
Chapter II

THE FINITE POSITIVE CONNECTIVES

In this chapter we consider the compound propositions gen-
erated from the elementary propositions by three binary connec-
tives which we call implication, conjunction and alternation.
After a few preliminary definitions in §1, we shall consider
these connectives informally in §§2 and j5. The considerations
will then be formalized, leading to the set up of the episys-
tems LA, LC in §4. The later sections will be concerned with
theorems concerning these systems. The elimination theorem,
which is the same as Gentzen's Hauptsatz, is proved in §7. The
relation to Gentzen's natural system is the subject of §8; while
the relations to prepositional algebra are taken up in §9-

1. P r e l i m i n a r y D e f i n i t i o n s and Notation. The three connec-
tives will be symbolized as follows:

Implication ( iD 2)

(1) Conjunction ( 1 A 2)

Alternation ( 1 v 2)

We presuppose a system 6 as in Chapter I §8, and shall ad-
here to the notational conventions there made. Then (S is the
class of elementary propositions of 6.

The use of these functors as connectors may seem at first
sight to depart from a more or less standard practice of using
them as adJunetors, and using the Hilbert functors "( r» 2)"j
"( ia 2)", »( x or 2)" as connectors. But later on we
shall formalize the theory, and then the former functors will
in fact play the role of adjunctors, so that we are agreeing
with the practice rather than the reverse. The notation leads
to no confusion so long as we are dealing with an unspecified
formal system 6. But when the theory is applied to a particular
system 6 it may happen that 6 contains analogous functives as
part of its formal machinery. In that case special care must
be exercised, and since these functors will then be thought of
more as connectors, the Hilbert functors are likely to be appro-
priate. It is important to realize the difference, in such a
case, between the two classes of functors: those introduced here
are connectors from the point of view of 6 itself and the con-
nectives form compound propositions from elementary onesj while
others are constituents out of which the elementary sentences
themselves are formed.

24
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In this chapter the extensions we shall consider are all
prepositional extensions.

2. I n f o r m a l D i s c u s s i o n . We shall now make an intuitive an-
alysis of the notions ADB, A A B, and AvB. This analysis will
"be based on the principle that the meaning of a concept is de-
termined by the conditions under which it is introduced into
discourse. The system 6' referred to is any fixed extension
(propositional or term) of 6.

If A and B are elementary then we can define the connectives,
according to the above principle, as follows:

al) ADB holds for 6' if there is a derivation of B from A
in 6'j in other words, if B is a theorem in the system S' (A)
formed by adjoining A to the axioms of S'.

a2) A A B holds for 6' if A holds for S' and B holds for G'.

a3) AvB holds for G1 if either A holds for 6! or B holds
for 6'.

These rules are to be understood as the justifications, and the
only Justifications, for introducing the statements indicated
into discourse.

It will be observed that the definitions a2) and a3) make
sense when A and B are not elementary, and al) makes sense even
when B is not elementary, provided that A is elementary. But
when A is compound It does not make sense to talk about adjoin-
ing A to the axioms of G1. We therefore have to say what we
mean by "B is a theorem in the system 6T (A)", or in other words
when we admit that B follows from A relative to 6f. This we do
as follows:

bl) We admit that C follows from ADB relative to 6» if A is
in G» and C follows from B In 6'.

b2) We admit that C follows from A A B in 6f if either C fol-
lows from A or C follows from B.

b?) We admit that C follows from Av B in 6' if both C follows
from A and C follows from B.

With this understanding all the rules al - b]5 make sense for
any members of $. If we define the order of a. compound proposi-
tion as the number of times the connectives are applied in its
construction,1 then the admissibility of a proposition of order
n depends on the validity of propositions of order <n.2

1. More precisely: an A in $ is of order 0 when It is in ®; it is of order
n + 1 if it is of the form BDC, BAG, or Bv C, where B and C are of orders
whose sum is n.
2. Note there may "be propositions of higher order in S1. We could define an

order for an elementary statement (see "below) as the sum of the orders of all
distinct propositions In X, plus that of A, then our rules so far explain an
elementary statement of order n in terms of those of lower order.
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In the foregoing we thought of 6! as an extension of 6. Let
us suppose it is formed by adjoining a class X of propositions
to G. Then A is valid in 6! if and only if A follows from X in
65 .and B follows from A in 6! if and only if it follows from the
class formed by adjoining A to 36 in 6. If we symbolize the lat-
ter class as "36, A" and the first relation as

(2) 3C I- A

then the latter relation is

X, A II- B.

We read (2) "X involves3 A" or "X entails A." In this notation
our rules al - b5 become:

al) X, A ft B bl) X f A; X, B t C
X |h A D B X, A D B ||- C

a2) X II- A; X j- B b2) X, A IF C X, B j- C
X ||- A A B X, A A B ||- C' X, A A B |- C

a3) X II- A ___ X II- B b3) X, A IF C; X, B Ih C
X | | - A v B ' x | | - A v B X, A v B ||- C

The following rules also follow from the Interpretation given
for (2): If

Ai, A2, . . ., Am h B,

then

a4) * II* AJ i = l,2,...,m b4 X, B ||- C
X ||- B X, Ai, . . .,Am ||- C.

where, of course, "X,Ai, . . ,,Am" means the class obtained by ad-
Joining Ai,...,Am to X. In all these rules the premises are
written above the line, the conclusions below. This manner of
writing has become traditional with the Hilbert School. Note
that a3 and b2 each consist of two separate rules.

In order to formalize these rules it is necessary to com-
plete them by making explicit further assumptions which follow
from the intuitive meaning. In the first place, we have said X
is a class. But if we follow the above rules in a purely mechan
ical fashion, we shall have not a class, but a sequence of prop-
ositions, which may contain repetitions, in the place of X.
Such a sequence of propositions will be called a prosequence.

To express that prosequences which correspond to the same
class are equivalent we need the rules

cl) IfX 2isa permutation of Xi, then

3. This is Carnap's word (see Carnap [5] §32, p. 151).



THE FINITE POSITIVE CONNECTIVES 27

c2) If A is in X

S, A II- B
X II- B "

To express the fact that if a proposition follows from a class X
it follows from any larger class we need further the rule

c3) X IF B
X, A |f- B"

Finally we need to state those formulas (2) which we accept in-
itially, thus:

dl) If A is in X, X |- A.

d2) If A is an axiom, X |[- A.

d3) If Ai,A2,..., Am |" B, then

X, Ai, . .., Am ||- B.

The rules so stated are redundant. Thus c3 is unnecessary
if d are stated with a general X, because the extra A can be
added to X at the beginning and carried all the way through (see
Theorem 2 below). Again, d3 expresses intuitively the same prin-
ciple as a4, and is easily derived from it in Theorem 1. As for
b4 it is readily derived (in Theorem 11, Corollary 2) from dj>
and the rule

(3) X, A II- B; X Ih A
X |hB

This is as obvious intuitively as any of the rules; yet its re-
dundancy can be expected a priori from a careful consideration
of the principles according to which the rules were set up. In
fact each of the rules al - 3 and bl - 3 constitutes an explana-
tion of a complex concept in terms of something simpler.4 The
rules a4 and d2 say that the rules and axioms of 6 are valid in
61; while dl gives the most elementary kind of deducibility. The
rules c state simply that X is to be regarded as a class. Intu-
itively one would feel that these cases should suffice to ex-
plain the meaning of every statement (2). In other words, (3)
and b4 ought to be epitheorems, which in fact they are. The rule
(3) is the elimination theorem proved in §7 (Theorem 11). It
entails all the usual rules necessary to establish the "natural
system" in §8.

The formalization of these ideas wi^l concern us in §4. But
before we proceed to it we shall discuss r related set of rules
with an entirely different interpretation.

k. In a sense ak does too, since one can regard the conclusion of a rule of 6
as more complex than its premises. Such a sense can presumably "be made pre-
cise by the methods of Gb'del's arithmetlzation and recursive functions. That,
however, is irrelevant here.
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3. Classical Form of the Rules. Gentzen proposed the follow-
ing modification of the preceding formalism. Let the elementary
statements be of the form

(4) * Ih 8

where g), as well as X, is an arbitrary prosequence. With this
type of elementary statement he associates the rules which are,
essentially, the same as those above, except that an arbitrary
prosequence 8 is adjoined to the right side in both premises and
conclusion. Thus the analogues of the rules al and bl are:

al) X, A II- B, 3 bl) X IHA, 3; X, B Ih C, 3
X I)-A D B, 8 X, A D B ||- C, 3

In addition to these there are rules for permutation, contrac-
tion, and weakening on the right which are, so to speak, the
duals of cl, c2, c3- The rules will not be stated here in detail,
since they are given fully in the formallzation below.

This formalism has the following interpretation in terms of
truth tables. Let the values 1 and 0 be assigned to all the
members of (§ in such a manner that all the axioms,.if any, have
the value Ijand that if

AI , ... >Am \" B

then B has the value 1 whenever all the Ai,Aa,...,Am have the
value 1. It is immaterial whether 1 and 0 are interpreted as
truth and falsity or not. It is also immaterial whether every A
in (§ has a unique value or there are some which may have either
value at will - in the latter case the stipulated conditions,
both above and below, must hold for all choices of these values.
The valuations may then be extended in the usual manner to all A
in $ by the truth tables of Table 1. The statement (4) shall
then mean that either some constituent in X has the value 0 or
some constituent in g) has the value 1. Then it will follow that
all the rules are valid. Thus we can verify the above rule bl
as follows: the conclusion is valid if there is a constituent
in X which is 0, if C is 1, or if some constituent in 3 is 1. If
none of these cases occurs then by the first premise A is 1 and
by the second premise B is 0, hence by Table 1 A D B is 0 and
the conclusion is valid. The other rules may be verified in
like manner.

