LIST OF CONTENTS

Preface V
List of Notations vii
Part 1: p-adic and g-adic Numbers, and Their Approximations 1
I. Valuations and pseudo-valuations 3

1. Valuations and pseudo-valuations 4
2. The p-adic valuations of Γ 5
3. A further example 6
4. Valuations and pseudo-valuations derived from given ones 7
5. Bounded sequences, fundamental sequences, and null sequences 9
6. The ring $\{K\}_{W}$ and the ideal η 11
7. The residue class ring K_{w} 12
8. The completion of a field with respect to a valuation 13
9. The limit notation 13
10. The continuation of $w(a)$ onto K_{w} 14
11. The elements of K lie dense in K_{W} 15
12. Fundamental sequences in K_{W} 16
13. Equivalence of valuations and pseudo-valuations 17
14. The valuations and pseudo-valuations of Γ 18
15. Independent pseudo-valuations 20
16. The decomposition theorem 21
17. Convergent infinite series 24
II. The p-adic, g-adic, and g*-adic series 26
18. Notation 27
19. The ring I_{g} and the ideal s 29
20. The residue class ring $\mathrm{I}_{\mathrm{g}} / \mathrm{g}$ 30
21. Systems of representatives 31
22. Series for g-adic numbers 32
23. Series for g^{*}-adic numbers 36
24. Sequences that converge with respect to all valuations of Γ. 40
III. A test for algebraic or transcendental numbers 41
25. Notation 42
26. The minimum polynomial of an algebraic number 42
27. An algebraic identity 43
28. Inequalities for algebraic numbers 45
29. A theorem on linear forms 48
30. On a system of both real and p-adic linear forms 50
31. Polynomials $F(x)$ for which $\omega(F(a))$ is small 53
32. A necessary and sufficient condition for transcendency 55
IV. Continued fractions 58
33. The continued fraction algorithm in the real case 58
34. The convergents of the continued fraction for α_{0} 59
35. The distinction between rational and irrational numbers 60
36. Inequalities for $\left|Q_{k} \alpha_{0}-P_{k}\right|$ 62
37. The convergents as best approximations 63
38. The rational approximations of g-adic integers 63
39. The continued fraction algorithm for a g-adic integer 64
40. Two numerical examples 67
41. Final remarks to the g-adic algorithm 69
42. The continued fraction algorithm for g^{*}-adic numbers 69
Part 2: Rational Approximations of Algebraic Numbers. The Problem and Its History 73
V. 1. Introduction 77
43. Linear dependence and independence 77
44. Generalized Wronski determinants 78
45. The case of functions of one variable 79
46. The general case 80
47. An identity 82
48. Majorants for U, V, and W 85
49. The index of a polynomial 87
50. The upper bound $\Theta_{\mathrm{m}}\left(\mathrm{a} ; \mathrm{H}_{1}, \ldots, \mathrm{H}_{\mathrm{m}} ; \mathrm{r}_{1}, \ldots, \mathrm{r}_{\mathrm{m}}\right)$ 89
51. An upper bound for $\Theta_{1}(a ; r ; H)$ 90
52. The property Γ_{M} 90 1
53. A recursive inequality for Θ_{m}. I. 92
54. A recursive inequality for Θ_{m}. II. 93
55. Proof of Roth's Lemma 96
VI. The Approximation Polynomial 98
56. The aim 98
57. The powers of an algebraic number 98
58. A lemma by Schneider 99
59. The construction of $A\left(x_{1}, \ldots, x_{m}\right)$. I. 101
60. The construction of $A\left(x_{1}, \ldots, x_{m}\right)$. II. 102
61. The construction of $A\left(x_{1}, \ldots, x_{m}\right)$. III. 104
VII. The First Approximation Theorem 107
62. The properties A_{d}, B, and C 107
63. The selection of the parameters 109
64. Application of Theorems 1 and 2 112
65. Upper bounds for $\left|A_{(1)}\right|$ 113
66. An upper bound for $|A(1)|_{g}$ 116
67. An upper bound for $\left|D_{(1)}\right|$ 117
68. Lower bounds for $|\mathrm{N}(1)|$ 120
69. Conclusion of the proof 122
70. The first form of the First Approximation Theorem 123
71. Polynomials in a field with a valuation 125
72. Two applications of Lemma 1 127
73. The property A_{d}^{\prime} 130
74. The second form of the First Approximation Theorem 131
VIII. The Second Approximation Theorem 133
75. The two forms of the theorem 133
76. The Theorem (2, II) implies the Theorem (2, I) 134
77. The Theorem (2,I) implies the Theorem (2,II) 135
78. The Theorem (2,I) implies the Theorem (1, I) 137
79. The integers e_{j} 140
80. The numbers $\mathrm{g}, \mathrm{g}^{\prime}, \mathrm{g}^{\prime \prime}, \rho, \sigma, \lambda, \mu$, 143
81. The Theorem ($1, \mathrm{I}$) implies the Theorem ($2, \mathrm{I}$) 145
IX. Applications 147
82. The theorems of Roth and Ridout 147
83. The continued fraction of a real algebraic number 150
84. The powers of a rational number 150
85. The equation $P^{(k)}+Q^{(k)}+R^{(k)}=0$ 155
86. The approximation by rational integers 158
87. An example 161
Appendix A. Another proof of a lemma by Schneider 163
Appendix B. A theorem by M. Cugiani 169
Appendix C. The Approximation Theorems over Algebraic Number Fields 181
