Chapter 5

ROTH'S LEMMA

1. Introduction

Roth bases the proof of his theorem on a general property of polynomials which is to be proved in this chapter. This property is roughly as follows.

Let

$$
A\left(x_{1}, \ldots, x_{m}\right)=\sum_{i_{1}=0}^{r_{1}} \ldots \sum_{i_{m}=0}^{r_{m}} a_{i_{1}} \ldots i_{m} x_{1}^{i_{1}} \ldots x_{m}^{i_{m}} \neq 0
$$

be a polynomial in m variables, with integral coefficients which are not "too large" in absolute values. Assume that

$$
\max \left(\frac{r_{2}}{r_{1}}, \frac{r_{3}}{r_{2}}, \ldots, \frac{r_{m}}{r_{m-1}}\right)
$$

is a "very small" positive number. Further let

$$
\kappa_{1}=\frac{P_{1}}{Q_{1}}, \ldots, \kappa_{m}=\frac{P_{m}}{Q_{m}}
$$

be m rational numbers written in their simplified forms for which both the maxima

$$
H_{1}=\max \left(\left|P_{1}\right|,\left|Q_{1}\right|\right), \ldots, H_{m}=\max \left(\left|P_{m}\right|,\left|Q_{m}\right|\right)
$$

and the quotients

$$
\frac{\log H_{2}}{\log H_{1}}, \frac{\log H_{3}}{\log H_{2}}, \ldots, \frac{\log H_{m}}{\log H_{m-1}}
$$

are "very large". Then $A\left(x_{1}, \ldots, x_{m}\right)$ cannot vanish to a "very high" order at $\mathrm{x}_{1}=\kappa_{1}, \ldots, \mathrm{X}_{\mathrm{m}}=\kappa_{\mathrm{m}}$. (An exact formulation of Roth's Lemma will be given at the end of this chapter).

The main idea of the proof consists in an induction for m , the number of variables, the case $m=1$ being trivial. This induction uses a test for linear independence of polynomials in terms of the so-called generalised Wronski determinants.

2. Linear dependence and independence.

Let

$$
\mathrm{f}_{\nu}=\mathrm{f}_{\nu}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}\right) \quad(\nu=1,2, \ldots, \mathrm{n})
$$

be n rational functions of m variables, with coefficients in a field K. The functions are said to be linearly dependent (or for short, dependent) over K if there are elements c_{1}, \ldots, c_{n} of K not all zero such that

$$
c_{1} f_{1}+\ldots+c_{n} f_{n} \equiv 0
$$

identically in $\mathbf{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}$. If no such elements exist, then the functions are called linearly independent (or for short, independent) over K. Evidently, if f_{1}, \ldots, f_{n} are independent, none of these functions can vanish identically.

Assume, in particular, that the coefficients of f_{1}, \ldots, f_{n} lie in the rational field Γ, and that these functions are dependent over the real field P. Then the functions are also dependent over Γ. For the identity $c_{1} f_{1}+\ldots+c_{n} f_{n} \equiv 0$ is equivalent to a finite system of linear equations

$$
c_{1} \phi_{1 \sigma}+\ldots+c_{n} \phi_{n \sigma}=0 \quad(\sigma=1,2, \ldots, s)
$$

for c_{1}, \ldots, c_{n} with rational coefficients $\phi_{\nu \sigma}$. By the hypothesis the rank of the matrix of this system of equations is smaller than n. The system has therefore also a solution c_{1}, \ldots, c_{n} in rational numbers not all zero, whence the assertion.

Conversely, if $\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}}$ have rational coefficients and are independent over. Γ, then they are also independent over P.

3. Generalised Wronski determinants.

The letter D, with or without suffixes, will be used to denote differential operators of the form

$$
\frac{\partial j_{1}+\ldots+j_{m}}{\partial x_{1} j_{1} \ldots \partial x_{m}{ }^{j_{m}}}
$$

where $\mathrm{j}_{1}, \ldots, \mathrm{jm}$ are non-negative integers. The sum $\mathrm{j}_{1}+\ldots+\mathrm{jm}$ of these integers is called the order of D . Thus the unit operator 1 has the order 0 because $\mathrm{j}_{1}=$... $=\mathrm{j}_{\mathrm{m}}=0$.

Let

$$
\mathrm{f}_{\nu}=\mathrm{f}_{\nu}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}\right) \quad(\nu=1,2, \ldots, \mathrm{n})
$$

be n rational functions with real coefficients, and let $\mathrm{D}_{1}, \ldots, \mathrm{D}_{\mathrm{n}}$ be n differential operators such that
the order of D_{ν} does not exceed $\nu-1 \quad(\nu=1,2, \ldots, \mathrm{n})$.
The determinant

$$
\left(\begin{array}{lll}
D_{1} & \ldots & D_{n} \\
f_{1} & \ldots & f_{n}
\end{array}\right)=\left|\begin{array}{cccc}
D_{1} f_{1} & D_{1} f_{2} & \ldots & D_{1} f_{n} \\
D_{2} f_{1} & D_{2} f_{2} & \ldots & D_{2} f_{n} \\
\vdots & \vdots & & \vdots \\
D_{n} f_{1} & D_{n} f_{2} & \ldots & D_{n} f_{n}
\end{array}\right|
$$

is called a generalised Wronski determinant or a Wronskian.
This Wronskian evidently vanishes identically when the operators D_{1}, \ldots, D_{n} are not all distinct. It also vanishes identically if f_{1}, \ldots, f_{n} are linearly dependent over the real field. For an identity

$$
c_{1} f_{1}+\ldots+c_{n} f_{n} \equiv 0
$$

implies the n identities

$$
\mathrm{c}_{1} \mathrm{D}_{\nu} \mathrm{f}_{1}+\ldots+\mathrm{c}_{\mathrm{n}} \mathrm{D}_{\nu} \mathrm{f}_{\mathrm{n}} \equiv 0 \quad(\nu=1,2, \ldots, \mathrm{n})
$$

If now c_{1}, \ldots, c_{n} are not all zero, then the determinant of this system of linear equations for c_{1}, \ldots, c_{n} vanishes, and this determinant is the Wronskian we are considering.

Let these two trivial cases be excluded. It will then be proved that at least one Wronskian of the given functions is not identically zero, at least when f_{1}, \ldots, f_{n} are polynomials.

4. The case of functions of one variable.

Let

$$
\mathrm{f}_{\nu}=\mathrm{f}_{\nu}(\mathrm{x}) \quad(\nu=1,2, \ldots, \mathrm{n})
$$

be n rational functions in one variable x which have real coefficients and are independent over the real field; thus, in particular,

$$
\mathrm{f}_{\mathrm{n}}(\mathrm{x}) \neq 0 .
$$

There is only one Wronskian of these functions that does not vanish trivially, viz. that Wronskian which belongs to the operators

$$
D_{1}=1, D_{2}=\frac{d}{d x}, D_{3}=\frac{d^{2}}{d x^{2}}, \ldots, D_{n}=\frac{d^{n-1}}{d x^{n-1}} .
$$

We show by induction for n that this Wronskian is in fact distinct from zero.
This is obvious for $\mathrm{n}=1$ since then

$$
\binom{D_{1}}{f_{1}}=f_{1}(x) \neq 0 .
$$

Let therefore $n \geqslant 2$, and assume that the assertion has already been proved for $\mathrm{n}-1$ functions.

Put

$$
F_{\nu}(x)=\frac{d}{d x}\left(\frac{f_{\nu}(x)}{f_{n}(x)}\right) \quad(\nu=1,2, \ldots, n-1)
$$

These $\mathrm{n}-1$ functions are still independent. For any equation

$$
c_{1} F_{1}+\ldots+c_{n-1} F_{n-1}=\frac{d}{d x}\left(\frac{c_{1} f_{1}+\ldots+c_{n-1} f_{n-1}}{f_{n}}\right) \equiv 0
$$

with real coefficients implies, on integrating, that

$$
c_{1} f_{1}+\ldots+c_{n-1} f_{n-1} \cong-c_{n} f_{n},
$$

where c_{n} is a further real number, whence $c_{1}=\ldots=c_{n-1}=c_{n}=0$ because f_{1}, \ldots, f_{n} are independent by hypothesis.

It follows then from the induction hypothesis that

$$
\binom{\mathrm{D}_{1} \ldots \mathrm{D}_{\mathrm{n}-1}}{\mathrm{~F}_{1} \ldots \mathrm{~F}_{\mathrm{n}-1}} \text { \& } 0 \text { where } \mathrm{D}_{\nu}=\frac{\mathrm{d}^{\nu-1}}{\mathrm{dx} \nu-1} .
$$

Next one easily shows that, for any rational function g, identically

Here choose $g=f_{n}{ }^{-1}$. Then in the Wronskian on the left-hand side all but the first element of the n-th column vanish, and this determinant reduces to

Hence, finally,

$$
\left(\begin{array}{lll}
D_{1} & \ldots & D_{n} \\
f_{1} & \ldots & f_{n}
\end{array}\right)=\left(\begin{array}{lll}
D_{1} & \ldots & D_{n-1} \\
F_{1} & \ldots & F_{n-1}
\end{array}\right) f_{n}^{-n} \neq 0
$$

whence the assertion.

