LIST OF CONTENTS | Preface . | | |------------|--| | List of No | otations vii | | Part 1: p | -adic and g-adic Numbers, and Their Approximations 1 | | I. Va | aluations and pseudo-valuations | | _ | Valuations and pseudo-valuations | | 2. | P | | | A further example 6 | | 4. | Valuations and pseudo-valuations derived from | | | given ones | | 5. | Bounded sequences, fundamental sequences, and | | | null sequences 9 | | 6. | The ring $\{K\}_{w}$ and the ideal # | | 7. | · · · · · · · · · · · · · · · · · · | | 8. | | | | valuation | | 9. | | | 10. | | | 11. | | | 12. | Fundamental sequences in $K_{\mathbf{w}}$ | | 13. | | | 14. | • | | • | | | 15. | | | 16. | | | 17. | 2 | | II. Th | ne p-adic, g-adic, and g*-adic series | | 1. | Notation | | 2. | The ring I_g and the ideal \sharp | | 3. | The residue class ring I_g/g | | 4. | Systems of representatives | | | Series for g-adic numbers 32 | | | Series for g*-adic numbers | | | Sequences that converge with respect to all | | •• | valuations of Γ | | | valuations of 1 | | III. A | test for algebraic or transcendental numbers 41 | | 1. | Notation | | 2. | The minimum polynomial of an algebraic number 42 | | 3. | An algebraic identity | | 4. | Inequalities for algebraic numbers | | 5. | A theorem on linear forms | | | On a system of both real and p-adic linear | | ٠. | forms | | | | | | Polynomials $F(x)$ for which $\omega(F(a))$ is small A necessary and sufficient condition for transcendency | 53
55 | |----------------------------|---|-------------------------------------| | IV. Co | entinued fractions | 58 | | 1.
2.
3. | The convergents of the continued fraction for a_0 The distinction between rational and irrational | 58
59 | | 5.
6. | numbers | 60
62
63
63 | | 8.
9. | integer | 64
67
69 | | | numbers Rational Approximations of Algebraic Numbers. | 69 | | V. 1.
2. | | 73
77
77 | | 4.
5. | The general case | 78
79
80 | | 7.
8. | * * | 82
85
87
89 | | 13. | The property $\Gamma_{\mathbf{M}}$ | 90
90
92
93 | | 14.
VI. Th | Proof of Roth's Lemma | 96
98 | | 1.
2.
3.
4.
5. | The powers of an algebraic number | 98
98
99
101
102
104 | | VII. Th | ne First Approximation Theorem | 107 | | 2.
3.
4. | The properties A_d , B , and C | 107
109
112
113
116 | | CONTENTS | xi | |----------|----| | | | | 6. An upper bound for $ D_{(1)} $ | |---| | 12. The property A _d | | VIII. The Second Approximation Theorem | | 1. The two forms of the theorem | | IX. Applications 14 | | 1. The theorems of Roth and Ridout | | Appendix A. Another proof of a lemma by Schneider 16 | | Appendix B. A theorem by M. Cugiani 16 | | Appendix C. The Approximation Theorems over Algebraic Number Fields |