This interpretation is appropriate for the case where truth
in G is a definite concept. But even then there are elementary
statements of the form (2) which are valid on the second inter-
pretation but not on the first. An example of such is

(5) II- A v (A DB).

This is clearly valid on the second interpretation for any sys-
tem 6 and any propositions A, B. Now let & be the system with
three elementary propositions Ei,E2,E3, of which E3 is an axiom,
and no rule of derivation or, perhaps, a single one EI |- Eg.
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Then consider the proposition E2 v (E2 D EI). For this to be
valid by Rule a3 we must have either E2 or E2 0 EI. But we do
not have E2 since the only theorem of 6 is ES, and we do not
have E2 D EI, because when we adjoin E2 to 6 the only theorems
are E2 and E3. Thus the special case A = E2 and B = EI of (5)
is invalid on the first interpretation. There is no question
about definiteness for this system.

If (5) is interpreted according to the principles of §2, it
requires that every proposition A either be true or imply every
other proposition - in other words that 6 be not only decidable
but complete. In this special case we shall see in Chapter IV
that the rules of the second interpretation follow from those of
the first.

For the case where g consists of prepositional variables
only, with SI and % void, then we shall see that the propositions
A for which

I- A

are the positive formulas of the intuitionistic propositional
algebra on the first interpretation, and of the classical alge-
bra on the second. Hence this second interpretation is called
classical.

4. The Systems LA (6) and LC (6). We turn now to the for-
malizations of these ideas. We formulate two systems LA(g) and
LC(S) corresponding to the two interpretations. As explained
previously, we shall take "proposition" as a formal category,
corresponding to the terms of the system; the role of "proposi-
tion" as a significant category of the U-language is taken over
by "statement." The term "formula" will be used as synonymous
with either "proposition" or "statement" according to the con-
text.

PROPOSITIONS. We shall suppose that the underlying system 6
formulates a category i(S), or simply <§, of elementary proposi-
tions, it being definite in any given case whether something be-
longs to this category or not. We then define^ (6) inductively
by

a) If A is in S, it is in $.

b) If A and B are in p, then A D1 B, A A B, A v B are in p.

PROSEQUENCES. A prosequence is a sequence of propositions
with repetitions allowed. The elements of the sequence will be
called its constituents, it being understood that where repeti-
tions of the same propositions occur, each occurrence is a sep-
arate constituent. Constituents which are instances of the same
proposition will be said to be alike, those which are instances
of different propositions will be said to be distinct. A pro-
sequence may be void, or it may contain any finite or infinite
number of constituents. (The admission of an infinite number of
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constituents is optional by Theorem 5; however, it enables one
to state such theorems as Theorem 19.)

We shall denote unspecified prosequences by capital German
letters in the list

X, g, 3* &' **' «* «•

The void prosequences will be indicated by "0" or by a blank
space. A prosequence with a single constituent will not be dis-
tinguished notationally from that constituent. When the symbols
for two or more prosequences are written one after the other,
separated by commas, the complex expression shall indicate a
prosequence whose constituents are those in all the component
prosequences taken together. Thus the notation

X, g* Ai, A2, ..., Am,E, X

indicates a prosequence whose constituents are the constituents
of X, then those in g, then Ai, ..., Am, then those in tt, then
those in X (repeated). (The complications in the notion of in-
finite prosequences are admitted, but will not be gone into,
since infinite prosequences are optional. Cf. Remark 7 below.)

If A is a proposition and X a prosequence (or a class) of
propositions we define

A e X

to mean A is a constituent (or element) in X. If X and D are
prosequences we shall define

to mean that every constituent of X is also constituent of g;

X = g

to mean X < g and g < x, in which case each of X and g is a per-
mutation of the other;

to mean that the propositions which occur in X also occur in g
(without regard to multiplicity); and

X = g

to mean that X C g and g C X.
In the system LACs) it will be required that any prosequence

denoted by "a"* with or without diacritical marks, shall have a
single constituent, while, similarly, one denoted by "3" shall be
void. In the system LC all prosequences are arbitrary.

ELEMENTARY STATEMENTS. These are of the form

X II- g

where X and g are prosequences. We shall call X the left pro-
sequence and g the right prosequence; we shall also use the
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phrases left side and right side respectively. (In LA(e) the
elementary statements are of the form (2).)

AUXILIARY STATEMENTS. We also suppose that statements of
the form

(6) Ai, A2, ..., An I- B

are defined by 6 for Ai, ..., Am* B in g. Here m may have dif-
ferent values £ 0 in the different statements. When a statement
of form (6) holds for m = 0 we say B is an axiom. (In the in-
terpretation (6) for m > 0 means that B follows immediately from
Ai, ..., Am by a rule of 6. In this case the statements of form
(6) are definite when 6 is definite.) The statements (6) will
be treated here as morphological.

PRIME STATEMENTS. An elementary statement is a prime state-
ment in the following cases, and these only:

pi) If X and g) have a constituent in common; i.e., if there
is an A such that A e X and A B g) .

p2) If g) has a constituent A which is an axiom.

RULES. These will be given here with names which are some-
what more mnemonic than those used in §3. Except for Er the
rules are stated in pairs which are roughly dual to one another.
Each pair will be assigned a symbol.5 The rules on the left and
right in each pair will be distinguished by writing "<£" and "r"
respectively after the symbol for the pair. Thus Pr is the rule
for introduction of 1 3 2 on the right (the "deduction
theorem" of propositional algebra). Er is peculiar since its
dual E/fc (i.e., b4 above) is redundant.

In stating the rules the almost self-explanatory notation of
the Hilbert school is used (as in §2) . The theoretical premises
are written above the line, the conclusion below. The morpho-
logical premises are indicated separately. The redundant rules
have been omitted.

5. This symbol, in the rules introduced "both here and later, Is suggested
"by an analogy with certain terms of combinatory logic (see [17]). In that
theory the symbols so Introduced have the following significance (the symbol
is explained In [17] unless another reference is given):

C Primitive permutation combinator
W Primitive reduplication comblnator
K Primitive cancellation combinator
P Implication
A Conjunction ([26], §5-4 )
V Alternation ([18], p. 397)
n Universal quantifier
N Negation ([18], p. 397)
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1 Rule of Elementary Derivation Er

If Ai, ...,Am|- B

., 3£
then

2. Ruies £f Permutation

If Xi = X2 Di

Si II" D X [I-
g)2

W Rules of Contraction

If A e X A e 3

X Ih A, 3

£ Rules £f Implication

K 3 < 8

X II- A, % i X, B j|- B Xs A |h B, 3
X, A D B I)- 9 X I- ADB, 8

A Rules of Conjunction

X ,A Ih .8) ___ XsB Ih a X II- A, 3 ; X Ih B,^
X,A A B ||- g» ' X,A A B I)- g) X ||- A A B, S

Z Rules 2£ Alternation

X,A Ih I) j X,B IF .8) X IF A, % X Ih B, 8
X,A v B |[- g X |h A v B,3' X I A v B,S

Remarks on these rules. 1.) The rules Cr and Wr are inap-
plicable in LA(e).

2.) It will be convenient to use "0" to denote an unspeci-
fied one of the three functives P, 4, V, and "AoB" for any one of
ADB, AAB, AvB. Thus a rule Ol is any one of the rules P4,
A 4, V4; etc.

3.) A constituent of X, 9, or S in an application of any of
the rules will be called a parametric constituent . Such pre-
serve their identity, so to speak, through the application of
the rule; so that we can speak significantly of the same con-
stituents in premise or premises and conclusion. Note that with
the single exception of the g) in P<t all parametric constituents
appear in all premises.
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4.) The use of the rules C will be tacit, in that we regard
Xi and X2 as the same prosequence when Xi = X2.

6 Since a permu-
tation establishes a 1 - 1 correspondence, what was said about
preservation of parametric constituents holds if a rule is com-
bined with an application of Rule C to the conclusion.

5.) The constituent introduced into the conclusion by a rule
0/5, Or, or Er will be called the principal constituent. This is
AoB for 04 or Or, and the B for Er. The constituents in the
premises which are absorbed to form the principal constituents
will be called the components. These phrases will be extended
to Rule W by calling the two indicated instances of A in the
premises the components, while the single constituent which re-
places them in the conclusion will be called the principal con-
stituent. Thus the components occur in the premises but not in
the conclusion, the principal constituent in the conclusion, but
not In the premises, and the parametric constituents in both.

6.) A transformation effected by dropping any number of rep-
etitions of a constituent will be called a contraction. Evident-
ly we can speak of a similar transformation on a prosequence as
a contraction. If prosequences are finite, a contraction of an
elementary statement can be effected by a succession of applica-
tions of Rule W.

THEOREMS AND DERIVATIONS. We shall use capital Greek let-
ters r, A, @ for unspecified statements and classes of state-
ment s.