5. The general case.

From now on let

$$
f_{\nu}\left(x_{1}, \ldots, x_{m}\right)=\sum_{i_{1}=0}^{r_{1}} \ldots \sum_{i_{m}=0}^{r_{m}} f_{i_{1}}^{(\nu)} \ldots i_{m} x_{1}^{i_{1}} \ldots x_{m}^{i_{m}} \quad(\nu=1,2, \ldots, n)
$$

be n polynomials in x_{1}, \ldots, x_{m} that have real coefficients and are independent over the real field. We want to show that at least one of the Wronskians in these functions is not identically zero. In the special case $\mathrm{m}=1$ this assertion has just been proved, even for the more general class of rational functions. To reduce the general case to this special one, denote by \mathbf{x} a new variable, by g a nositive integer exceeding all the degrees r_{1}, \ldots, r_{m}, and put

$$
\begin{array}{r}
\phi_{\nu}(x)=f_{\nu}\left(x, x g, \ldots, x g^{m-1}\right)=\sum_{i_{1}=0}^{r_{1}} \ldots \sum_{i_{m}=0}^{r_{m}} f_{i_{1}}(\nu) i_{m} x^{i_{1}+i_{2} g+i_{3} g^{2}+\ldots+i_{m} g^{m-1}} . \\
(\nu=1,2, \ldots, n) .
\end{array}
$$

The exponents $i_{1}+i_{2} g+i_{3} g^{2}+\ldots+i_{m} g^{m-1}$. of x may be considered as representations to the basis g, with $i_{1}, i_{2}, \ldots, i_{m}$ as the digits; for by the choice of g these numbers may assume only the values $0,1,2, \ldots, g-1$. Since there is only one representation of any integer to the basis g, it follows that no two terms in the multiple sum for $\phi_{\nu}(\mathbf{x})$ are constant multiples of the same power of x.

This implies that $\phi_{1}(\dot{x}), \ldots, \phi_{\mathrm{n}}(\mathrm{x})$ likewise are independent over the real field. For let c_{1}, \ldots, c_{m} be real numbers such that $c_{1} \phi_{1}+\ldots+c_{n} \phi_{n} \equiv 0$. By what has just been shown, this identity requires that

$$
c_{1} f_{i_{1} \ldots i_{m}}^{(1)}+\ldots+c_{n} f_{i_{1}}^{(n)} \quad \text { for all suffixes } i_{1}, \ldots, i_{m}
$$

But then $c_{1} f_{1}+\ldots+c_{n} f_{n} \equiv 0$, whence $c_{1}=\ldots=c_{n}=0$ by the assumed independence of f_{1}, \ldots, f_{n}.

The result of $\S 4$ may then be applied to $\phi_{1}, \ldots, \phi_{n}$, giving

$$
W(x)=\left(\begin{array}{lllll}
1 & \frac{d}{d x} & \frac{d^{2}}{d x^{2}} & \ldots & \frac{d^{n-1}}{d x^{n-1}} \\
\phi_{1} & \phi_{2} & \phi_{3} & \ldots & \phi_{n}
\end{array}\right) \neq 0
$$

Denote now by δ the linear operator

$$
\delta=\frac{\partial}{\partial x_{1}}+g x^{g-1} \frac{\partial}{\partial x_{2}}+g^{2} x^{g^{2}-1} \frac{\partial}{\partial x_{3}}+\ldots+g^{m-1} x^{m-1}-1 \frac{\partial}{\partial x_{m}}
$$

and by the sign ()* the operation of substituting

$$
x, x g, x g^{2}, \ldots, x^{m-1} \text { for } x_{1}, x_{2}, x_{s}, \ldots, x_{m}, \text { respectively. }
$$

In this notation, evidently

$$
\phi_{\nu}(\mathrm{x})=\left\{\mathrm{f}_{\nu}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}\right)\right\}^{*} \quad \text { and } \quad \frac{\mathrm{d}}{\mathrm{dx}} \phi_{\nu}(\mathrm{x})=\left\{\delta \mathrm{f}_{\nu}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}\right)\right\}^{*}
$$

It follows that repeated differentiation of $\phi_{\nu}(\mathrm{x})$ leads to a relation

$$
\frac{\mathrm{d}^{\mu}}{\mathrm{dx} \mu} \phi_{\nu}(\mathrm{x})=\left\{\left(\psi_{\mu 1}(\mathrm{x}) \mathrm{D}_{\mu 1}+\psi_{\mu 2}(\mathrm{x}) \mathrm{D}_{\mu 2}+\ldots+\psi_{\mu \mathrm{N}_{\mu}}(\mathrm{x}) \mathrm{D}_{\mu_{N \mu}}\right) \mathrm{f}_{\nu}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}\right)\right\}^{*}
$$

Here N_{μ} is a positive integer depending on $\mu ; \psi_{\mu}, \ldots, \psi_{\mu} N_{\mu}$ are polynomials in x ; and $\mathrm{D}_{\mu 1}, \ldots, \mathrm{~d}_{\mu} \mathrm{N}_{\mu}$ are differential operators at most of order μ in the variables x_{1}, \ldots, x_{m}. The polynomials and the operators depend on μ, but not on the functions f_{ν} or ϕ_{ν}.

Replace now in the determinant $W(x)$ the terms $\frac{\mathrm{d}^{\mu}}{\mathrm{dx}^{\mu}} \phi_{\nu}(\mathrm{x})$ by their expressions in the derivatives of $f_{\nu}(x)$. Then each term in the determinant becomes a sum, and $W(x)$ takes the form

$$
W(x)=\sum_{k_{1}=1}^{N_{1}} \ldots \sum_{k_{n-1}=1}^{N_{n-1}} \psi_{1 k_{1}}(x) \ldots \psi_{n-1 k_{n-1}}(x)\left(\begin{array}{ccccc}
1 & D_{1} k_{1} & D_{2 k_{2}} & \ldots & D_{n-1 k_{n-1}} \\
f_{1} & f_{2} & f_{3} & \ldots & f_{n}
\end{array}\right)^{*}
$$

Since $W(x) \neq 0$, at least one of the terms on the right-hand side likewise is not identically zero, so that, say,

$$
\left(\begin{array}{ccccc}
1 & D_{1 k_{1}} & D_{2} k_{2} & \ldots & D_{n-1 k_{n-1}} \\
f_{1} & f_{2} & f_{3} & \ldots & f_{n}
\end{array}\right)^{*} \neq 0 .
$$

But then also

$$
\left(\begin{array}{ccccc}
1 & D_{1 k_{1}} & D_{2 k_{2}} & \ldots & D_{n-1 k_{n-1}} \\
f_{1} & f_{2} & f_{3} & \ldots & f_{n}
\end{array}\right) \neq 0 .
$$

We have thus the following result ${ }^{1}$
Lemma 1: Let $\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}}$ be n polynomials in m variables that have real coefficients and are independent over the real field. Then there is at least one Wronskian $\binom{D_{1} \ldots D_{n}}{f_{1} \ldots}$ fhat does not vanish identically. The same assertion holds if the polynomials have rational coefficients and are independent over the rational field.
The second assertion of the lemma holds, of course, because, as we saw in §2, the polynomials are also independent over the real field.

[^0]
6. An identity.

By means of Lemma 1 we shall prove a general identity which is basic for the later induction.

Assume that $\mathrm{m} \geqslant 2$, and denote by

$$
A\left(x_{1}, \ldots, x_{m}\right)=\sum_{i_{1}=0}^{r_{1}} \ldots \sum_{i_{m}=0}^{r_{m}} a_{i_{1}} \ldots i_{m} x_{1}^{i_{1}} \ldots x_{m}^{i_{m}} \neq 0
$$

a polynomial with integral coefficient. Since

$$
A\left(x_{1}, \ldots, x_{m}\right)=\sum_{i_{m}=0}^{r_{m}}\left(\sum_{i_{1}=0}^{r_{1}} \cdots \sum_{i_{m-1}=0}^{r_{m}-1} a_{i_{1}} \cdots i_{m-1} x_{1}^{i_{1}} \ldots x_{m-1}^{i_{m}}\right) \cdot x_{m}^{i_{m}}
$$

it is always possible to write the polynomial in at least one way as a sum

$$
\mathrm{A}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}\right)=\sum_{\nu=1}^{\mathrm{n}} \dot{P}_{\nu}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}-1}\right) \Sigma_{\nu}\left(\mathrm{x}_{\mathrm{m}}\right)
$$

where $P_{1}, \ldots, P_{\mathrm{n}}$ are polynomials in $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}-1}$ and $\Sigma_{1}, \ldots, \Sigma_{\mathrm{n}}$ are polynomials in X_{m}, all with rational coefficients. From now on choose one such representation for which the number n of terms is a minimum; then

$$
1 \leqslant n \leqslant r_{m}+1
$$

Let us call this the minimum representation of A.
In the minimum representation, both the n polynomials

$$
P_{1}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}-1\right), \ldots, P_{\mathrm{n}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}-1\right)
$$

and the n polynomials

$$
\Sigma_{1}\left(x_{m}\right), \ldots, \Sigma_{n}\left(x_{m}\right)
$$

are independent over the rational and hence also over the real field (82). For assume, say, that there are rational numbers c_{1}, \ldots, c_{n} not all zero such that $c_{1} P_{1}+\ldots+c_{n} P_{n} \equiv 0$; let e.g., $c_{n} \neq 0$. On solving for P_{n},

$$
P_{\mathrm{n}} \equiv \gamma_{1} P_{1}+\ldots+\gamma_{\mathrm{n}-1} P_{\mathrm{n}-1}
$$

where $\gamma_{1}, \ldots, \gamma_{\mathrm{n}-1}$ are rational numbers. Hence we obtain a new representation of A,
$\mathrm{A}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}\right)=\sum_{\nu=1}^{\mathrm{n}-1} P_{\nu-1}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}-1}\right) \Sigma_{\nu}^{*}\left(\mathrm{x}_{\mathrm{m}}\right)$ where $\Sigma_{\nu}^{*}\left(\mathrm{x}_{\mathrm{m}}\right)=\Sigma_{\nu}\left(\mathrm{x}_{\mathrm{m}}\right)+\gamma_{\nu} \Sigma_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{m}}\right.$.
with at most $\mathrm{n}-1$ terms, contrary to the definition of the minimum representation. The independence of $\Sigma_{1}, \ldots, \Sigma_{n}$ is proved in the same way.

