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{ao, b0, c0, ....},

where aoeA'-Ai, b0eB f-Bi, .... However this element cannot correspond to
any element of ST. Indeed it cannot be mapped on an element of A0, for
example, because if it could, ao would have to be one of the elements of AI.

4. The well-ordering theorem

After all this I shall now prove, by use of the choice principle, that every
set can be well-ordered. First I shall give another version of the notion
"well-ordered", different from the usual one.

We may say that a set M is well-ordered, if there is a function R, having
M as domain of the argument values and UM as domain of the function
values, such that if N D 0 is arbitrary and e UM, there is a unique neN
such that NER(n). I have to show that this definition is equivalent to the
ordinary one. If M is well-ordered in the ordinary sense, then every non-
void subset N has a unique first element. Then it is clear that if R(n), neM,
means the set of all xeM such that nix, the other definition is fulfilled by
this R. Let us, on the other hand, assume that we have a function R of the
said kind. Letting N be {a}, one sees that always aeR(a). Let N be {a,b},
a 4= b. Then either a or b is such that NER(a) resp. R(b). If NER(a), then
we put a < b. Since then N is not £ R(b), we have aeR(b). Now let b < c in
the same sense that is, ceR(b), be"R(c). Then it is easy to see that a < c.
Indeed we shall have {a,b,c} E either R(a) or R(b) or R(c), but bFR(c), ae~R(b).
Hence {a,b,c} ER(a) so that {a,c}ER(a), i.e. a < c. Thus the defined rela-
tion < is linear ordering. Now let N be an arbitrary subset of M and n be the
element of N such that NER(n). Then if meN, m =(= n, we have meR(n), which
means that n < m. Therefore the linear ordering is a we 11-ordering.

Theorem 10. Let a function 0 be given such that <!>>(A), for every A such
that OCA EM, denotes an element of A. Then UM possesses a subset
HI such that to every AT EM and D O there is one and only one element
N0of HI such thatN E #o and <t>(N0)eN.

Proof: I write generally Af = A - {0(A)}. I shall consider the sets
P EUM which, like UM, possess the following properties

1) MeP

2) Aep-*A'eP for all A EM

3) T P-*DTeP.

These sets P constitute a subset C of UUM. They are called 9 -chains by
Zermelo. I shall show that the intersection DC of all elements of C is
again a 0 -chain, that is, DC e c. It is seen at once that DC possesses
the properties 1) and 2). Now let TEDC. Then, if PeC, we have TEP, and
since 3) is valid for P, also DTeP. Since this is true for all P, we have
DT e DC as asserted. Thus I have proved that DC e C.
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In the sequel I put DC = fll and I assert that fll has the property men-
tioned in the theorem. Obviously fll is the least 0 -chain. Let O c N E M ,
and let N0 be the intersection of all Qe M for which NEQ, then N E N0.
Further 0(N0)eN, because otherwise N!

0 = N0 - {0(N0)} would still contain
N and be efll, which is a contradiction, since this would mean that N0 is
contained in N0 - {0 (N0)}.

Thus we have proved the first half of the theorem. The proof of the
latter half is considerably more laborious. It will be suitable first to prove
the following:

Lemma. Let A efll have the property that for every 3Cefll either 3C c A
or X = A or A c #.

Then Af possesses the same property.
By the way, we may notice that such an A exists, M having this property.

Proof: If Xefll is such that A = * or A c X, then A1 c X. Therefore,
we only need to consider the case Xc A. The question is whether some IBe fll
could exist such that Tl c A but I not E A% or in other words, 0(A) still
e^. I will denote by fll* the subset of fll which remains after having re-
moved all these 13 from fll. I shall show that HI* is a 0 -chain.

1) MeM* because Me fll and M is not possibly a TJ. Indeed each 1 is
cA.

2) Let Be fll*. If A c B, then Bf is note A so that BT is not a 1. On the
other hand B'efll, since B c fll. Then B'efll* in this case.

If A = B, then Bf = A* so that 0(A)i~Bf, whence again Bf is not a 1 so that
B'efll*. Finally, let Be A. Then 0(A) must be e~B; otherwise B would be a
IS against the supposition Be fll*. But then a fortiori 0(A)e~B f , so that BT is
not a?. Therefore Bfe fll*.

3) Let TE fll*. Should DT be a 1, we would have

(DT CA) & (0(A) e DT).

Then 0(A) is e every element C of T. Since every C is not a 1, we must
have Co): A for every CeT and thus, because of the supposed property of A,
AEC for all CeT, whence ASDT, so that DT is no 13. Hence DTefll*.

However, since fll is the minimal 0 -chain and fll* is a 0 -chain 9 fll,
we have fll* = fll, which means that the elements 15 do not exist. This proves
our lemma.

Now let fllt be the subset of fll consisting of all Aefll such that for every
Xefll we have either #cA or 3C = A or Ac 3C. I shall show that fl^ is a
0 -chain, so that it coincides with fll.

1) M is efll!. This is evident since every Xefl l is 9.M.

2) If Ae flli, then Afe fllt. That is just the lemma proved above.

3) Let T be9 flli. Then for every NeT and every Xefl l we have either
NE3C or 3CCN. Let 3C be an arbitrary element of fll. Then either
there is an element N of T such that NE3e, and then DTE 36, or we
have for all NeT that #EN, whence #EDT. Thus
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Hence it follows that flli is a 8 -chain and therefore = 0. This means that
if A and B are ejR, we always have one of the three cases A cB, A = B,
BCA. Further it ought to be noticed that if BCA, then BE A1, else we should
have A'CB, which obviously is impossible when B cA.