If @ is a class of elementary statements, a deduction on
basis 6 is a sequence Ti, r2>..->rn> of elementary statements
such that each 1^ is either a) in©, b) a prime statement, or
c) derived from some of its predecessors by an application of one
of the rules. A derivation is a deduction with void basis. A
normal deduction or derivation is one in which each Tk> except
the last, is used as premise for inferring one arid only one I'm
with m > k. Evidently a deduction can be converted into a nor-
mal deduction by making the necessary repetitions and omissions.
A normal derivation can be written schematically as a kind of
genealogical tree (cf. §6).

An elementary statement which is the end statement of a
derivation is an elementary theorem.

An 6-derivation is one whose statements are of form (4) with
void X, g) having a single constituent. A proposition is 6-de-
rivable if and only if it is the sole constituent in the con-
cluding statement of an 6-derivation. Since the only rule ap-
plicable in an 6-derivation is Er, an 6-derivable proposition

6. This means that we regard a prosequence as a set for whose elements there
Is defined a degree of multiplicity. The roots of an algebraic equation form
a similar concept in ordinary mathematics.
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Is a theorem In S when our system is interpreted in the sense in-
tended .r

Our assumptions are verified in the particular case where S
consists of the sequence Ei,E2,... and the relation (6) is void.
The system 8 in that case will be called D. The systems LA(0)
and LC(o) then give two forms of prepositional algebra in which
the Efc are prepositional variables - i.e., indeterminates in the
sense of Chap. I §8. These are precisely the systems LJ and LK
of Gentzen.8 Evidently the elementary theorems and theorem-
schemes of LA(0) and LC(0) will be valid in LA(S) and LC(6)
respectively for any 85 for It is an epitheorem of any formal
system that the indeterminates in any derivation can be replaced
by arbitrary terms without destroying the validity of the argu-
ment.

5- Some P r e l i m i n a r y Theorems. Illustrations of the applica-
tion of these rules will be given in §6. First, however, we
shall prove some general theorems. This is expedient, In that
we can then Illustrate the theorems in the examples; but the
reader may prefer to read this section and the next concurrent-
ly.9

The theorems stated will hold when additional connectives are
formalized in the later chapters. In fact they depend principal-
ly on general properties of principal, component, and parametric
constituents as defined In 5^-10

7. Note that we have actually assumed concerning 6 only that It defines the
category §(6) and relation (6). But in the interpretation 6 is a formal sys-
tem, § its elementary propositions, and (6) the relation of direct derival>lllty.

8. Except, of course, that only the finite positive connectives are con-
sidered.

9. The theorems 3 and 4 are not essential to the main argument, but serve to
shorten the decision process In §6. Theorem 5 Is trivial if only finite pro-
sequences are admitted.

10. The main theorems follow for any set of rules satisfying the following
conditions: 1) the principal constituent appears in the conclusion only and
Is unique; 2) the components appear In the premises only; 3) every other con-
stituent is parametric; k) to each parametric constituent (p.c.) In the prem-
ises there Is associated a unique p.c. In the conclusion called Its corre-
spondent; this correspondent Is like the original and appears on the same
side; 5) no two p.c's. In the same premise have the same correspondent; 6) ev-
ery p.c. in the conclusion Is correspondent of some p.c. In the premises; 7) a
rule remains valid if a p.c. is omitted In the conclusion together with all
those of which it Is the correspondent; 8) a rule remains valid if a constitu-
ent is added to one or more premises together with a like constituent to serve
as correspondent In the conclusion; 9) Except In cases W and Er, the principal
constituent is of higher order than the components, and the rule is determined
uniquely "by that constituent. In Theorems 3 and k alone use is made of the
fact that the p.c. appear In all, the premises except on the right In Pi. In
the discussion "below corresponding constituents are regarded as the same.
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The theorems are true for either the LA or the LC formula-
tion. In the former case certain possibilities cannot arise;
but the arguments are all valid.

One obvious property it seems unnecessary to formulate. Any
LA deduction or derivation is also valid in LC. Conversely an
LC deduction in which all prime and basic statements have only
one constituent on the right is also an LA deduction. In fact,
the restriction to only one constituent on the right in LA need
only have been made for the prime statements.

THEOREM 1. If Ai,...,Am,B are in 6 and are such that (6)
holds, then for any prosequences 3C,S

(7) X, Ai,...,Am |h B,S.

Proof. The statement X,Ai,...,Am |(- Ai,g is a prime state-
ment of type pi for each i = l,2,...,m. From these the conclu-
sion follows by Rule Er.

Remark 1. If we admitted infinitely many constituents on
the left in (6), that would correspond, on our interpretation,
to admitting formal systems which were not definite. If we were
interested in that -sort of system, we should presumably not ob-
ject to having infinitely many premises in Er, which would make
LA(e) and LC(6) also indefinite. But if we insist on making
LA(e) and LC(s) definite even when (e) is not, then Theorem 1
will not hold. In these lectures I shall adhere to the restric-
tion that (6) have only a finite number of constituents on the
left.

THEOREM 2. The following pair of rules are redundant;
K. Rules of weakening

If

Proof. Let A = (Ti^Ts,.. .,rn) "be a derivation of the prem-
ise. Let tt be a prosequence such that,

X2 s Xi,tt or g)2 = Bi,tt

as the case may be. Let r^1 (k = l,2,...,n) be the statement ob-
tained by adjoining tt on the appropriate side of Tk- Then Tn1

is the conclusion of our theorem. I shall show that Ti1,..-* Tn1

is a derivation of rn
f.

If Ik is a prime statement, then If is a prime statement
also. If Tk is a consequence ofT±19 T±2, ... Ti_ by a rule, then
IV is a consequence of T±I

1
9T^2 ',. .,T± « by the same rule, since

tt is merely added to the parametric constituents in both prem-
ises and conclusion. Since ri,...,rnis a derivation, IV, ...,rn

f

is also.
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Remark 2. Gentzen assumes the rules K, but takes as prime
statements only those of the form

(8) A II- A.

These replace our prime statements pi. If we had Rule K we could
replace the statements p2 by

(9) ' IhA.

This is, of course, an equivalent procedure.

Remark 5. The theorem makes it possible to state the rules
with multiple premises in the following form which is sometimes
more convenient :

If Ai,...,Am ||; B then

P4« Xi II- A, 3; 3£g,B Ih » Er« 3Ci Ih Aj,Sl 1 = 1,2,... ,m
Xi,X2,A D B |h 8,8 X i , . - . , X m |- B,SI, . . ., Sm

V4! Si, A ihC,3i;3te,B|hC,3g Ar' Si It- AJ Si ; 3£2 ||- B, 82
X i , * 2 , A v B I- 0,81,82 *L,3fe I- A A 8,81,82

For by Rule K these may be reduced to those in §4.

COROLLARY 1. If li,...,!̂  is a derivation, where Fk is of
the form

we can suppose without loss of generality that

Proof. Adjoin constituents of Xn, 3n
 as additional parametric

constituents throughout the whole derivation as in Theorem 2.
Then remove repeated elements by contraction at the end.

COROLLARY 2. JEf

XL C 3fe ik £ 83
then """

& Ih g)
X2 Ih 8

Proof . This is a combination of Rules K,C, and W. (In case
we admit infinite prosequences, we need also Theorem 5 in order
to derive this corollary.)

THEOREM 3- If the rules 01 and, in LC, Or and Er, are so
modified as to require the principal constituents to appear in
all the premises on the same side as in the conclusion; then the
rules W are redundant .
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Proof. Let TI,r2>•••,In be a derivation of

X,A |hg) or (X |(-A,3)

where A e X, (A e g). Then I shall show by induction for all
k = 1,2,...,n that, if iy is obtained from 1^ by a contraction,
then IV can be derived from the modified rules without a con-
traction.

If Tk is a prime statement, then IV is also. Hence the as-
sertion is true if T^ is prime.

Suppose Tk is derived by a rule, and that the assertion
holds for the premises of the rule. If both component constitu-
ents of the contraction are parametric, then they both occur in
all the premises leading to Tt11 and these premises may all be
contracted on these constituents as components; the contracted
premises will be valid by the hypothesis of the induction, and
the contracted premises will lead by the same rule to rk'. If
one contracted constituent is the principal constituent in Tk,
then the modified rule will lead to Î 1.

Remark 4. If the rules are modified as in Theorem 3* then
all constituents of the conclusion must be present in the prem-
ises; and hence, In any derivation, all constituents must be
present in the prime statements. The essential function of the
rules is then to eliminate components. Note that the original
rules follow from the modified rules by weakening (Theorem 2).

THEOREM 4. If the rules are modified as in Theorem 3* and
if we then admit as additional rules all further modifications
(compatible with therestrictions on LA) in which a component
is allowed to appear on the same side in the conclusion, even
when it does not appear as parametric constituent in the premise
or premises in which it occurs as component (but does occur in
all the others); then every derivation according to Theorem 3
becomes a derivation according to the further modified rules if
every statement in it is contracted until there are no repeated
constituents in any prosequence.