By Lemma 1 there exist then two Wronskians

$$
\mathrm{U}^{*}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}-1}\right)=\binom{\mathrm{D}_{1}^{*} \ldots \mathrm{D}_{\mathrm{n}}^{*}}{P_{1} \ldots . \dot{P}_{\mathrm{n}}}, \quad \mathrm{~V}^{* *}\left(\mathrm{x}_{\mathrm{m}}\right)=\left(\begin{array}{cc}
\mathrm{D}_{1}^{* *} \ldots & \mathrm{D}_{\mathrm{n}}^{* *} \\
\Sigma_{1} & \ldots \\
\Sigma_{\mathrm{n}}
\end{array}\right)
$$

that do not vanish identically. Here, in the Wronskian U^{*},

$$
D_{\nu}^{*}=\frac{\partial j \nu 1+\ldots+j_{\nu m-1}}{\partial x_{1}^{j} \nu 1 \ldots \partial x_{m-1}^{j} \nu m-1}
$$

with certain non-negative integers $\mathrm{j}_{\nu 1}, \ldots, \mathrm{j}_{\nu \mathrm{m}-1}$ such that

$$
\mathrm{j}_{\nu 1}+\ldots+\mathrm{j}_{\nu \mathrm{m}-1} \leqslant \nu-1 \quad(\nu=1,2, \ldots, \mathrm{n}) .
$$

On the other hand, in the Wronskian $\mathrm{V}^{* *}$,

$$
D_{\nu}^{* *}=\frac{\mathrm{d}^{\mathrm{j}} \nu \mathrm{~m}}{\mathrm{dx}_{\mathrm{m}}^{\mathrm{j}} \nu \mathrm{~m}} \quad \text { where } \quad \mathrm{j}_{\nu \mathrm{m}}=\nu-1 \quad(\nu=1,2, \ldots, \mathrm{n})
$$

Denote by $\mathrm{D}_{\mu \nu}$ and $\Delta \mu \nu$ the new operators

$$
\mathrm{D}_{\mu \nu}=\mathrm{D}_{\mu}^{*} \mathrm{D}_{\nu}^{* *}=\frac{\partial \mathrm{j}_{\mu} 1+\ldots+\mathrm{j}_{\mu \mathrm{m}}-1+\mathrm{j}_{\nu \mathrm{m}}}{\partial_{\mathrm{x}}^{\mathrm{j} \mu 1} \ldots \mathrm{x}_{\mathrm{m}-1}^{\mathrm{j}_{\mu \mathrm{m}}-1{ }_{\mathrm{x}} \mathrm{x}_{\mathrm{m}}} \mathrm{~m}_{\mathrm{m}}}
$$

and

$$
\Delta_{\mu \nu}=\frac{1}{\mathrm{j}_{\mu 1!\cdots \cdot \mathrm{j}_{\mu \mathrm{m}-1!\mathrm{j}_{\nu \mathrm{m}}!}} \mathrm{D}_{\mu \nu} .}
$$

Further put

$$
\begin{aligned}
& \left.\underset{W}{ } \stackrel{*}{x}_{1}, \ldots, x_{m}\right)=\left|\begin{array}{llll}
D_{11} A & D_{12} A & \ldots & D_{1 n} A \\
D_{21} A & D_{22} A & \ldots & D_{2 n A} \\
\ldots & \ldots & \ldots & \ldots \\
D_{n 1} A & D_{n 2} A & \ldots & D_{n n} A
\end{array}\right|, \\
& W\left(x_{1}, \ldots, x_{m}\right)=\left|\begin{array}{llll}
\Delta_{12} A & \Delta_{12} A & \ldots & \Delta_{1 n} A \\
\Delta_{21} A & \Delta_{22} A & \ldots & \Delta_{2 n} A \\
\ldots & \ldots & \ldots & \ldots \\
\Delta_{n 1} A & \Delta_{n_{2}} A & \ldots & \Delta_{n n} A
\end{array}\right|,
\end{aligned}
$$

Thus

$$
W\left(x_{1}, \ldots, x_{m}\right)=C W^{*}\left(x_{1}, \ldots, x_{m}\right)
$$

where $C \neq 0$ is a certain rational number.
On differentiating the minimum representation of A, we obtain the system of identities
$\mathrm{D}_{\lambda \mu} \mathrm{A}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}\right)=\sum_{\nu=1}^{\mathrm{n}} \mathrm{D}_{\lambda}^{*} P_{\nu}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}-1}\right) . \mathrm{D}_{\mu}^{* *} \Sigma_{\nu}\left(\mathrm{x}_{\mathrm{m}}\right) \quad(\lambda, \mu=1,2, \ldots, \mathrm{n})$.
Therefore, by the multiplication law for determinants,

$$
\mathrm{W}^{*}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}\right)=\mathrm{U}^{*}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}-1}\right) \mathrm{V}^{* *}\left(\mathrm{x}_{\mathrm{m}}\right)
$$

and hence also

$$
\mathrm{W}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}\right)=\mathrm{CU}^{*}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}-1}\right) \mathrm{V}^{* *}\left(\mathrm{x}_{\mathrm{m}}\right) .
$$

It is obvious that all three determinants $\mathrm{U}^{*}, \mathrm{~V}^{* *}$, and W are polynomials with rational coefficients in some or all of the variables x_{1}, \ldots, x_{m}. Moreover, the stronger result holds that W has integral coefficients. For if j_{1}, \ldots, j_{m} are arbitrary non-negative integers, the partial derivative

$$
A_{j_{1}} \ldots j_{m}\left(x_{1}, \ldots, x_{m}\right)=\frac{\partial^{j_{1}+\ldots+j_{m}}\left(x_{1}, \ldots, x_{m}\right)}{j_{1}!\ldots j_{m}!\partial x_{1}{ }^{j_{1}} \ldots \partial x_{m}^{j m}}
$$

has the explicit form

$$
A_{j_{2}} \ldots j_{m}\left(x_{1}, \ldots, x_{m}\right)=\sum_{i_{1}=0}^{r_{1}} \ldots \sum_{i_{m}=0}^{r_{m}} a_{i_{1}} \ldots i_{m}\binom{i_{1}}{j_{1}} \ldots\binom{i_{m}}{j_{m}} x_{1}^{i_{1}-j_{1}} \ldots x_{m}^{i_{m}-j_{m}}
$$

and hence is a polynomial with integral coefficients. On the other hand, the general element in the determinant W is exactly

$$
\Delta_{\mu \nu} A\left(x_{1}, \ldots, x_{m}\right)=A_{j \mu 1} \ldots j_{\mu m-1} j_{\nu m}\left(x_{1}, \ldots, x_{m}\right)
$$

hence is such a polynomial, and so the same is true for W.
Now a well-known theorem due to Gauss states that if f and g are polynomials in any number of variables with rational coefficients such that the product fg has integral coefficients, then there exists a rational number $\mathbf{c} \neq 0$ such that both cf and $\mathrm{c}^{-1} \mathrm{~g}$ have integral coefficients. On applying this theorem to the two polynomials CU^{*} and $\mathrm{V}^{* *}$, we find that there are two rational numbers $\mu \neq 0$ and $\nu \neq 0$ such that

$$
\mathrm{U}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}-1}\right)=\mathrm{uU} *\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}-1}\right) \text { and } \mathrm{V}\left(\mathrm{x}_{\mathrm{m}}\right)=\mathrm{vV} * *\left(\mathrm{x}_{\mathrm{m}}\right)
$$

have integral coefficients, and that further

$$
W\left(x_{1}, \ldots, x_{m}\right)=U\left(x_{1}, \ldots, x_{m-1}\right) V\left(x_{m}\right) .
$$

The following result has thus been obtained.
Lemma 2: Let

$$
A\left(x_{1}, \ldots, x_{m}\right)=\sum_{i_{1}=0}^{r_{1}} \ldots \sum_{i_{m}=0}^{r_{m}} a_{i_{1}} \ldots i_{m} x_{1}^{i_{1}} \ldots x_{m}^{i_{m}} \text { 申 } 0
$$

be a polynomial with integral coefficients. There exist a positive integer n not greater than $\mathrm{rm}_{\mathrm{m}}+1$ and a system of n^{2} operators

$$
\Delta_{\mu \nu}=\frac{\partial^{j_{\mu 1}}+\ldots+j_{\mu \mathrm{m}-1}+\mathrm{j}_{\nu \mathrm{m}}}{\mathrm{j}_{\mu 1}!\ldots \mathrm{j}_{\mu \mathrm{m}-1}!\mathrm{j}_{\nu \mathrm{m}}!\partial \mathrm{x}_{1}^{j_{\mu}} \ldots \mathrm{x}_{\mathrm{m}-1} \mathrm{j}_{\mu \mathrm{m}-1} \partial_{\mathrm{m}}^{\mathrm{j}_{\nu \mathrm{m}}}}
$$

where $\mathrm{j}_{\mu 1}, \ldots, \mathrm{j}_{\mu \mathrm{m}-1}, \mathrm{j}_{\nu \mathrm{m}}$ are non-negative integers such that

$$
\mathrm{j}_{\mu 1}+\ldots+\mathrm{j}_{\mu \mathrm{m}-1} \leqslant \mu-1, \mathrm{j}_{\nu \mathrm{m}}=\nu-1 \quad(\mu, \nu=1,2, \ldots, \mathrm{n})
$$

and that the following properties hold. The determinant

$$
W\left(x_{1}, \ldots, x_{m}\right)=\left|\begin{array}{cccc}
\Delta_{11} A & \Delta_{12} A & \ldots & \Delta_{1 n} A \\
\Delta_{21} A & \Delta_{22} A & \ldots & \Delta_{2 n} A \\
\vdots & \vdots & & \vdots \\
\Delta_{n 1} A & \Delta_{n 2} A & \ldots & \Delta_{n n} A
\end{array}\right|
$$

does not vanish identically, is a polynomial with integral coefficients, and can be written as a product

$$
W\left(x_{1}, \ldots, x_{m}\right)=U\left(x_{1}, \ldots, x_{m-1}\right) V\left(x_{m}\right)
$$

where U and V are likewise polynomials with integral coefficients.
7. Majorants for U, V and W.

