, ω^ω, ω^(ω^ω),

I will mention the quite trivial fact that every increasing function f is such that $f(x) \ge x$ for every x.

Theorem 18. Let $g(x) \ge x$ for all x and α be an arbitrary ordinal; then there is a unique semi-normal function f such that

$$f(0) = \alpha$$
, $f(x+1) = g(f(x))$.

Proof clear by transfinite induction.

Theorem 19. If f is a semi-normal function and β is an ordinal which is not a value of f, while f possesses values $<\beta$ and values $>\beta$, then there is among the x such that $f(x) < \beta$ a maximal one x_0 such that $f(x_0) < \beta < f(x_0 + 1)$.