Remark 5. To clarify the meaning of the new rules I shall
list them explicitly for Ar thus:

x- X IHA,A A B, a; * lhB,A A B, 8
3C If- A A B, g

2. X lhA,A A B, 83 X j-B,A A B,A, 8

X I-A A B,A, B

11. The one possible exception is in P<C on the right, where one of the con-
tracted constituents may not occur in g. But in that case they are in D, and
the contracted f) will still satisfy the condition 3 - 8 - Thuua the rule will
still "be applicable after the contraction. This case cannot arise in LA. In
LC we can suppose without loss of generality that g = g) ("by Theorem 2).
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3- X il-A,A A B, B,3; X H-BsA A B,3
X |(- A A B,B,S

4. S B-A,A A B,B,3i S lhB,A A B,A, 3 •
X I- A A B,A,B, 3

Here 4 is redundant . Many of the new rules are redundant in the
other cases also.

Proof of Theorem 4. Let ri,...,rn "be a derivation according
to Theorem 3, and let r^1 be obtained from rk by dropping all rep-
etitions. I shall show by induction on k that riMV,. • -jIV is
a modified derivation as stated.

If Tk is a prime statement, then IV is also. This takes
care of case k = 1.

Let Pfc be deduced by a rule from premises T±^ 9T^f • ••9T±^9
and let the hypothesis of the induction be verified for these
premises. We make the necessary contractions in the premises
in three stages, and show that at each stage the rule remains
valid from the contracted premises to the contracted r^. First
let all possible contractions be made which involve only para-
metric constituents! then the contractions can be made in all
premises and in r^ simultaneously:12 the rule remains valid.
Next let all contractions be made In which one of the like con-
stituents is the principal constituent] then the others must be
parametric, for in rules 04 and Or a principal constituent Is
never like a component, and if that eventuality occurred in Er
the conclusion would be the same as one of the premises. Hence
all contracted constituents are in all premises and r^* and the
parametric constituents can be dropped out in all simultaneously.
After all such contractions have been made no further contrac-
tions of Tic are possible; we have already reached r^1- Any fur-
ther contractions in the premises will invalidate the original
rule; but the Inference will still be possible by one of the de-
rived rules.

Remark 6. This theorem shows that we can regard a prose-
quence as a class, but that the rules become complicated when
we do so.

THEOREM 5. 3£

then there exist 3E1, jDf , each with a finite number of constitu^
ents, such that

x'< x »'< 8
and

x1 B- S1.

12. Cf. footnote11 to Theorem 3.
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Proof. Let Ti,Tz, . . . ,Tn be a derivation of (4) and let Tt
be

rk xk I- Dk •
With each r^ we shall associate a Tt1 > viz . ,

It1 *i I- Hi
such that X^,D^ are finite, r ̂  is true, and

The theorem will then follow when k = n.
If Fk is a prime statement of type pi, with A as common con-

stituent, then all conditions are fulfilled if we take Tfc1 to be
(8). If it is of type p2 with A as axiom, we can take PR to be
(9).

Now let Pk be derived by one of the rules from premises
Fii 'Tâ  ,..-jTip, for which theTi^ >...,Pip have already been
defined. If any of the component constituents which occur in
Pi are missing in Pi I > they can be reinserted by Rule K (The-

orem 2), yielding Pi-,/1, Pi.,11, ...,PJ ". Then all conditions are
fulfilled if we let pk

! be the conclusion of the rule, modified,
in the case of multiple premises, as in Remark 3 after Theorem
2. This completes the proof by induction.

Remark 7. For the purpose of analysis of compound proposi-
tions one would naturally introduce the finiteness restrictions
at the beginning. Gentzen did this. The significance of this
theorem is that we can admit infinite prosequences if we want to
This is made use of in Theorem 19 below.

6. The T e c h n i q u e of E l e m e n t a r y D e r i v a t i o n s . D e c i d a b i l i t y .
The way 1;. whicn the rules were arrived at in § 2 shows that cer-
tain decidability properties should be expected of them. In
fact,each of the rules 0 derives a more complex statement from
simpler ones, and the complexity once introduced can never be
got rid of at a later stage. Thus the application of the rules
has a constructive aspect. It ought to be possible by examining
an elementary statement to determine what rules it could be a
consequence of and from what premises; to examine each of these
possibilities in turn to see what might lead to them; and so on.
As a matter of fact when 6 is D, the number of possibilities to
be tried is finite, and we eventually end with a derivation of
the statement, or a proof that it is not derivable, (Theorem 7).

The process just described is not the shortest method of as-
certaining whether an elementary statement is true or not. It
can be simplified by the use of Gentzen's "natrral" rules, whose
validation on the present basis requires the elimination theo-
rem (see §8). Nevertheless it is worth while to illustrate the
process with a few examples. In these examples we suppose .
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A,B, and C are elementary propositions of 0. We shall suppose
W has been eliminated as in Theorem ~$.

As a first example consider the statement:

Ti |h(A D (B D C)) D ((A D B) D (A D C)^

In LA(0) the only rule which can lead to this conclusion is Pr;
in that case the premise is

T2 A D (B D C) |h (A D B) D (A D C).

This could come from either P4 or Pr. Suppose we explore the
latter possibility first.13

The premise would be:

T3 A D (B D C), A D B |h A D C.

This again could come from P4 or Pr; if It is Pr the premise is

T4 A D (B D C), A D B, A |h C.

Here we have no alternative but to try P4. Let us try getting
rid of the more complicated premise by an unmodified P4 first.
Our r* could originate by P4 from Ts and To* viz.

T5 A, A D B |h A,

T6 A, A D B, B D C |h C.

Here Ts is a prime statement; hence Ti is reduced to To- The
latter could come from P<fc and the statements

T-r A, B D C |h A,

Te A, B D C, B |h C.

Here T? is again a prime statement, while T8 could originate via
P4 from

T9 A, B |h B,

Tio A, B, C (h C,

both of which are prime. Thus the statements just written, in
reverse order, constitute a derivation of rx.

The derivation can be exhibited schematically as follows
(for explanation of the dot notation see the remarks Immediately
preceding Theorem 6 below):

A,B |h B A,B,C Ih C
A,B D C |h A A,B D C, B

A D B,A Ih A A 3 B,A, B D C Ih C p.
AD . B 3 C , A D B, A Ih C Pr

AD . BD C, AD B Ih A D C Pr

A D . B D C l h A D B . D . A D C
H - A D . B D C : D : A D B . D . A D C

13. In this case Bfc would not work. The elimination theorem shovs thatT3

is equivalent to T2. A similar remark applies in some other cases "below.
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As a second example consider the distributive law

Pi KA A (Bv C)) D ((A A B) v (A A C)).

In LA(SD) this can come only from Pr with premise

T2 A A (B v C) II- (A A B) v (A A C).

Here we could use A4 or Vr. However, we cannot use the unmodi-
fied rules since the premises are intuitively false and can be
shown to fail by the valuation method of §3. With a A4 modified
as in Theorem 3 we should get P2 from

P3 A, A A (B v C) |h (A A B) v (A A C).

This in turn follows by unmodified A^ from

P4 A,B v C ||- (A A B) v (A A C).

Premises which would give P4 from V^ are

T5 A,B ||- (A A B) v (A A C),

re A,C |h (A A B) v (A A C).

These are symmetric in B and C. It is sufficient to consider T5,
This follows by Vr from

TT A,B IhAAB,

which again is a consequence by Ar of the prime statements

r8 A,B IhA,
T9 A,B ||-B.

Prom this argument we can construct a derivation of PI.
The schematic for tfte final derivation, including the W^is

A,B II- A A,B II-B Ar A,C Ih A A,C |h C Ar

A,B II- A A B _ Vr A,C |h A A C _ Vr

A,B It- (A A B) v (A A C) _ A,C lh(A A B) v (A A C) /

m̂odified

_

B) v (A A C) _ A,C lh(A A B) v (A A
A,B v C |h (A A B) v (A A C) A^

A, A A (B v C) |h (A A B) v (A A c) _
A A (By C), A A (B v C) II- (A A B) v (A A C)^

A A (B y C) ||- (A A B) v (A A C) pr
 }

HA A (B v C)) D((A A B) v (A A c))

In this example I have excluded certain alternatives by an
appeal to intuition - or the valuation of S3. In practice one
would use such devices to shorten the work. -But in the next
example I shall carry the process sketched at the beginning of
this section to the bitter end, even though it is clear that Fa
is false by the criterion of § 3.

The example considered is Peirce^ law:

Ti |K (A D B) D A) D A.
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We consider this in LA(<0). It can come only by Pr from

F2 (A D B) D A I)- A.

The only possibility is P4, for which the premises would be

T3 (A D B) D A If- A D B,

F4 (A D B) D A, A |f- A.

Here T4, is prime. Fa could come from Pr or P<1; if Pr the prem-
ise is

T5 (A D B) D A, A If-B,

if P4 the premises are

F6 (A D B) D A |- A 0 B,

Tr (A D B) D A, A ||- A D B.

Now Te is the same as Fa, hence a derivation of Fa by P<t is im-
possible. The only possibility is Pr. But F5 can come only by
P4 from

T8 (A D B) D A, A |f- A D B,

T9 (A D B) D A,A, A ||- B.