If

$$
A\left(x_{1}, \ldots, x_{m}\right)=\sum_{i_{1}=0}^{r_{1}} \ldots \sum_{i_{m}=0}^{r_{m}} a_{i_{1}} \ldots i_{m} x_{1}^{i_{1}} \ldots x_{m}^{i_{m}}
$$

and

$$
B\left(x_{1}, \ldots, x_{m}\right)=\sum_{i_{1}=0}^{r_{1}} \ldots \sum_{i_{m}=0}^{r_{m}} b_{i_{1}} \ldots i_{m} x_{1}^{i_{1}} \ldots x_{m}^{i_{m}}
$$

are two polynomials with real coefficients such that

$$
\left|a_{i_{1}} \ldots i_{m}\right| \leqslant b_{i_{1}} \ldots i_{m} \text { for all suffixes } i_{1}, \ldots, i_{m}
$$

then B is said to be a majorant or majoriser of A, and we write

$$
\mathrm{A} \ll \mathrm{~B}
$$

It is obvious that this relation has the following properties.
If $\mathrm{A} \ll \mathrm{B}$ and $\mathrm{B} \ll \mathrm{C}$, then $\mathrm{A} \ll \mathrm{C}$.
If $\mathrm{A} \ll \mathrm{B}$ and $\mathrm{C} \ll \mathrm{D}$, then $\mathrm{A} \mp \mathrm{C} \ll \mathrm{B}+\mathrm{D}$ and $\mathrm{AC} \ll \mathrm{BD}$.
If $\mathrm{A} \ll \mathrm{B}$, and c is any real number, then $\mathrm{cA} \ll|\mathrm{c}| \mathrm{B}$.
The relation $\mathrm{A} \ll \mathrm{B}$ may be differentiated arbitrarily often with respect to any of the variables.
We also use the notation,

$$
\begin{aligned}
|A|=\left|A\left(x_{1}, \ldots, x_{m}\right)\right|= & \max _{i_{1}=0,1, \ldots, r_{1}}\left|a_{i_{1} \ldots i_{m}}\right| \\
& \vdots \\
& i_{m}=0,1, \ldots, r_{m}
\end{aligned}
$$

and call A the height of A. This agrees with the definition of the height of a polynomial in a single variable given in Chapter 3.

We consider now again the polynomial

$$
A\left(x_{1}, \ldots, x_{m}\right)=\sum_{i_{1}=0}^{r_{1}} \ldots \sum_{i_{m}=0}^{r_{m}} a_{i_{1}} \ldots i_{m} x_{1}^{i_{1}} \ldots x_{m}^{i_{m}}
$$

of Lemma 2 and denote its height by

$$
\mathrm{a}=\mathrm{A} .
$$

By the binomial theorem,

$$
1+x+\ldots+x^{r} \ll(1+x)^{r}
$$

Hence A has the majorant

$$
\mathrm{A}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}\right) \ll \mathrm{a}\left(1+\mathrm{x}_{1}\right)^{\mathrm{r}_{1}} \ldots\left(1+\mathrm{x}_{\mathrm{m}}\right)^{\mathrm{rm}_{\mathrm{m}}}
$$

On differentiating this formula repeatedly, we find that

$$
A_{j_{1}} \ldots j_{m}\left(x_{1}, \ldots, x_{m}\right) \ll a\binom{r_{1}}{j_{1}} \cdots\binom{r_{m}}{j_{m}}\left(1+x_{1}\right)^{r_{1}-j_{1}} \ldots\left(1+x_{m}\right)^{r_{m}-j_{m}}
$$

Here

$$
\binom{r}{j} \leqslant \sum_{j=0}^{r}\binom{r}{j} \leqslant 2^{r} \text { and } \quad(1+\mathrm{x})^{r-j} \ll(1+x)^{r},
$$

so that

$$
A_{j_{1}} \ldots j_{m}\left(x_{1}, \ldots, x_{m}\right) \ll 2^{r_{1}+\ldots+r_{m}}{ }_{a\left(1+x_{1}\right)^{r_{1}} \ldots\left(1+x_{m}\right)^{r_{m}} .}
$$

In particular, it follows that

$$
\Delta_{\mu \nu} \mathrm{A} \ll 2^{\mathrm{r}_{1}+\ldots+\mathrm{r}_{\mathrm{m}}\left(1+\mathrm{x}_{1}\right)^{r_{1}} \ldots\left(1+\mathrm{x}_{\mathrm{m}}\right)^{\mathrm{r}_{\mathrm{m}}} \quad(\mu, \nu=1,2, \ldots, \mathrm{n})}
$$

Now, by its definition as a determinant,

$$
\mathrm{W}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}\right)=\sum \mp \Delta_{\mu_{1}} 1 \mathrm{~A} \Delta_{\mu_{\mathrm{R}}} 2 A . . . \Delta_{\mu_{\mathrm{n}}} \mathrm{~A}
$$

where the summation extends over all n ! systems of suffixes $\mu_{1}, \mu_{2}, \ldots, \mu_{\mathrm{n}}$ that are permutations of $1,2, \ldots, n$. Therefore, on replacing the factors $\Delta_{\mu \nu}$ A by their majorants,

$$
W\left(\dot{x}_{1}, \ldots, x_{m}\right) \ll n!\left\{2^{r_{1}+\ldots+r_{m}} a\left(1+x_{1}\right)^{r_{1}} \ldots\left(1+x_{m}\right)^{r_{m}}\right\}^{n}
$$

Since

$$
(1+x)^{n r}=\sum_{k=0}^{n r}\binom{n r}{k} x^{k} \ll 2^{n r}\left(1+x+\ldots+x^{n r}\right)
$$

this formula may be simplified to

$$
W\left(x_{1}, \ldots, x_{m}\right) \ll 2^{2 n\left(r_{1}+\ldots+r_{m}\right)} a_{n} n_{n}\left(1+x_{1}+\ldots+x_{1}^{n r_{1}}\right) \ldots\left(1+x_{m}+\ldots+x_{m}^{n r_{m}}\right)
$$

The majorant for W so obtained implies analogous majorants

$$
\begin{gathered}
U\left(x_{1}, \ldots, x_{m-1}\right) \ll 2^{2 n\left(r_{1}+\ldots+r_{m}\right)} a^{n_{n!}\left(1+x_{1}+\ldots+x_{1}^{n r_{1}}\right) \ldots\left(1+x_{m-1}+\ldots+x_{m-1}^{n r_{m-1}}\right),} \\
V\left(x_{m}\right) \ll 2^{2 n\left(r_{1}+\ldots+r_{m}\right)} a^{n} n!\left(1+x_{m}+\ldots+x_{m}^{n r_{m}}\right)
\end{gathered}
$$

for U and V. For, by construction, W=UV where U depends only on the variables x_{1}, \ldots, x_{m-1} and V only on the remaining variable x_{m}; furthermore, all these polynomials have integral coefficients. Thus the product of any coefficient of U with any coefficient of V is a coefficient of W. Since the non-vanishing coefficients have at least the absolute value 1, it follows that

$$
\max (|\vec{U}|,|\nabla|) \leqslant \mid W
$$

whence the asserted majorants for U and V. In this way the following result has been proved.

Lemma 3: Let A, U, V, W, and n be as in Lemma 2, and let

$$
\alpha=\left.2^{2 n\left(r_{1}+\ldots+r_{m}\right)_{n!}}\right|_{A} ^{n} ; \rho_{1}=n r_{1}, \ldots, \rho_{m-1}=n r_{m-1}, \rho_{m}=n r_{m}
$$

Then

$$
\max (\sqrt{U},|\sqrt{V},||W|) \leqslant \alpha,
$$

and the degrees of U in $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}} 1$ do not exceed $\rho_{1}, \ldots, \rho_{\mathrm{m}}-1$, the degree of V in x_{m} does not exceed ρ_{m}, and the degrees of W in $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}$ do not exceed $\rho_{1}, \ldots, \rho_{\mathrm{m}}$, respectively.

