LIST OF CONTENTS

Preface .	
List of No	otations vii
Part 1: p	-adic and g-adic Numbers, and Their Approximations 1
I. Va	aluations and pseudo-valuations
_	Valuations and pseudo-valuations
2.	P
	A further example 6
4.	Valuations and pseudo-valuations derived from
	given ones
5.	Bounded sequences, fundamental sequences, and
	null sequences 9
6.	The ring $\{K\}_{w}$ and the ideal #
7.	· · · · · · · · · · · · · · · · · ·
8.	
	valuation
9.	
10.	
11.	
12.	Fundamental sequences in $K_{\mathbf{w}}$
13.	
14.	• • • • • • • • • • • • • • • • • • • •
•	
15.	
16.	
17.	2
II. Th	ne p-adic, g-adic, and g*-adic series
1.	Notation
2.	The ring I_g and the ideal \sharp
3.	The residue class ring I_g/g
4.	Systems of representatives
	Series for g-adic numbers 32
	Series for g*-adic numbers
	Sequences that converge with respect to all
••	valuations of Γ
	valuations of 1
III. A	test for algebraic or transcendental numbers 41
1.	Notation
2.	The minimum polynomial of an algebraic number 42
3.	An algebraic identity
4.	Inequalities for algebraic numbers
5.	A theorem on linear forms
	On a system of both real and p-adic linear
٠.	forms

	Polynomials $F(x)$ for which $\omega(F(a))$ is small A necessary and sufficient condition for transcendency	53 55
IV. Co	entinued fractions	58
1. 2. 3.	The convergents of the continued fraction for a_0 The distinction between rational and irrational	58 59
5. 6.	numbers	60 62 63 63
8. 9.	integer	64 67 69
	numbers Rational Approximations of Algebraic Numbers.	69
V. 1. 2.		73 77 77
4. 5.	The general case	78 79 80
7. 8.	* *	82 85 87 89
13.	The property $\Gamma_{\mathbf{M}}$	90 90 92 93
14. VI. Th	Proof of Roth's Lemma	96 98
1. 2. 3. 4. 5.	The powers of an algebraic number	98 98 99 101 102 104
VII. Th	ne First Approximation Theorem	107
2. 3. 4.	The properties A_d , B , and C	107 109 112 113 116

CONTENTS	xi

6. An upper bound for $ D_{(1)} $
12. The property A _d
VIII. The Second Approximation Theorem
1. The two forms of the theorem
IX. Applications 14
1. The theorems of Roth and Ridout
Appendix A. Another proof of a lemma by Schneider 16
Appendix B. A theorem by M. Cugiani 16
Appendix C. The Approximation Theorems over Algebraic Number Fields