LIST OF NOTATIONS

The meanings of letters and symbols will usually be clear from the context. In general, small Latin letters denote rational numbers, small Greek letters denote real or p-adic numbers, and capital Greek letters denote gadic or g^{*}-adic numbers. By $\Gamma, P, P_{\mathrm{p}}, P_{\mathrm{g}}$, and $P_{\mathrm{g}} *$ we mean the fields of rational, real, and p-adic numbers, and the rings of g-adic, and $g *$-adic numbers, respectively. The symbols

$$
|\alpha|,\left|\alpha_{0}\right|_{\mathrm{p}},|A|_{\mathrm{g}}, \text { and }\left|A^{*}\right|_{\mathrm{g}} *
$$

stand for the absolute value of the real number α, the p -adic value of the p adic number α_{0}, the g-adic value of the g-adic number A, and the g^{*}-adic value of the g^{*}-adic number A^{*}, respectively.

Here ${ } \alpha_{0} l_{p}$ is normed by the formula

$$
|\mathrm{p}|_{\mathrm{p}}=\frac{1}{\mathrm{p}}
$$

The integer $\mathrm{g} \geq 2$ always has the prime factorisation

$$
\mathrm{g}=\mathrm{p}_{1}^{\mathbf{e}_{1}} \ldots \mathrm{p}_{\mathbf{r}}^{\mathbf{e}_{\mathbf{r}}}
$$

where p_{1}, \ldots, p_{r} are distinct primes, and e_{1}, \ldots, e_{r} are positive integers. If, for $j=1,2, \ldots, r$, the g-adic number A has the p_{j}-adic component α_{j}, we write

$$
A \leftrightarrow\left(\alpha_{1}, \ldots, \alpha_{r}\right),
$$

and then

$$
|A|_{g}=\max \left(\left|\alpha_{1}\right|_{p_{1}}^{\frac{\log g}{e_{1} \log p_{1}}}, \ldots,\left|\alpha_{r}\right|_{p_{r}} \frac{\log g}{e_{r} \log \mathrm{p}_{r}}\right)
$$

Thus, in particular,

$$
|\mathrm{g}|_{\mathrm{g}}=\frac{1}{\mathrm{~g}}
$$

A g^{*}-adic number A^{*} has, in addition to the p_{j}-adic components α_{j}, also a real component α. We write

$$
A^{*} \leftrightarrow\left(\alpha, \alpha_{1}, \ldots, \alpha_{r}\right)=(\alpha, A) \text { where } A \leftrightarrow\left(\alpha_{1}, \ldots, \alpha_{r}\right) .
$$

Then

$$
\left|A^{*}\right|_{\mathrm{g}} *=\max \left(|\alpha|,|A|_{\mathrm{g}}\right)
$$

For rational integers $a, b, m \neq 0$ the congruence $a \equiv b(\bmod m)$ means, as usual, that $a-b$ is divisible by m. Instead of $a \equiv 0(\bmod m)$ we write m la. The symbol (a, b, \ldots, f) means the greatest common divisor of the rational integers a, b, \ldots, f, except on certain occasions when the same symbol is used to denote an ordered set of numbers. If α is a real number, $[\alpha]$ always denotes the integral part of α, i. e. the integer a for which $a \leq \alpha<a+1$.

A formula like $a \in S$ means that a is an element of the set S. If S_{1} and S_{2} are sets, $S_{1} \cup S_{2}$ is their union and $S_{1} \cap S_{2}$ their intersection (i.e. $S_{1} \cup S_{2}$ consists of all a that are elements of at least one of the sets, and $S_{1} \cap S_{2}$ of all a that are elements of both sets.) The signs $\cup_{k} S_{k}$ and $\bigcap_{k} S_{k}$ are used for the union and intersection of any number of sets.