At this point we can invoke Theorem 4. That theorem says
that if we use certain modified rules then we can get a deriva-
tion in which there are no repeated constituents. Moreover, a
modified rule is only used where an inference could be made by
the unmodified rule (= modified rule in sense of Theorem 3) by
using a premise with a component repeated. Now F5 is derived
from F8 and Ts by unmodified P4; hence it can only be derived
according to Theorem 4 from F8 and the contracted Fg, which is
F5 Itself. Thus F5, and hence FI, F2, F3, is non-derivable in
LA(£)).14

Peirce's law is, however, derivable in LC(S). In fact F2 is
The schematic derivation for the proof, which can be constructed
from the bottom up, is as follows:

A Ih B,A pp

Ih A D B, A A Ih A pj

A D B . D A Ih A pr

A D B . D A . DA

I will now state some theorems regarding these matters. The
first of these merely lists some special cases which can be de-
rived either by the foregoing techniques or those introduced
later. In most cases the proof is simpler than in the foregoing
examples. Only those marked * are needed for §8. The other
theorems are connected with the question of decidability.

Note it could "be derived in LA(s), for instance if A were an axiom.
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In connection with these and later formulas the customary
dot notation will be used.15 A group of dots alongside a con-
nector will indicate one end of a parenthesized unit, extending
from that point away from the connector until a larger number of
dots or the end of the formula is encountered.

THEOREM 6. For any A, B, C e Sp (6) the following hold in

Po* A, A D B |f- B,

PK ||- A D . B D A,

PS | ( - A D . B D C : D : A D B . D . A D C ,

Ao A, B ||- A A B,

AK ||- A A B . D . A,

AK! |h A A B . D . B,

AI | | - A D B . D : A D C . D : A D . B A C ,

A2 |h A . D : B . D . A A B,

VK ||- A . D . A v B,

VK! ||- B . D . A v B,

Vi | | - A D C . D : B D C . 3 : A v B . D . C ,

while the following hold in LC(5u) but do not hold in LA(O) for
A, B elementary;

V0 A v B ||- A, B,

Pel* fc A 0 B . D A ! D A,

(5) ||- A . v . A !> B.

THEOREM 7. The systems LA(0) and LC(O) are decidable sys-
tems.

Proof. The process outlined above has only a finite number
of possibilities. In fact, from the finiteness theorem (Theorem
5) and from the fact that for a derivation by Theorem 4 every
constituent occurring in the derivation must occur as a constit-
uent or part of a constituent in the result, it follows there
are only a finite number of unlike constituents which can occur.

15, This notation is said to have "been used "by Jbelbniz. It was extensive-
ly used "by Peano and the Principia Mathematica (see J)6rgensen [51] I P. 177)>
and "by many modern writers, "but not a great deal "by continental Europeans.
For explanation of the customary notation see,e.g., [86'] p. 9, [57] Appendix
I, [71] §7, PP. 37 «., [te] and, more "briefly, [2] p. 26l, [11], p. 225,
[29] P.370; [4]§ 4c; [73]; [87] p. H. Church uses a modification [14] p. 4.
A useful generalization is given in [27] and in [83].
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By Theorem 4 only a finite number of elementary statements are
possible. Thus, any systematic process of testing whether these
can be arranged in order so as to yield a derivation of the given
statement must come to an end.

Gentzen's method of proof is to write down all possible ele-
mentary statements, pick out the prime ones, and test for deriv-
ability in some order, starting over again each time a new one is
found to be derivable. The process in the text is shorter, and
was used by Gentzen himself in special cases. In practice one
can shorten the process still more by using known valuations,
etc.16

THEOREM 8. If Ai,A2,...,Am are in (S, and

(10) ||" Ai,A2,...,Am 5

then at least one Akis S-derivable.

Proof. Let ri,r2,...,Tn be a derivation of (10). Since the
only rules which can have a conclusion of form (10) are Er and
Wr, and since these will have premises of the same form, all the
Ik are of the form (10).

I shall show by induction on k that the theorem holds for
every r^.

If Tk is a prime statement it must be of type p2j then the
theorem is true since some AI is an axiom.

If I^ is derived from TI by Wr, the case is trivial.
If T^ is derived from r̂ ,Ti2,... ,Tin by Er, then we can

suppose without loss of generality that we have

Si,B2,...,Bn I" Am,

where the premises are

Ti |h Ai,A2,...,Am-i ,Bj j = l,2,...,n.

By the hypothesis of the induction every one of these has a con-
stituent which is S-derivable. If the constituent is A^, the
theorem holds for r^. If not then all B* are 6-derivable; hence,
by the definition of 6-derivation, Am is.

COROLLARY. _If |f- A holds in L C ( G ) - hence a fortiori if it
holds in LA(.6), - A is 6-derivable.

THEOREM 9. If in LA

IhA v B

then either ||- A or |h B is valid.

16. A valuation scheme which Is often convenient for showing non-derivabil-
ity in LA is that of Gb'del [39]. Cf. also Jaskowski [49]. For other valua-
tions see McKlnsey and Tar ski [62] and [6l], especially Examples 1 and 2 In
[61] p. 128. (Other papers "by these authors are cited in [62].)
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Proof. The statement in the hypothesis cannot be the con-
clusion of any rule except Vr, and the premise of that rule must
be either ||- A or ||- B.

It is convenient, for reference in later chapters, to state
the obvious property of our rules, which is fundamental to all
the foregoing arguments, as a theorem, viz.,-

THEOREM 10. In any derivation the only rules used, besides
C, W, and E, are rules corresponding to connectives which actu-
ally appear in the final result.

7- The E l i m i n a t i o n Theorem. We turn now to the proof of the
theorem which Gentzen called his "Hauptsatz, " He made several
interesting applications of this theorem; in particular he
showed that it included an important theorem of Herbrand. The
theorem allows a common constituent of two elementary statements
to be eliminated. Since none of the rules of §4 has any such
character, the transition from premises to conclusion cannot be
effected by any sequence of applications of our rules. The
proof of the theorem is an inductive process, and shows that
any proof of the premises can be transformed into a proof of the
conclusion.

THEOREM 11. (Elimination Theorem.) If g - j),

(11) X, A IhD,
and

(12) X|HA,SJ
then

Remark 8. By Theorem 2 there is no loss of generality due
to the restriction g - g). Without this restriction (13) would
be

X Ih S>8-

Proof. This will be accomplished in three stages as follows:
1) Reduction to the case where (11) is the conclusion of an in-
stance of a rule 04 for which A is the principal constituent.
The case where A is elementary will be disposed of completely in
this stage. 2) Further reduction to the case where (12) is the
conclusion of an instance of a rule Or for which A is the prin-
cipal constituent. 3) Disposition of the case where both these
simplifications hold, by an induction on the order of A.

Stage 1 . We assume that the theorem is true, for the partic-
ular A we are interested in, whenever (11) is the conclusion of
a rule n4 for which A is the principal constituent. This as-
sumption is called the hypothesis of the stage.

Let A = TifTs* • • • >Tn be a normal derivation of (11) according
to the original rules of §4. We neglect applications of Rule C
as stated in §4. Let rk be
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where Uk is a prosequence, all of whose constituents, if any, are
like A, defined as follows:

a) If k = n, Xn is X, ttn is the A in (11), g}^ is |).

b) If *k < n, Pfc is used as premise in deriving a unique Tm,
m > k, by a rule Rm. Then ttjj. consists of 1) those parametric
constituents of Em which are in Pfe and 2), in case Rm is W4
with principal constituent in ttm, the two like components.

It then follows by induction that all constituents of ttk are
like A, and that all are parametric for Rm, or are components of
a contraction. Further if ttm is void, ttk is void also. The def
inition provides for the possibility that the parametric constit
uents do not occur in all the premises. We shall assume, as we
may by virtue of Theorem 2, that

(14) x 5 xk> 3 < $£.

With Tfc so defined, let Tk be

I shall show, by induction on k, that every r^ is derivable.
There are two main cases, (a) and (P):

(a) Ft is prime. Here there are three subcases:

(oil) - Some constituent of Xk is in Dk . Then T ̂ is also
prime .

(a 2) - Some g)k is an axiom. Then rk is also prime.
(cc3) - Some ttk is in §k . Then Dk is of the form A,Ŝ ..

Then by (14) we can apply Rule K to (12), and obtain

which is ri-

(p) Tjs; ls derived from premises T±lfT^ , . . ., T^ , by a rule

Rk- Again there are three subcases:

(pi) - All constituents of &k are parametric. Then ]?£ is
derivable by the same rule Rk from T± ^...f r^ •

(p2) - Rfc is W4 with principal constituent in U^ and prem-
ise FI- Then T^ is the same as T^ .

(p3) - Rk ls n°t Wfc and has principal constituent in ttfe.
Then if all parametric constituents in Ek are omitted the rule
is still valid. The premises are then Ti^ ,T±z , . . ., T±^9 while
the conclusion is

*k> A

But by Kf, ana (12) we have (in virtue of (14))
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Hence by the hypothesis of the stage we have T k .
This completes Stage 1. Note that the case where A is ele-

mentary has been disposed of completely because case (p3) cannot
then arise (the principal constituent of all rules 04 is always
compound) .

Stage 2. The argument for this stage is partially dual to
that of Stage 1. It is only necessary to comment on the points
where there is a departure from duality.

The standard form for r is

3k >
where we now suppose simply

(15) X < 3Ek.

The form for F k is Xk |h$, 3k,

provided tt^ is not void; if tt^ is void Fk is the same as r^.
In deriving the Fjj. by induction there are now four subcases

under Case ( a), viz . ,

(ctl) - Some constituent of gk is in X^- Then F^ is also
prime .