8. The index of a polynomial.

For any $m \geqslant 1$, let

$$
\kappa_{1}=\frac{P_{1}}{Q_{1}}, \ldots, \kappa_{m}=\frac{P_{m}}{Q_{m}}
$$

be m rational numbers written in their reduced forms so that

$$
\left(P_{1}, Q_{1}\right)=\ldots=\left(P_{m}, Q_{m}\right)=1
$$

The positive integers

$$
H_{1}=\max \left(\left|P_{1}\right|,\left|Q_{1}\right|\right), \ldots, H_{m}=\max \left(\left|P_{m}\right|,\left|Q_{m}\right|\right)
$$

are then called the heights of $\kappa_{1}, \ldots, \kappa_{m}$, respectively. Let further $\rho_{1}, \ldots, \rho_{\mathrm{m}}$ be m arbitrary positive numbers, and let again

$$
A\left(x_{1}, \ldots, x_{m}\right)=\sum_{i_{1}=0}^{r_{1}} \ldots \sum_{i_{m}=0}^{r_{m}} a_{i_{1}} \ldots i_{m} x_{1}^{i_{1}} \ldots x_{m}^{i_{m}} \neq 0
$$

be a polynomial in x_{1}, \ldots, x_{m} with integral coefficients which is not identically zero. Hence the derivatives

$$
A_{j_{1}} \ldots j_{m}\left(x_{1}, \ldots, x_{m}\right)=\frac{\partial^{j_{1}+\ldots+j_{m}} A\left(x_{1}, \ldots, x_{m}\right)}{j_{1}!\ldots j_{m}!\partial x_{1}^{j_{1}} \ldots \partial x_{m}^{j_{m}}}
$$

cannot all vanish at the point $\mathrm{x}_{1}=\kappa_{1}, \ldots, \mathrm{x}_{\mathrm{m}}=\kappa_{\mathrm{m}}$. Denote by

$$
J(A)=J\left(A ; \rho_{1}, \ldots, \rho_{m} ; \kappa_{1}, \ldots, \kappa_{m}\right)
$$

the smallest value of

$$
\frac{\mathbf{j}_{\mathrm{l}}}{\rho_{\mathrm{l}}}+\ldots+\frac{\mathrm{jm}}{\rho_{\mathrm{m}}}
$$

for all systems of suffixes $\mathbf{j}_{1}, \ldots, \mathrm{j}_{\mathrm{m}}$ for which

$$
\mathrm{A}_{\mathrm{j}_{1} \ldots \mathrm{j}_{\mathrm{m}}}\left(\kappa_{1}, \ldots, \kappa_{\mathrm{m}}\right) \neq 0
$$

and put $J(A)=\infty$ in the excluded case of the polynomial $A \equiv 0$. The function $\mathrm{J}(\mathrm{A})$ of A so defined is called the index of A at the point ($\kappa_{1}, \ldots, \kappa_{\mathrm{m}}$) relative to $\rho_{1}, \ldots, \rho_{\mathrm{m}}$.

This index may also be obtained as follows. By Taylor's formula,

$$
\mathrm{A}\left(\kappa_{1}+\mathrm{x}^{\frac{1}{\rho_{1}}} \mathrm{x}_{1}, \ldots, \kappa_{\mathrm{m}}+\mathrm{x}^{\frac{1}{\rho_{\mathrm{m}}^{\mathrm{x}}}}{ }_{\mathrm{x}}\right)=
$$

$$
=\sum_{j_{1}=0}^{r_{1}} \ldots \sum_{j m=0}^{r_{m}} A_{j_{1}} \ldots j_{m}\left(\kappa_{1}, \ldots, \kappa_{m}\right) x^{\frac{j_{1}}{\rho_{1}}+\ldots+\frac{j_{m}}{\rho_{m_{1}}} j_{1}} \ldots x_{m}{ }^{j_{m}}
$$

where x is a further variable. Hence $J(A)$, for $A \neq 0$, is the exponent of the lowest power of x in this development with a non-zero factor

$$
A_{j_{1} \ldots j_{m}}\left(\kappa_{1}, \ldots, \kappa_{m}\right) x_{1}^{j_{1}} \ldots x_{m}^{j_{m}}
$$

From this, it follows at once that if $B\left(x_{1}, \ldots, x_{m}\right)$ is a second polynomial of the same kind, then
(A):

$$
\begin{gathered}
J(A \mp B) \geqslant \min \{J(A), J(B)\}, \\
J(A B)=J(A)+J(B),
\end{gathered}
$$

(B):
where the indices are taken at ($\kappa_{1}, \ldots, \kappa_{\mathrm{m}}$) relative to $\rho_{1}, \ldots, \rho_{\mathrm{m}}$. It is further obvious that

$$
\text { either } J(A) \geqslant 0 \text { or } J(A)=\infty \text {, }
$$

and that ${ }^{2}$

$$
J(A)=0 \text { if and only if } A\left(\kappa_{1}, \ldots, \kappa_{m}\right) \neq 0
$$

We need one further simple property of the index. Let l_{1}, \ldots, l_{m} be arbitrary non-negative integers, and let

$$
B\left(x_{1}, \ldots, x_{m}\right)=A_{1_{1}} \ldots l_{m}\left(x_{1}, \ldots, x_{m}\right)
$$

Evidently

$$
B_{j_{1}, \ldots j_{m}}\left(\kappa_{1}, \ldots, \kappa_{m}\right)=\binom{j_{1}^{*}}{j_{1}} \ldots\binom{j_{\mathrm{m}}^{*}}{\mathrm{j}_{\mathrm{m}}} A_{\mathrm{j}_{1}^{*} \ldots j_{\mathrm{m}}^{*}}\left(\kappa_{1}, \ldots, \kappa_{\mathrm{m}}\right)
$$

where

$$
j_{1}^{*}=j_{1}+l_{1}, \ldots, j_{m}^{*}=j_{m}+l_{m} \text { and therefore } \sum_{h=1}^{m} \frac{j_{h}}{\rho_{h}}=\sum_{h=1}^{m} \frac{j_{h}^{*}}{\rho_{h}}-\sum_{h=1}^{m} \frac{l_{h}}{\rho_{h}} .
$$

Since the index cannot be negative, we obtain then the inequality

$$
\begin{equation*}
J\left(A_{1_{1}} \cdots l_{m}\right) \geqslant \max \left(0, J(A)-\sum_{h=1}^{m} \frac{l_{h}}{\rho_{h}}\right) \tag{C}
\end{equation*}
$$

From now on the index $J(A)$ will nearly always be taken relative to r_{1}, \ldots, r_{m}.
2. Put $w(A)=e^{-J(A)}$ if A 丰 0 , and $W(0)=0$. The properties of $J(A)$ just stated show that $w(A)$ is a non-archimedean valuation on the ring of polynomials.
9. The upper bound $\Theta_{m}\left(a ; H_{1}, \ldots, H_{m} ; r_{1}, \ldots, r_{m}\right)$

If H_{1}, \ldots, H_{m} are m positive integers, we denote by $Q\left(H_{1}, \ldots, H_{m}\right)$ the set of all systems of m rational numbers

$$
\kappa_{1}=\frac{P_{1}}{Q_{1}}, \ldots, \kappa_{m}=\frac{P_{m}}{Q_{m}}
$$

written in their simplified forms,

$$
\left(P_{1}, Q_{1}\right)=\left(P_{2}, Q_{2}\right)=\ldots=\left(P_{m}, Q_{m}\right)=1,
$$

of heights

$$
H_{h}=\max \left(\left|P_{h}\right|,\left|Q_{h}\right|\right) \quad(h=1,2, \ldots, m)
$$

If further $a \geqslant 1$ is a real number and r_{1}, \ldots, r_{m} are positive integers, we denote by $R\left(a ; r_{1}, \ldots, r_{m}\right)$ the set of all polynomials

$$
A\left(x_{1}, \ldots, x_{m}\right)=\sum_{i_{1}=0}^{r_{1}} \ldots \sum_{i_{m}=0}^{r_{m}} a_{i_{1}} \ldots i_{m} x_{1}^{i_{1}} \ldots x_{m}^{i_{m}} \neq 0
$$

with integral coefficients which are of height

$$
\mid \mathrm{A} \leqslant a .
$$

Roth's lemma deals with a number $\boldsymbol{\theta}_{\mathrm{m}}$ defined as follows.
Définition: Let $\mathrm{a} \geqslant 1$, and let $\mathrm{r}_{1}, \ldots, \mathrm{r}_{\mathrm{m}}, \mathrm{H}_{1}, \ldots, \mathrm{H}_{\mathrm{m}}$ be 2 m positive integers. The symbol

$$
\Theta_{\mathrm{m}}=\Theta_{\mathrm{m}}\left(\mathrm{a} ; \mathrm{r}_{1}, \ldots, \mathrm{r}_{\mathrm{m}} ; \mathrm{H}_{1}, \ldots, \mathrm{H}_{\mathrm{m}}\right)
$$

denotes the least upper bound of $\mathrm{J}\left(\mathrm{A} ; \mathbf{r}_{1}, \ldots, \mathrm{r}_{\mathrm{m}} ; \kappa_{1}, \ldots, \kappa_{\mathrm{m}}\right)$ extended over all polynomials $\mathrm{A} \in \mathrm{R}\left(\mathrm{A} ; \mathrm{r}_{1}, \ldots, \mathrm{r}_{\mathrm{m}}\right)$ and over all systems of m rational numbers $\left(\kappa_{1}, \ldots, \kappa_{m}\right) \in Q\left(H_{1}, \ldots, H_{m}\right)$.
Several simple properties of Θ_{m} follow at once from this definition. First, both sets $R\left(a ; r_{1}, \ldots, r_{m}\right)$ and $Q\left(H_{1}, \ldots, H_{m}\right)$ are finite. Hence the least upper bound in the definition of Θ_{m} is attained, and there exist a polynomial $\mathrm{A} \in \mathrm{R}$ and a set of fractions $\left(\kappa_{1}, \ldots, \kappa_{\mathrm{m}}\right.$) eQ such that

$$
\Theta_{m}\left(a ; r_{1} \ldots, r_{m} ; H_{1}, \ldots, H_{m}\right)=J\left(A ; r_{1}, \ldots, r_{m} ; \kappa_{1}, \ldots, \kappa_{m}\right) .
$$