All this makes it now possible to prove the latter half of our we 11-ordering
theorem; namely that if N 4= 0 is EM there is only one NoeHI such that
0(N0)eN and NENo. We have seen that there is such an No. Every element
P of fll such that PcN0 is EN!

0, so that 0(N0)e~P, whence N is not cp.
Every other element P of HI is such that NocP, whence N0EP% whence
again 0(P)e"No so that also 0(P)e~N. Thus N0 is the only element of JH with
the two properties NEN0 and 0(N0)eN.

We can now define a function R from M to HI thus: As often as Ne 01 &
0(N) = m, we write N = R(m). It follows in particular from the theorem just
proved that for every meM a unique NeHl exists such that {m} EN while
m = 0(N) so that N = R(m). Thus R and 0 are inverse functions.

It is easy to see that 0 maps JH onto M. Indeed, if Ni CN2, then NI EN f
2

so that 0(N2)e~Ni whereas 0(Ni)eNi . Hence 0(Ni) ± 0(N2) so that 0 fur-
nishes a one-to-one correspondence between HI and M. Therefore there
exists an inverse function mapping M onto HI, that is the function R.

Before entering into a more thorough treatment of the well-ordered sets
and the ordinals I would like to remind you of some notations I shall use. An
initial part A of an ordered set <D shall mean a subset A of <D such that if
xeA and y< x, then always also ye A, or in logical symbols (x)(y)((xeA) &
(y < x)—»yeA). Similarly a terminal part C of <D is to be understood. An
interval B shall be used in the meaning BE© and (x)(y)(z) (xeB & yeB &
(x < z) & (z < y)—*zeB) . These parts A,B,C may be closed or open, for
example an initial part A may have a last element, then it is said to be
closed, or not, then it is open. An interval B may be open or closed or open
to the left, closed to the right or inversely. It ought to be noticed that the
union of a set of initial parts is again an initial part.

If ae<D, the set of all x< a constitute an initial part. This I shall call
the initial section corresponding to a. It ought to be noticed that if (D is
well-ordered, every initial part which is not <D itself is an initial section.

Theorem 11. Let a well-ordered set M be mapped into itself by a
function f which preserves the order, that is a < b -*f(a) < f(b) for all
a and b e M. Then for all m e M we have m ^ f(m).

Proof: Let us assume that the theorem is not true. That would mean
that the subset N of M of all those x for which x > f (x) was not void. Let
m denote the least element of N. Then we should have

m > f(m) = mf,

and because mf€ N,

m' i f (m ' ) .

However, since f is order-preserving and m > mT, we should have f(m) >
f(m f), that is m' > f(m f).

It follows that if M is mapped by a function f onto M with preservation
of order, then f(x) = x for all x. Indeed, according to the theorem, we have
f(x) i x and f'W ^ x, that is, x = f(x).
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From this it again follows that if a well-ordered set M is mapped with
preservation of order onto an other well-ordered set Mf, then this mapping
is unique. Indeed if f and g both map M onto Mf, then fg'1 maps M onto
M so that fg (x) is x an(* therefore f(x) = g(x) for all x.

Theorem 12. If M is mapped by f with preservation of order into an
initial part A of itself, then A = M and the mapping is the identical one.
We may also say: M cannot be mapped onto an initial section of itself.

Proof: Let f map M onto A, A initial part of M. Then no element m
of M can be > every element x of A, because f(m) should belong to A so
that m > f(m), which contradicts the previous theorem. Thus every meM is
= an xeA, whence me A, that is, A = M.

Noticing that an initial part of a well-ordered set M is either M itself
or a section of M, we have that if M - N (meaning M and N are similar),
then M is neither - Ni nor N — MI, MI and NI denoting sections of M resp.
N.

Theorem 13. Let M and N be well-ordered sets. Then either M - NI,
Ni a section of N or M = N or Mi = N, Mi a section of M.

Proof: Let I be the set of all initial parts of M that are similar to ini-
tial parts of N constituting a set J. Then the union SI is in an obvious way
similar to SJ. Now either SI must be =M or SJ = N. Else SJ will be the
section belonging to an element i of M and SJ the section delivered by j eN.
But then SI + {i} would be similar to SJ + {j} which contradicts the definition
of I. Now, if SI = M, either M = N or M = a section NI of N according as
SJ is N or NI , else SI is a section MI of M while SJ = N so that MI = N.

5. Ordinals and alephs

It is now natural to say that an ordinal a is < an ordinal ft if a is the
order-type of a well-ordered set A, 0 the type of B, such that A is similar
to an initial section of B. It is clear that a < j 3 & j 3 < y - » a < y and that
a <jS excludes j3 <a . Thus all ordinals are ordered. However, this order-
ing is also a we 11-ordering. Let us namely consider an arbitrary set or even
class C of well-ordered sets. Let M be one of the sets in C. Its ordinal
number JLJ may be the least of all represented by the considered sets. If not
there are other sets in C which are similar to sections of M. These sections
are furnished by elements of M and among these there is at least one. The
corresponding initial section represents then the least ordinal of all furnished
by the sets in C.

Theorem 14. A terminal part or an interval of a well-ordered set is
similar to some initial part of it.

It is obviously sufficient to prove this for a terminal part. According to
the comparability theorem, otherwise the whole set M would have to be sim-