(a2) - Some g^ is an axiom; then Fk is again prime.
(ctj5) - A is an axiom. This was disposed of completely in

Stage 1.
(<x4) - A is in X^. Then we have by (11) and K4

Kr
*k IT 0,3*.

I
The conclusion is Ffc- i

In case (|33) the argument is as follows. If U^ is void* Fk
Is the same as Fk- If not, then from F^ ,Ti2,***9l?i and Rk we
have 1 2 p

X k l h A, (8), 3k|

where the parentheses around "g" Indicate that D does not occur
if there are no parametric constituents. By applying K to (11)
we have

Hence by the hypothesis of the stage we have Fk-
Note that since the case where A is elementary was disposed

of in Stage 1, we can exclude the possibility of Er in subcase
(p]5). Further the entire argument is valid in LA if all 3's are
void and all gfs singular (but 3k can be singular if U^ Is void)

Stage 3. As stated at the beginning of the proof we suppose
here that
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A = Bo C,

and that (11) is a consequence of a rule 0£ and (12) of the cor-
responding rule Or, A being the principal constituent in both
cases. We suppose the theorem true for B and C and prove it for
A. Since the theorem was proved for A e § in Stage 1, this
proves the theorem by induction on the number of connectives in
A.

Let the premises for the rule 0^ be Fi (and F 2 if there are
two), and those for the rule Or be F 3 (and F 4) . Then the various
possibilities are as follows:

Case P. A = B 3 C. Then the premises are

Ti X If-B, SS 3' < $,

T 2 X, C IKS),

r3 x, B 1-0,8* B < 8-

Prom F2, T3 and the hypothesis of the induction

X, B l-fl.

Hence by Fi, and the hypothesis of the induction

X IB-

Case A . A = B A C. Here we have two possibilities for the
single premise for A"fc. If we call them Fi and Fa we have in
this case

Ti X, B II- D, T2 3C, C H),

s, r4 xl-c, 3.

Prom Ti and T 3 (or T2 and T4 as the case may be) and the hypothe-
sis of the induction

X ||-2) q.e.d.

Case V. A = Bv C. In this case the premises Ts and T4 are
alternative while Pi and F 2 are simultaneous. The premises are

Ti X, B H, F2 X,C H),

F3 X||-B, 3, T4 3e|hC, 3-

Prom whichever pair holds, and the hypothesis of the induction,
we have

X|-8 q.e.d.

COROLLARY 1. If
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and

then

•^o*^3L>'-«*^m Ir ® *8 1 , • • • ,8 m .

This follows "by induction on m and Remark 8.

COROLLARY 2. If

Ai,...,Am |- B,

and
X , B H) ;

then

X, Ai,...,Am||-$ -

Proof. By Theorem 1

X, AI,. . . , Am (f B.

The result follows by Theorem 11, with 3 void, and K4.

8. The Natural System T. Beside the systems LA and LC which
we have Just been studying, Gentzen introduced what he called
the natural systems - in fact he introduced these first. Gent-
zen !s idea was to stay as close to actual reasoning as possible.
In such actual reasoning we argue from suppositions; having es-
tablished a thesis on the basis of certain suppositions, we
later state the thesis as an implication and discharge the sup-
positions.

The elementary statement of a natural system is thus of the
form "A is valid on the suppositions X." This is, of course, the
same idea as the "X ||- A" of §2. But the basis of the formaliza-
tion is quite different. Whereas in§ 2 we analyzed the meanings
of the logical connectives by specifying the conditions under
which they could be introduced into discourse, the objective of
the natural system is to formulate as simply as possible the
rules for their practical manipulation. In view of this differ-
ence of objective I shall introduce a new notation, viz.

(16) AeS(X)

for the elementary statement of the natural system. In such a
statement we call A the subject and X the supposition. This
amounts to saying that we shall use "S(X)M as meaning the class
of propositions valid on the suppositions X. For practical pur-
poses (16) will often be abbreviated, as in the statement of the
rules below.

17. For void 3 this is the scheme "Syllogislmus" of Hertz [89], Cf. foot-
note 7 in the Introduction
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The natural system will be called hereafter simply the sys-
tem TA(6).18

In stating rules of inference in TA(e) the following abbre-
viation is convenient. We shall say that a rule

AI , . . . ,Am
B

holds relative to X if the rule

AI e £(x),...,Amg g(x)

B e £(X)

is valid. This is convenient when all its statements have the
same supposition; it will be used when m > 1. When some of the
premises Involve an extra constituent, it will be indicated in
brackets over the subject; thus the rule

[B]
AI, • . . ,Am, Am+i

C

shall be said to hold relative to X if and only if the rule

Ai e £(X),...,Am e S(X), Am+1 e£(X,B)

C e £(X)

holds .
The rules for TA(e) involve certain preliminary rules, a

rule of elimination and a rule of introduction for each connec
tive, together with a rule analogous to Er which we treat as a
rule of introduction, as follows:

RULES FOR THE SYSTEM TA(6)

Preliminary Rules.

tl) A e £(A).

t2) If A e 8, then A £ £(0).

t3) If X £ g, then £(X) £ S(8).

Rules of Introduction and Elimination.

The following hold relative to any supposition X,

El If Ai,A2,...,Am h B,

B

-Lo. Gentzen ccOlecL it WJ, Taut this conflicts with our use of "N" for nega-
tion.
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[A]
££ A, A 3 B PI B

B A D B

Aje A A B A A B 4± A, B
A B A A B

A v B, Cy C VI
C A v B A v B

To illustrate the technique of using the TA system, we con-
sider the first example of §6, viz.

AD. BD C : D : ADB . D . AD C.

In view of the rule Pi, this will follow if from the supposition

1. A D . B DC

we derive
ADB . D - ADC.

The latter will be valid, subject to 1, if from 1 and

2 . ADB

we derive
A D C .

This in turn will follow if we derive C from 1,2, and

!>. A.

This last is immediate $ thus

Prom 1 and 3 : B D C .

From 2 and 1>\ B.

By Pe C.

The whole proof can be written schematically, as Gentzen does it,
thus :

\S v' V v/'
3 2 3 1
A A D B r A A D . B D C pe

B B D C pe

c Pi-3
_._A_D C Pi-2

A D B . D . A D C Pi-1
A D . B D C : D : A D B . D . A D C

1. A D. B D C

2. ADB

1>. A

Here each horizontal bar represents an inference by the rule
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written at the right, the supposition indicated by number being
discharged. (The discharge of a supposition is shown by a check
mark.) The scheme shows exactly under what suppositions each in-
dicated proposition is asserted.19 The reader should note that
the scheme can be constructed by starting with the proposition to
be proved and working upwards, writing the suppositions down un-
derneath, at least as rapidly as the proposition can be tested
with truth tables.20 The latter gives no information about val-
idity in LA.

The technique can be shortened by establishing the following
theorem.

THEOREM 12. The following three statements are equivalent:

(a) B e S(X, Ai ,A 2 , . . . ,Aa) ,

(b) Ai D . A2 D . ... D. Am D B e £(*) ,

(c) the rule
AI , Ag, ... 3 Am

B

holds relative to any g) such that 3£ S g .

Proof. If (a) holds then (bj follows by successive applica-
tions of Pi, discharging the Ai , . . . ,Am in inverse order. Sup-
pose (b) holds and X £. $; then if AI e f) (i = l ,2, . . . ,m) we have
B E £(g) , by successive application of Pe , showing that (c)
holds. Finally suppose (c) holds. Since, by tl and tj5> we have

we can apply (c) when D = 3C, Ai , . . . ,A m . This gives (a) as con-
sequence of ( c ) , q.e.d.

Using this theorem we can discharge several suppositions at
once. Thus the above scheme could be written:

A A 3 B pe A A D. B D C Pe

B B 3 C pe
n

-1, 2,3
A D . B D C : D : A D B D . A D C

1. A D . B D C
2. A D B
3. A

19. Note applications of the preliminary rules are tacit, Each proposition
in the scheme is valid under all the suppositions written OTer it plus any
others which may "be desired. Thus in the second line of the scheme we have B
from 2 and 3 "but B D C from 1 and 3. In order to apply Pe we need to apply
t3 to "both. But the omission of these uses of t3 causes no real difficulty.

20. This is frequently "but not always the case. In some of the proofs giv-
en later I have found them more readily "by the technique of § 6, "but present
them In the more compact schemes of the natural system.
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Another example is

A D / . A A B . DC. D : A D C . v . B D C

for which the scheme is
•• •"

A A B A A B . D . C pe
C p^ _ 2

B D C v±

AD .-. A A B . D C : D : A D C . V . B D C

1. A

2. A A B .D . C

3- B

We now establish two theorems concerning the relation of the
T-system to the system LA.

THEOREM 13- If 3 is a fixed prosequence and we interpret

(16) A e S(X)

to mean

(17) X Ih A,S in LC(6);

then the rules of TA(g) are valid.

Proof. On the above interpretation the rules tl and t2 are
special cases of pi and p2, while t3 is a special case of The-
orem 2, Corollary 2. The rules Ei and Oi are identical with
rules Er and Or respectively. It remains to consider the rules
Oe.

Proof of Pe. By P0 (Theorem 6) and Theorem 2,

X, A, A D B |-B, 8-

By weakening the second premise of Pe,

X, A ||-A D B, 3.