Secondly, the set $R\left(a ; r_{1}, \ldots, r_{m}\right)$ does not lose elements when a increases; hence Θ_{m} is a non-decreasing function of a. Third, as we are considering now indices relative to $r_{1}, \ldots, r_{m}, J(A)$ is equal to a sum

$$
\sum_{h=1}^{m} \frac{j_{h}}{r_{h}} \text { where } 0 \leqslant j_{1} \leqslant r_{1}, \ldots, 0 \leqslant j_{m} \leqslant r_{m}
$$

and it follows at once that $0 \leqslant J(A) \leqslant m$ and hence that

$$
0 \leqslant \theta_{m} \leqslant m .
$$

10. An upper bound for $\Theta_{1}(a ; r ; H)$.

We begin with the study of $\boldsymbol{\Theta}_{1}$. Let

$$
A(x)=\sum_{i=0}^{r} a_{i} x^{i} \neq 0
$$

be a polynomial in one variable, with integral coefficients such that

$$
|\mathbf{A}|=\max \left(\left|a_{0}\right|,\left|a_{1}\right|, \ldots,\left|a_{r}\right|\right) \leqslant a .
$$

Let the rational number $\kappa=\frac{P}{Q}$ be written in its simplest form, thus $(P, Q)=1$, and assume that

$$
\mathbf{H}=\max (|\mathbf{P}|,|\mathbf{Q}|) \geqslant 2 .
$$

Hence $\kappa \neq 0$ and $P \neq 0, Q \neq 0$.
Suppose $J(A ; r ; \kappa)>0$. Then κ is a zero of $A(x)$, say of the exact order $\mathbf{j}>0$, and $A(x)$ is divisible by ($x-\kappa$) \mathbf{j}. By Gauss's lemma from 86, $A(x)$ can then be written as

$$
A(x)=(Q x-P)^{j_{B}}(x)
$$

where $B(x)$ is a certain polynomial with integral coefficients. Hence the lowest and the highest non-zero coefficients of $A(x)$ are divisible by P^{j} and Q^{j}, respectively. It follows that

$$
H^{j} \leqslant A \leqslant a
$$

hence that

$$
J(A ; r ; \kappa)=\frac{j}{r} \leqslant \frac{\log a}{r \log H},
$$

a result valid also when $J(A ; r ; \kappa)=0$. Therefore always

$$
\begin{equation*}
\Theta_{1}(a ; r ; H) \leqslant \frac{\log a}{r \log H} \text { if } H \geqslant 2 . \tag{1}
\end{equation*}
$$

11. The property Γ_{M} -

The induction proof of Roth's lemma in the next sections becomes simpler if the following notation is used.

Denote by t a constant such that

$$
0<t \leqslant 1
$$

If $b \geqslant 1$ is a real number, and $s_{1}, \ldots, s_{M}, K_{1}, \ldots, K_{M}$ are positive integers, the ordered system of numbers

$$
b, s_{1}, \ldots, s_{M}, K_{1}, \ldots, K_{M}
$$

is said to have the property Γ_{M} if either, (i)

$$
M=1, K_{1} \geqslant 2, b \leqslant K_{1}{ }^{s_{1} t} ;
$$

or, (ii), simultaneously $\mathrm{M} \geqslant 2$ and

$$
\begin{aligned}
& \max \left(\frac{s_{2}}{s_{1}}, \frac{s_{3}}{s_{2}}, \ldots, \frac{s_{M}}{s_{M}-1}\right) \leqslant t ; \\
& s_{h} \log K_{h} \geqslant s_{1} \log K_{1} \\
& K_{1} \geqslant 2^{\frac{1}{t}}(M-1) M(2 M+1) \\
& \quad b \leqslant K_{1}{ }^{\frac{1}{M}} s_{1} t
\end{aligned}
$$

Therefore the following inequalities also hold,

$$
s_{1} \geqslant s_{2} \geqslant \ldots \geqslant s_{M} ; \sum_{h=1}^{M} s_{h} \leqslant M s_{1} ; K_{1} \geqslant 2, K_{2} \geqslant 2, \ldots, K_{M} \geqslant 2 .
$$

By way of application, let $m \geqslant 2$; let the ordered system of numbers

$$
a, r_{1}, \ldots, r_{m}, H_{1}, \ldots, H_{m}
$$

have the property Γ_{m}; let n be an integer such that

$$
1 \leqslant n \leqslant r_{m}+1 ;
$$

and let

$$
b=2^{2 n\left(r_{1}+\ldots+r_{m}\right)} n \mid a^{n} ; \rho_{1}=n r_{1}, \rho_{2}=n r_{2}, \ldots, \rho_{m-1}=n r_{m-1}
$$

Then the new ordered system of numbers

$$
\mathrm{b}, \rho_{1}, \ldots, \rho_{\mathrm{m}-1}, \mathrm{H}_{1}, \ldots, \mathrm{H}_{\mathrm{m}-1}
$$

has the property $\Gamma_{\mathrm{m}}-1$.
Proof: The first inequalities

$$
\begin{aligned}
& \max \left(\frac{\rho_{2}}{\rho_{1}}, \frac{\rho_{3}}{\rho_{2}}, \ldots, \frac{\rho_{\mathrm{m}}-1}{\rho_{\mathrm{m}}-2}\right) \leqslant \mathrm{t}, \\
& \rho_{\mathrm{h}} \log H_{\mathrm{h}} \geqslant \rho_{1} \log H_{1} \quad(\mathrm{~h}=1,2, \ldots, \mathrm{~m}-1)
\end{aligned}
$$

are for $\mathrm{m} \geqslant 3$ immediate consequences of the assumption that

$$
\begin{aligned}
& \max \left(\frac{r_{2}}{r_{1}}, \frac{r_{3}}{r_{2}}, \ldots, \frac{r_{m}}{r_{m-1}}\right) \leqslant t ; \\
& r_{h} \log H_{h} \geqslant r_{1} \log H_{1} \quad(h=1,2, \ldots, m) .
\end{aligned}
$$

Next, by hypothesis,

$$
H_{1} \geqslant 2^{\frac{1}{\mathrm{t}}(m-1) \mathrm{m}(2 \mathrm{~m}+1)},
$$

whence, trivially, also

$$
\mathrm{H}_{\mathrm{L}} \geqslant 2^{\frac{1}{\mathrm{t}}(\mathrm{~m}-2)(\mathrm{m}-1)(2 \mathrm{~m}-1)} .
$$

Finally,

$$
n \leqslant r_{m}+1 \leqslant r_{1}+1 \leqslant 2^{r_{1}} \text {, hence } n!\leqslant n^{n} \leqslant 2^{n r_{1}}=2^{\rho_{1}}
$$

and, by assumption,

$$
a \leqslant H_{1} \frac{\frac{1}{m}}{} r_{1} t, \quad r_{1}+r_{2}+\cdots+r_{m} \leqslant m r_{1}
$$

Therefore,

$$
b \leqslant 2^{2 n \cdot m r_{1}} \cdot 2^{\rho_{1}} \cdot a^{n} \leqslant 2^{(2 m+1) \rho_{1}} H_{1}^{\frac{1}{m} \rho_{1} t} \leqslant H_{1}^{\frac{1}{m-1} \rho_{1} t},
$$

because
12. A recursive inequality for θ_{m}. I.

Let again t be a constant such that

$$
0<t \leqslant 1 .
$$

We assume that $m \geqslant 2$ and that the ordered system of numbers

$$
a, r_{1}, \ldots, r_{m}, H_{1}, \ldots, H_{m}
$$

has the property Γ_{m}.
It was shown in 89 that there exist a polynomial

$$
A\left(x_{1}, \ldots, x_{m}\right) \in R\left(a ; r_{1}, \ldots, r_{m}\right)
$$

and a set of fractions

$$
\left(\kappa_{1}, \ldots, \kappa_{\mathrm{m}}\right) \in \mathbf{Q}\left(\mathrm{H}_{1}, \ldots, \mathrm{H}_{\mathrm{m}}\right)
$$

such that

$$
\Theta_{m}\left(a ; r_{1}, \ldots, r_{m} ; H_{1}, \ldots, H_{m}\right)=J\left(A ; r_{1}, \ldots, r_{m} ; \kappa_{1}, \ldots, \kappa_{m}\right) .
$$

Denote by n the integer with $1 \leqslant n \leqslant r_{m}+1$, and by $U\left(x_{1}, \ldots, x_{m}-1\right), V\left(x_{m}\right)$, and $W\left(x_{1}, \ldots, x_{m}\right)$ the three polynomials that correspond to A by Lemmas 2 and 3 , and put again

$$
b=2^{2 n\left(r_{1}+\ldots+r_{m}\right)} n!a^{n} ; \rho_{1}=n r_{1}, \ldots, \rho_{m-1}=n r_{m-1}, \rho_{m}=n r_{m}
$$

As has just been proved, the ordered system of numbers

$$
\mathrm{b}, \rho_{1}, \ldots, \rho_{\mathrm{m}-1}, \mathrm{H}_{1}, \ldots, \mathrm{H}_{\mathrm{m}-1}
$$

has then the property $\Gamma_{\mathrm{m}}-1$.
From the construction and from Lemma 3,

$$
|\mathrm{A}| \leqslant a ; \quad|\mathrm{U}| \leqslant \alpha, \quad|\mathrm{V}| \leqslant \alpha, \quad \mid \sqrt{W} \leqslant \alpha
$$

where

$$
\alpha=2^{2 n\left(r_{1}+\cdots+r_{m}\right)} n!\quad A^{n} \leqslant b
$$

Therefore the upper bounds for the degrees of U, V, and W imply that

$$
\begin{gathered}
\mathrm{U}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}-1\right) \in \mathrm{R}\left(\mathrm{~b} ; \rho_{1}, \ldots, \rho_{\mathrm{m}}-1\right), \mathrm{V}\left(\mathrm{x}_{\mathrm{m}}\right) \in \mathrm{R}\left(\mathrm{~b} ; \rho_{\mathrm{m}}\right), \\
\mathrm{W}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}\right) \in \mathrm{R}\left(\mathrm{~b} ; \rho_{1}, \ldots, \rho_{\mathrm{m}}\right) .
\end{gathered}
$$