Hence, eliminating A D B by the elimination theorem,

X , A |h B, B -

Prom this and the first premise of Pe we can similarly eliminate
A by the elimination theorem. The result is the conclusion of
Pe.

Proof of A e. We prove the left-hand half of A e only; the
proof of the right half is similar. By pi

X,A ||-A.

•'. (A4) X, A A B IhA.
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Eliminating A A B between this and the premise of Ae,, we have
the conclusion of Ae.

Proof of Ve. From the second and third premises and rule V4
we have

X, A v B |h C, S-

Eliminating A v B with the first premise we have the conclusion.

Remark . The • statement P0 adduced from Theorem 6 is derived
by the rule P4. Thus in all the three cases the rule Oe is de-
duced from the corresponding rule 0<C.

COROLLARY 1. If in TA(g)

A e S(X);
then

3E I-A in LA(6).

Proof. This is the case where 3 is null.

THEOREM 14. If in LA(6)

X M;
then ,in TA(6)

A e S(3C).

Proof. In this case we show that if (2) is interpreted as
meaning (16) the rules of the LA system are epitheorems of the
TA system.

We note that rules C, W, and K are all valid by t^. The
rules pi and p2 follow from tl, t2 and Rule K (or tj5). (Cf. Re-
marks 2 and 3 in §5.) The rules Er and Or are, as before, Iden-
tical -with Ei and 01. It remains only to consider the rules Qt.

In proving these we shall use Theorem 12 and the technique
above described. In the schemes below Ml and M2 are the premises
of the rule to be derived. The supposition 1 in each case is the
principal constituent in the rule; the parametric constituents
are not mentioned - all these inferences are valid relative to an
arbitrary x as explained above. The right side of the rule is a
single proposition which we denote here by "C". We show C is
valid on the supposition 1 whlCn proves the rule valid by Theo-
rem 12.

Proof of PI.

Ml 1 - M2
A _ A 3 B pe C .

Pe
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Proof of Al. We prove the first half only; the proof of the sec
ond half is similar.

Pi- 2

Proof of

Ml -- M2

To make sure the technique is not misunderstood I give below
the proof of P4, putting in all applications of tl-t3.

A e S(X) by Ml
A e £(X, A D B) by t?

A D B 8 S(X, A D B) by tl, tj
(18) B e S(X, A DB) by Pe

C s S(3C, B) by M2
B D C e £(X) by Pi
B D C e £(3C, A D B) by t3

C s S(X, A D B) by (18) and Pe q.e.d.

We consider now the system TC. This is defined as the sys-
tem formed by adjoining to the rules for TA the rule21

Pk [A D B]
A
A

THEOREM 15. Under the interpretation of Theorem 13 the
rules of TC are valid. Hence if (16) is valid in TC. (17) is
valid in LC.

Proof . Since the rules of TA are valid in 'LC by Theorem 12,
it remains only to consider Pk. But in the third example of
§6 we showed that

|(- A D B . D A : D A in LC .

Hence by Theorem 13 and our interpretation

A D B . D A : DA e S(0).

This is equivalent to Pk by Theorem 12.

21. This IB Intuitively equivalent to Peirce's law. It is known that
Peirce's law is sufficient to deduce all classical properties of implication
from the intuitionlstic ones (cf. footnote "below, under Theorem 22). The
rule was also stated toy Popper [68].
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It is possible to get an interpretation of LC in TC in the
following manner. Intuitively the statement

(19) X (I- A, Zi,...,Zn

means the same as

(20) X I-A v Zo. v Z2 v...v Zn.

Now the propositions A v B and A D B . D B have the same truth
table (in the sense of Table 1). Hence the above is equivalent,
Intuitively, to

X |f- Zi D A . D A,...,Zn D A . D A,

and hence to

(21) X,Zi D A,...,Zn DA ||- A.

The statements (19) and (21) are in fact equivalent in LC. In-
deed from (19) and the prime statement

X, A |- A, Zi, . ..,Zn-i

we can get
X, Zn DA ||- A, Zi, ...,Zn-!

by P4, and so we can continue until we have (21). On the other
hand if we start with (21) then we have, by Pr,

X, Zi D A, ...,Zn-! D A ||- Zn D A . DA.

But we have

Zn D A . D A ||- A, Zn

by an argument like that used to prove Pel in §6. From the
last two statements and the elimination theorem we have

X, Zi DA^.^Zn^D A If- A, Zn.

In this way we can continue until we have (19).
This, in combination with Theorem 15* leads to

THEOREM 16. A sufficient condition that

(19) X |h A, Zi,...,Zn in LC

is that

(22) A e S(X,Zi D A ,...,Zn D A) in TC.

Proof. If (22) holds, then (21) does by Theorem 15. This
leads to (19) by the argument above.

The necessity of the condition (22) is shown by the follow-
ing theorem.

THEOREM 17- If we interpret

(19) X If-A, Zi,. . .,Zn
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in the TC system as

(22) A e S(X,Zi D A,Z2 D A,...,Zn D A);

then the rules of the LC system are valid. Hence if (19) holds,
so also does (22).

Proof. For the rules Al and VI the proofs in Theorem 14 are
valid in the present case. We consider the other rules of LC
one by one as follows:

£l. If A is in X, then this follows by tl and t3. If some
Zi is in X, then (22) follows by t3 from

A e fi(Zi,Zi DA),

which in turn follows by Pe and Theorem 12.

p2. If A is an axiom, (22) follows by t2 and t3. If some
Zi is an axiom, then (22) follows, by Theorem 12, from the fol-
lowing argument:

ta 1
Zl Zj D A pe

A

Cl and Wl follow at once by t^.

Pi. Let the first constituent in $ be C, the other constitu-
ents, Zi,...,Zn- As noted in footnote 11 we can suppose g = g.
Then the premises of the rule we wish to establish give us the
rules

Ml X,C 0 A, ZiO A, ...,Zn D A
A

M2 X,B, Zi D C,Z2 D C , . .. ,Zn 3 C B
C

We wish to show that

X,A D B, Zi 0 C,...,Zn D C .
C

The proof scheme for this is as follows (the X is not indicated;
cf. above):

2 4 ^ 1 5

— Q-1 Pe
c 3 A Similar proof for

Pe j o -z ri

Pi-4
Z.i D A Zg D A... Zn 0 A JQ

—A pe
-5-M2
-^—Pk-3
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Cr. (Noto that this rule is not trivial in this case.) If
only the Z's are permuted the rule follows by tj5. We consider
the case where A is permuted with one of the Z's, which we can
now suppose, without loss of generality, to be the first. Let
this be B and let the other Z's be renumbered Zi,Z2,•..,Zn-
Then what we wish to prove is the following: given the rule

Ml X, B D A, Zi D A, . ..,Zn D A f
A

to derive the rule

3£j A D B, Zi 3 B, . .. ,Zn 3 B

B

The proof scheme for this is the following:

1
Zi 3 B Zi pe

B B 3 A Pe Similar proof for
A PI li i = 2,...,npi - 4

Zi D A _ Zg 3A,,. .,Zn 0. A
A D B _ A Pe

-
Wr. If A is not a component, the rule follows at once by

tj. If the components are A and Zn then the premise of the rule
is

A e S(X,Zi D A, ...,Zn-1 D A,A D A).

By Theorem 12 this is equivalent to

A D A . D A e S(X,Zi 0 A, ...,2^ D A).

But since A 0 A is in £(0), we have by Pe

A e £(X,Zi DA,...̂ !̂ DA),

which is the conclusion of Wr.

Pr . Here the premise, by Theorem 12, is the rule

Ml *' A' Zl 3 B' •• "Zn 3 B •
B *

the desired conclusion is

D . A D B, ...,Zn D. A D B
A D B
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The proof scheme is

7i Zi3 . A D B pp
—. ~ ~ A Similar proof for

^-2-5 A pe ± = 2,3,_,n

B " ••• Zn D B Ml.

Pi - 2
A D B

Ar. Here the premises are

MI & Zi D A, .. . ,Zn D A M0 3E,Zi D Bj..«>Zn D B
jy|j_ i i r - j l¥lc •

The desired conclusion is

XfZi D . A A B, ...,ZnP • A A B .
A A B

The proof scheme is

Zi Zi D . A A B Pfa
A A B S i m i l a r proof f o r

Ae =A Pi-2
Zi D A Z2D A,...,Zn D A M1 a

A

Thus we derive the scheme

Zx D A A B̂ .̂ Zn D A A B
A

using Ml. By a similar proof, using M2, we show B follows from
the same premises. If we combine these schemes byAi, we have
the desired conclusion.

Vr. We prove the first half only; the proof of the second
is similar. The premise is

Ml **Zl 3 A,...,Zn D A r
A

The desired conclusion is

3e,Zi D . A v B, . . . ,Zn3. A v B 9

A v B
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The proof scheme is

vX1 3
Zi 3 . A y B Zi Pe $

A v B _ A v B . D A

Pi -5 Similar proof for
A, .. . , ZnD A M1 i=2,3,...,n.

A v B

Remark 1. Note that Pk was required in Cr, P4, and Vr.

Remark 2. An alternative scheme would be to regard (20),
rather than (21)̂ 8 translation of (19). Then we could justify
all the rules of LC except Pr without going outside of TA; Pr
could be justified most easily by (5). The present procedure
has the advantage that no rule for V or A is involved unneces-
sarily; this leads to Theorem 22 (below).