Hence, in particular, with the same fractions $\kappa_{1}, \ldots, \kappa_{\mathrm{m}-1}, \kappa_{\mathrm{m}}$ as above,

$$
\begin{aligned}
J\left(\mathrm{U} ; \rho_{1}, \ldots, \rho_{\mathrm{m}-1} ; \kappa_{1}, \ldots, \kappa_{\mathrm{m}-1}\right) & \leqslant \Theta_{\mathrm{m}-1}\left(\mathrm{~b} ; \rho_{1}, \ldots, \rho_{\mathrm{m}-1} ; \mathrm{H}_{1}, \ldots, \mathrm{H}_{\mathrm{m}-1}\right) \\
\mathrm{J}\left(\mathrm{~V} ; \rho_{\mathrm{m}} ; \kappa_{\mathrm{m}}\right) & \leqslant \Theta_{1}\left(\mathrm{~b} ; \rho_{\mathrm{m}} ; \mathrm{H}_{\mathrm{m}}\right) .
\end{aligned}
$$

From the identity

$$
W\left(x_{1}, \ldots, x_{m}\right)=U\left(x_{1}, \ldots, x_{m-1}\right) V\left(x_{m}\right)
$$

and from the multiplicative property (B) of the index, it follows that

$$
J\left(W ; \rho_{1}, \ldots, \rho_{\mathrm{m}} ; 1, \ldots, \kappa_{\mathrm{m}}\right)=J\left(\mathrm{U} ; \rho_{1}, \ldots, \rho_{\mathrm{m}}-1 ; \kappa_{1}, \ldots, \kappa_{\mathrm{m}}-1\right)+J\left(V ; \rho_{\mathrm{m}} ; \kappa_{\mathrm{m}}\right)
$$

or

$$
J\left(W ; \rho_{1}, \ldots, \rho_{\mathrm{m}} ; \kappa_{1}, \ldots, \kappa_{\mathrm{m}}\right) \leqslant \Phi_{\mathrm{m}}
$$

where, for shortness,

$$
\Phi_{m}=\Theta_{m-1}\left(\mathrm{~b} ; \rho_{1}, \ldots, \rho_{\mathrm{m}}-1 ; \mathrm{H}_{1}, \ldots, \mathrm{H}_{\mathrm{m}}-1\right)+\Theta_{1}\left(\mathrm{~b} ; \rho_{\mathrm{m}} ; \mathrm{H}_{\mathrm{m}}\right) .
$$

Instead, we may also write

$$
J\left(W ; r_{1}, \ldots, r_{m} ; \kappa_{1}, \ldots, \kappa_{m}\right) \leqslant n \Phi_{m}
$$

because $\rho_{\mathrm{h}}=\mathrm{nr}_{\mathrm{h}}$ for all h , and so, by the definition of the index,

$$
J\left(W ; r_{1}, \ldots, r_{m} ; \kappa_{1}, \ldots, \kappa_{m}\right)=n J\left(W ; \rho_{1}, \ldots, \rho_{m} ; \kappa_{1}, \ldots, \kappa_{m}\right) .
$$

Since from now on only indices of polynomials at the fixed point ($\kappa_{1}, \ldots, \kappa_{m}$) relative to the fixed integers r_{1}, \ldots, r_{m} will occur, we shall write for these indices simply $J(W), J(A)$, etc.
13. A recursive inequality for Θ_{m}. II.

In the inequality

$$
J(W) \leqslant n \Phi_{m}
$$

just proved, we can give a lower bound for $J(W)$ in terms of $J(A)$.
For, as in 87,

$$
W\left(x_{1}, \ldots, x_{m}\right)=\sum \mp \Delta_{\mu_{1} 1} A \Delta_{\mu_{2}} A . . . \Delta_{\mu_{n^{n}}} A
$$

where the systems of suffixes $\mu_{1}, \ldots, \mu_{\mathrm{n}}$ run over all n ! permutations of $1,2, \ldots, \mathrm{n}$, while the operators $\Delta_{\mu \nu}$ are of the form

$$
\Delta_{\mu \nu}=\frac{\partial^{j_{\mu} 1+\ldots+j_{\mu m}-1+j_{\nu m}}}{\mathbf{j}_{\mu 1}!\ldots j_{\mu m-1}!j_{\nu m}!\partial x_{1} j_{\mu 1} \ldots \partial x_{m-1}{ }_{\mu m-1} \partial x_{m}{ }^{j_{\nu m}}}
$$

and the j 's are non-negative integers such that

$$
\mathrm{j}_{\mu 1}+\ldots+\mathrm{j}_{\mu \mathrm{m}-1} \leqslant \mu-1, \quad \mathrm{j}_{\nu \mathrm{m}}=\nu-1 \quad(\mu, \nu=1,2, \ldots, \mathrm{n})
$$

Therefore

$$
\Delta_{\mu \nu} A=A_{j_{\mu 1} \cdots j_{\mu \mathrm{m}-1} \mathbf{j}_{\nu \mathrm{m}}}
$$

so that property (C) of the index implies the inequality

$$
J\left(\Delta_{\mu \nu} A\right) \geqslant \max \left(0, J(A)-\sum_{h=1}^{m-1} \frac{j_{\mu h}}{r_{h}}-\frac{\mathbf{j}_{\nu m}}{r_{m}}\right)
$$

But

$$
r_{1} \geqslant r_{2} \geqslant \ldots \geqslant r_{m-1} \geqslant r_{m} ; \mu-1 \leqslant n-1 \leqslant r_{m} \leqslant t r_{m-1}
$$

and so

$$
\begin{aligned}
J\left(\Delta_{\mu \nu} A\right) & \geqslant \max \left(0, J(A)-\frac{1}{r_{m-1}} \sum_{h=1}^{m-1} j_{\mu h}-\frac{j \nu \mathrm{~m}}{r_{m}}\right) \geqslant \\
& \geqslant \max \left(0, J(A)-\frac{\mu-1}{r_{m-1}}-\frac{\nu-1}{r_{m}}\right) \geqslant \max \left(0, J(A)-t-\frac{\nu-1}{r_{m}}\right)
\end{aligned}
$$

Therefore, finally, by the properties (A) and (B) of the index,

$$
J(W) \geqslant \sum_{\nu=1}^{n} \max \left(0, J(A)-t-\frac{\nu-1}{r_{m}}\right)
$$

This inequality can be simplified. For shortness put

$$
N=[\{J(A)-t\} r m]+1,
$$

where $[\mathrm{x}$] denotes as usual the integral part of x . Hence

$$
N-1 \leqslant\{J(A)-t\} r_{m}<N
$$

We shall now distinguish the two cases $n \leqslant N$ and $n>N$.
The case $\mathrm{n} \leqslant \mathrm{N}$. Evidently

$$
\mathrm{n}-1 \leqslant \mathrm{~N}-1 \leqslant\{J(A)-t\} r_{\mathrm{m}}
$$

and hence

$$
\frac{\nu-1}{\mathrm{r}_{\mathrm{m}}} \leqslant \frac{\mathrm{n}-1}{\mathrm{r}_{\mathrm{m}}} \leqslant \mathrm{~J}(\mathrm{~A})-\mathrm{t} \quad(\nu=1,2, \ldots, \mathrm{n})
$$

Therefore

$$
\begin{aligned}
J(W) & \geqslant \sum_{\nu=1}^{n}\left\{J(A)-t-\frac{\nu-1}{r_{m}}\right\}=n\{J(A)-t\}-\frac{n(n-1)}{2 r_{m}} \geqslant \\
& \geqslant n\{J(A)-t\}-\frac{n}{2}\{J(A)-t\}=\frac{n_{n}}{2}\{J(A)-t\}
\end{aligned}
$$

whence
(1):

$$
J(A) \leqslant t+\frac{2}{n} J(W) \quad \text { if } n \leqslant N
$$

The case $\mathrm{n}>\mathrm{N}$. Assume, for the moment, that

$$
J(A) \geqslant t \text { and thus } N \geqslant 1
$$

Then

$$
\max \left(0, J(A)-t-\frac{\nu-1}{r_{m}}\right)=\left\{\begin{array}{cl}
J(A)-t-\frac{\nu-1}{r_{m}} & \text { if } 1 \leqslant \nu \leqslant N \\
0 & \text { if } N+1 \leqslant \nu \leqslant n
\end{array}\right.
$$

and it follows that

$$
\begin{aligned}
J(W) & \geqslant \sum_{\nu=1}^{N}\left\{J(A)-t-\frac{\nu-1}{r_{m}}\right\}=N\{J(A)-t\}-\frac{N(N-1)}{2 r_{m}} \geqslant \\
& \geqslant N\{J(A)-t\}-\frac{N}{2}\{J(A)-t\}=\frac{N}{2}\{J(A)-t\}>\frac{r_{m}}{2}\{J(A)-t\}^{2}
\end{aligned}
$$

On solving this inequality for $J(A)$, we find that

$$
\begin{equation*}
J(A) \leqslant t+\sqrt{\frac{2}{r_{m}} J(W)} \leqslant t+2 \sqrt{\frac{1}{n} J(W)} \text { if } \quad n>N \tag{2}
\end{equation*}
$$

because

$$
\mathrm{n} \leqslant \mathrm{rm}_{\mathrm{m}}+1, \frac{r_{m}}{2} \geqslant \frac{r_{m}}{r_{m+1}} \cdot \frac{\mathrm{n}}{2} \geqslant \frac{1}{2} \cdot \frac{n}{2}=\frac{n}{4} .
$$