Remark 3. The proofs in the TC system do not have the same
constructive character that proofs in TA have.

We may sum up the preceding investigation in a theorem as
follows.

THEOREM 18. A necessary and sufficient condition that

X |(- A,Zi, . ..,Zn

in either LA or LC, is that in the corresponding T system

A e £(36,Zi D A,...,Zn DA);

it being understood that in the case LA-TA n = 0.

The following theorem shows that £(36) has the properties of
a Polgerungs - relation in a sense defined by Tarski.22

THEOREM 19. The class £(36) has the properties

(a) a + 36 C $ (36),23

(b) If 36 C g), then £(36) C £(g))>
(c) £(£(36)) C £(36),

(d) JEf A e £(36), then there exists a finite set Xi,...,Xm,
such that A e £(Xi,..-,Xm).

Proof. Property (a) follows from tl, t2, t3- Property (b)
is precisely t3. Property (d) follows, in the light of the
equivalence between L system and the T system, from Theorem 5.
As for property (c) if A e £(£(36)) then by (d) there exist

22. Tareki [78, 79], of. [80, 75].
23. Here lf+" indicates class addition.
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Bi, . . ,,Bn e S(X) such that A e £(X,Bi, . . .,Bn)> while BI e £ (x) .
Hence by Theorem 12, A e

9- E q u i v a l e n t P r e p o s i t i o n a l Algebras. Systems HA and HC.
A prepositional algebra, in the ordinary sense, may be looked at
from our present point of view as a subclass § of sp (o) defined
as follows:

(a) A certain class of propositions are postulated as belong-
ing to §. These will be called the prime propositions of £ .

(b) The rule of inference

Ph A _ A 3 B
B

is valid in the sense that whenever A and B are in p (0 ) , and the
propositions on the top line belong to £ , that on the bottom line
does also.

Various schemes of prime propositions may determine the same
class § . We do not distinguish different methods of specifying
prime propositions as giving different algebras but rather as
different formulations of the same algebra. Thus "prime propo-
sition" is relative to the formulation.

We consider here algebras HA and HC which are equivalent to
the systems LA(o) and LC(o), respectively, in the sense that H
is the class of propositions A such that |(-A holds in the corre-
sponding L-system. We consider the problem of characterizing
these algebras. We shall see that HA and HC consist of those
propositions of the Intuitionlstic and classical propositional
algebras respectively which can be expressed with our connec-
tives.

THEOREM 20. A set of prime propositions for the algebra HA
consists of those obtained from the schemes PK, PS, A K, AK1, Ai*
VK, VK', Vi of Theorem 6 by taking for A, B, C any propositions
of SS(S).24

Proof. Let § be propositions generated by Ph from the prime
propositions stated. Then>ln view of Theorems IJ and 14, it is
to be shown that $ is the same as S (0 ) .

That all the propositions in the above schemes are in S (0 )
was shown in Theorem 6. That the rule of inference is valid for
S(0) was shown in Theorem 12. Hence £ C £.

It remains to show that £ £ $. To do this, let §( x) be the
class generated by the rule of inference If we adjoin 3E to the
prime propositions stated. I shall then show that the rules of
TA system are verified if we interpret £( 3E) as §(*). This will
be done for the various rules as follows:

2k. It follows that the algebra HA is the positive part of the proposition-
al alge"bra of Heyting. See the Introduction, footnote 3. This is the posi-
tive logic of Hilbert-Bernays
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tl. Clear by definition.

t2. Vacuous, since 6 here is £).

t3. Clear since a derivation in§(x) is also a derivation
in §(8).

Pe. This is Ph.

Ae. Follows by schemes A.K and AK!.

Ve. We reduce this to Pi. If Pi holds then the premises of
Ve are A D C , B DC, and A v B; from these we have C by Vi.

Pi. This is the famous deduction theorem?5 To prove it we
first establish the scheme

(23) A D A .

In fact, if we put A for C in PS we have

A D - B D A : D : A D B . D . A D A .

Hence by PK and the rule of inference

A D B . D . A D A.

Here B is arbitrary. Taking B D A for B and applying PK we have
(23).

This established, let B E § (3£,A). Then there is a sequence
of propositions Bi,B2,. ..,Bn such that Bn is B, and every Bk is
either A, or is in X, or is a prime proposition, or is obtaina-
ble from Bi and B-j25a by Ph. I show by induction that for every
k, A D Bk is in $(X). If Bk is A this follows by (23). If Bk
is in X, or is a prime proposition, it follows by PK. Finally,
if Bk is obtained by Ph from BI and Bj, then Bj must be BI D Bk
(or vice versa). From PS we have

A D . Bi D Bk : D : A D B± . D . A D Bk

By the hypothesis of the induction and Ph (twice) we have
A D Bk e ,<e ( X ) .

Ai. Suppose A e £ ( X ) , B e £ ( X ) . Then by PK, for any
C, C D A and C D B are in $ ( X ) . Hence, by Ai, CD. A A B l s in
% ( X ) . Here C is arbitrary; hence take C = A D A and apply (23).

Remark. The proof would be easier if we replaced Ai by As-

Vi. Follows by VK and VK'.

THEOREM 21. A set of prime propositions for the algebra HC
consists of those for HA together with either Pei or (5).

25. Cf. Eilbert-Bernays [4?] p. 155 and Church [14] pp. 9-11. Church has
kindly furnished, in a letter, the following Information concerning the the-
orem. The earliest appearance of the theorem, with proof, is In Herbrand
[42J. The property Pi is stated as a postulate, Axiom 8*, "by Tarskl In [79].

25a. Where i < k ana J < Jc.
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Preof . Let § (x) be the class of propositions generated by
adjoining Pel to HA. Then, since HA £ HC, Pel e HC (Theorem 6),
and Ph is valid in HC, we have §(0) £ HC. Hence in TC,
$(3C) C £(x). The converse follows, as in the proof of Theorem
20, since all rules of TC except Pk are justified by HA, and Pk
follows at once from Pel.

As for (5) it follows from Pel, as follows. Let

C s A v . A D B.

Then we have the proof scheme ^
^ 2
1 A D B vl

C 3 A _ C Pe
A pjj. _ 2

— Vi
-5- Pk- 1
C

On the other hand, one can derive Pel from (5) in TA, tnus

1 A D B . DA _ A D Bpe
A D B _ A _ ye_ ̂  4

B . D A
Pi- 2

THEOREM 22. In any derivation in either HA or HC, the only
prime propositions used, in addition to those involving implica-
tion only, are from among those relating to connectives which
actually appear in the final result.26

Proof. This follows from Theorem 10 and from the fact that
in establishing the validity of any rule of the L-system, when
interpreted from the standpoint of the H-system, we have actual-
ly used only prime formulas conforming to the statement in the
theorem.

C OROLLARY . The propositions of HA which contain implication
only are derivable from PK and PS; those of HC from these and
Pel. 27

10. Concluding Remarks. We have studied two systems LA(6J
and LC(S). The first of these arose by making very precise

26. On this theorem Cf. [22] and ¥ajsberg [84], At least a part of the re-
sult ¥as mentioned in a letter from Bernays in 1932. Cf. [kj] p. 70f.
27. The first of these results was mentioned in Bernay's letter of 1932 and

ascribed to fcukasiewicz. It is related to the fact that all combinators can
"be defined in terms of S and K. The second Is a theorem of Tarski-Bernays.
Cf. [47] pa. 70f. and [59] Satz *29.
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definitions of what we mean in introducing the logical connec-
tives. It is thus semantical and constructive in character. It
can therefore be said to represent truthfully the properties of
formal deducibility.

On the other hand the system LC arose by a formal analogy
with LA. It was probably suggested to Gentzen, as later to
Carnap, by a certain lack of duality in LA. This theory was de-
veloped in parallel with LA, and most theorems of LA could be
extended to it. Thus, although this system has no justification
semantically, yet we are able to prove Theorem 8 for it. It is
thus Just as consistent with 6 as is LA.

Related to the system LA is the system TA of §8. This was
called the natural system because it reflects the properties we
assume almost instinctively in using our connectives. But to
deduce these properties from the definition was a long and tedi-
ous process. It made use essentially of the fact that the rules
of the underlying system have the form (6). Now there are sys-
tems for which the rules do not have that form. Systems with
mathematical Induction are an example. For such systems the
proof of the elimination theorem, and hence the derivation of
the system TA, does not hold; and indeed if we were to prove
these by any such methods, we should run into conflict with the
theorem of Godel [58].

The intuition!stic algebra HA was invented by the intuitlon-
ists because It was in agreement with their constructionist
tendencies. But Godel [40] showed that their arithmetic is no
more constructive than the classical. The preceding discussion
throws light on the reason for this. Indeed the really non-
constructive moment in the theory of arithmetic is the tacit as-
sumption of the rule of Inference, and hence of the elimination
theorem.

It will be seen from this that the attachment of the word "na-
tural" to the system TA is, in one sense, a misnomer. Indeed the
word "natural" has two senses: 1) as related to the essential
nature of the object, and 2) as reflecting what we do instinc-
tively. In the former of these senses a Napierian logarithm is
natural, but hardly in the latter. In the former of these
senses the natural system of formal deducibility is the system
LA.