In the case $J(A)<t$ so far excluded this estimate is still valid.
The two inequalities (1) and (2) show that in both cases $n \leqslant N$ and $n>N$ the same estimate

$$
J(A) \leqslant t+2 \max \left(\frac{1}{n} J(W), \sqrt{\frac{1}{n} J(W)}\right)
$$

holds. Since $J(W) \leqslant n \Phi_{m}$, it follows that always

$$
J(A) \leqslant t+2 \max \left(\Phi_{m}, \sqrt{\Phi_{m}}\right) .
$$

In this inequality, A was chosen such that

$$
J(A)=J\left(A ; r_{1}, \ldots, r_{m} ; \kappa_{1}, \ldots, \kappa_{m}\right)=\Theta_{m}\left(a ; r_{1}, \ldots, r_{m} ; H_{1}, \ldots, H_{m}\right)
$$

and Φ_{m} had the value

$$
\Phi_{m}=\Theta_{m-1}\left(b ; \rho_{1}, \ldots, \rho_{m-1} ; H_{1}, \ldots, H_{m-1}\right)+\Theta_{1}\left(b ; \rho_{m} ; H_{m}\right) .
$$

We apply now the inequality (Θ_{1}) of 810 which shows that

$$
\Theta_{1}\left(\mathrm{~b} ; \rho_{\mathrm{m}} ; \mathrm{H}_{\mathrm{m}}\right) \leqslant \frac{\log \mathrm{b}}{\rho_{\mathrm{m}} \log \mathrm{H}_{\mathrm{m}}} .
$$

By definition, $\rho_{1}=n r_{1}$ and $\rho_{m}=n r_{m}$, and also
$r_{m} \log H_{m} \geqslant r_{1} \log H_{1}$, hence $\rho_{m} \log H_{m} \geqslant \rho_{1} \log H_{1}$.
It was further shown in $\$ 11$ that

$$
b \leqslant H_{1} \frac{1}{m^{-1}} \rho_{1} t
$$

Therefore

$$
\Theta_{1}\left(b ; \rho_{\mathrm{m}} ; \mathrm{H}_{\mathrm{m}}\right) \leqslant \frac{\log \mathrm{b}}{\rho_{1} \log \mathrm{H}_{1}} \leqslant \frac{\mathrm{t}}{\mathrm{~m}-1} \leqslant \mathrm{t}
$$

because $m \geqslant 2$.
The long proof of the last sections has thus lead to the following recursive inequality.

Lemma 4: Let $m \geqslant 2$, and let

$$
a ; r_{1}, \ldots, r_{m} ; H_{1}, \ldots, H_{m}
$$

be any ordered system of numbers with the property Γ_{m}. Then there exists an ordered system of numbers

$$
\mathrm{b} ; \rho_{1}, \ldots, \rho_{\mathrm{m}}-1 ; \mathrm{H}_{1}, \ldots, \mathrm{Hm}_{\mathrm{m}}-1
$$

with the property $\Gamma_{\mathrm{m}-1}$ such that

$$
\Theta_{m}\left(a ; r_{1}, \ldots, r_{m} ; H_{1}, \ldots, H_{m}\right) \leqslant t+2 \max \left(\Psi_{m}, \sqrt{\Psi_{m}}\right)
$$

where

$$
\Psi_{\mathrm{m}}=\Theta_{\mathrm{m}-1}\left(\mathrm{~b} ; \rho_{1}, \ldots, \rho_{\mathrm{m}}-1 ; \mathrm{H}_{1}, \ldots, \mathrm{H}_{\mathrm{m}-1}\right)+\mathrm{t} .
$$

14. Proof of Roth's Lemma.

It is now easy to prove
Roth's Lemma: Put $\mathrm{c}_{\mathrm{m}}=2^{\mathrm{m}+1}-3$. If the ordered system of numbers

$$
a, r_{1}, \ldots, r_{m}, H_{1}, \ldots, H_{m}
$$

has the property Γ_{m}, then

$$
\Theta_{m}\left(a ; r_{1}, \ldots, r_{m} ; H_{1}, \ldots, H_{m}\right) \leqslant c_{m} t^{2^{-(m-1)}}
$$

Proof: We procede by induction for m. First let $m=1$, hence $H_{1} \geqslant 2$ and $a \leqslant H_{1} r_{1} t$. The estimate (Θ_{1}) of $\S 10$ implies then that

$$
\Theta_{1}\left(a ; r_{1} ; H_{1}\right) \leqslant \frac{\log a}{r_{1} \log H_{1}} \leqslant t=c_{1} t
$$

as asserted. Secondly assume that $m \geqslant 2$, and that the assertion has already been proved for all ordered systems of numbers

$$
\mathrm{b}, \rho_{1}, \ldots, \rho_{\mathrm{m}-1}, \mathrm{H}_{1}, \ldots, \mathrm{H}_{\mathrm{m}-1}
$$

with the property $\Gamma_{m-1 ;}$ it suffices to prove that it then is true also for all ordered systems of numbers

$$
a, r_{1}, \ldots, r_{m}, H_{1}, \ldots, H_{m}
$$

with the property Γ_{m}. By this induction hypothesis, the expression Ψ_{m} in Lemma 4 satisfies the inequality

$$
\Psi_{m}=\Theta_{m-1}\left(b ; \rho_{1}, \ldots, \rho_{m-1} ; H_{1}, \ldots, H_{m-1}\right)+t \leqslant c_{m-1 t^{2}}{ }^{-(m-2)}+t
$$

and therefore Lemma 4 implies that

$$
\Theta_{m}\left(a ; r_{1}, \ldots, r_{m} ; H_{1}, \ldots, H_{m}\right) \leqslant t+2 \max \left(c_{m-1} t^{2^{-(m-2)}}+t, \sqrt{c_{m-1} t^{2^{-(m-2)}}+t}\right)
$$

Now $0<t \leqslant 1$ and $c_{m-1} \geqslant 1$. The expression

$$
\mathrm{t}+2 \max \left(\mathrm{c}_{\mathrm{m}-1} \mathrm{t}^{2^{-(\mathrm{m}-2)}}+\mathrm{t}, \sqrt{\mathrm{c}_{\mathrm{m}-1^{t^{2}}} \mathrm{~m}^{-(\mathrm{m}-2)}+\mathrm{t}}\right)
$$

of this inequality is therefore certainly not larger than

$$
\begin{aligned}
& \mathrm{t}^{2^{-(m-1)}}+2 \max \left(\mathrm{c}_{\mathrm{m}-1} \mathrm{t}^{2^{-(m-1)}}+\mathrm{t}^{2^{-(m-1)}}, \sqrt{\left(\mathrm{c}_{\mathrm{m}-1}^{2}+2 \mathrm{c}_{\mathrm{m}-1}\right) \mathrm{t}^{2-(\mathrm{m}-2)}+\mathrm{t}^{-(m-2)}}\right)= \\
& =\left(2 c_{m-1}+3\right) t^{-(m-1)}=c_{m} t^{-(m-1)},
\end{aligned}
$$

whence the assertion.
We conclude this chapter by stating Roth's Lemma in a slightly weaker, but more convenient explicit form, as follows.

Theorem 1: Let $0<t \leqslant 1$. Let $\mathrm{a} \geqslant 1$ be a real number, and let $\mathrm{r}_{1}, \ldots, \mathrm{r}_{\mathrm{m}}$, $\mathrm{H}_{1}, \ldots, \mathrm{Hm}$, where $\mathrm{m} \geqslant 2$, be positive integers such that

$$
\begin{array}{cl}
r_{h+1} \leqslant r_{h} t & (h=1,2, \ldots, m-1), \\
r_{h} \log H_{h} \geqslant r_{1} \log H_{1} \\
H_{1} \geqslant 2^{\frac{1}{t}(m-1) m(2 m+1)}, & (h=2,3, \ldots, m), \\
a \leqslant H_{1}{ }^{\frac{1}{m} r_{1} t} & \\
&
\end{array}
$$

Let

$$
\kappa_{1}=\frac{P_{1}}{Q_{1}}, \ldots, \kappa_{m}=\frac{P_{m}}{Q_{m}}
$$

be rational numbers such that

$$
\left(P_{h}, Q_{h}\right)=1, \max \left(\left|P_{h}\right|,\left|Q_{h}\right|\right)=H_{h} \quad(h=1,2, \ldots, m)
$$

Finally let $\mathrm{A}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}\right)$ be a polynomial of the form

$$
A\left(x_{1}, \ldots, x_{m}\right)=\sum_{i_{1}=0}^{r_{1}} \ldots \sum_{i_{m}=0}^{r_{m}} a_{i_{1}} \ldots i_{m} x_{1}^{i_{1}} \ldots x_{m}^{i_{m}}
$$

which is not identically zero and has integral coefficients such that

$$
\left|a_{i_{1}, \ldots i_{m}}\right| \leqslant a \text { for all } i_{1}, \ldots, i_{m}
$$

Then there exist non-negative integers $\mathrm{j}_{1}, \ldots, \mathrm{j}_{\mathrm{m}}$ satisfying

$$
\sum_{h=1}^{m} \frac{j_{h}}{r_{h}} \leqslant 2^{m+1} t^{2^{-(m-1)}}
$$

such that

$$
A_{j_{1}} \ldots j_{m}\left(\kappa_{1}, \ldots, \kappa_{m}\right) \neq 0
$$

[^0]: 1. For a detailed study of the generalised Wronskian see, in particular, A. Ostrowski, Math. Z. 4 (1919), 223-230.
