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THE TEACHING OF THE CALCULUS OF PROBABILITY

There has always been considerable disagreement among

experts concerning the significance of the relation between

probabilities and the statistical data with which these

probabilities are supposed to be somehow connected. Such con-

troversy indicates both that the relation is important and

that it is difficult to grasp. In presenting the theory of

probability to students, one should therefore make every effort

to clarify this relation. I shall give a brief outline of

such a presentation.

Phys 1 cal measurement s . If we make n measurements

x* ',* ,...,x of some physical quantity these measure-

ments will in general differ and it is natural to take the

average i -i* as an estimate of the quantity measured. It

is reasonable to suppose that in general this estimate Improves

as n increases. This situation can be formulated mathemati-

cally as follows: We Imagine that an infinite sequence x of

numbers x^' is associated with the quantity to be measured.

We also Imagine that there is associated with the above quant-

ity a number p(x) which we can call the expected value of the

quantity to be measured. We observe n terms of the sequence x

by making n measurements. We assume that our estimate
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pn(x) = ~ ir?i
x °^ *he expected value tends to improve as n

increases and that lim p~(x) = p(x). I shall have more to say
n-*» n

concerning this assumption at a later point.

Functions of sequences. We are frequently confronted

with the problem of estimating the expected value of some

function of one or more physical quantities* Thus we introduce

the following definition: Let f(u,v) be a function of the

variables u and v and let

be two sequences. Then

f<x,y) =

Thus a function of two sequences is itself a sequence. For

example

x * y - * < l > + ytl>. x<2>+y<2>....

and from this equation it follows that

p(x+y) - PU) * P(y).

The definition of a function of sequences is readily extended

to the case of n sequences.

Constant sequences. We also have occasion to consider a

function in which some of the arguments are sequences and the

remaining arguments are parameters which do not vary from one

measurement to the next. Thus we introduce the following

definition: A sequence

a = a, a, a, ...

all of whose terms are the same is called a constant sequence

or parameter. The same letter is used to denote both the

sequence and the terms of the sequence. The ambiguity of
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notation does not seem to cause any difficulty.

Variance. As an example, the expression

p[(x-a) ] = p(xr) - 2ap(x) + a measures the average squared

deviation from the parameter a. The minimum value of this

expression with respect to a is p(x2) - p2(x) = o2(x) and this

minimum is attained when a = p(x). The number o2(x) is tailed

the variance and its square root o(x) is called the standard

deviation. In an analogous manner we can define the variance

02(x) = pn(x ) - p
2(x) and the standard deviation on(x) for a

finite sequence of measurements.

Events.• If we let 1 and 0 denote respectively the suc-

cess and failure of an event on a given trial, then an event

may be regarded as a physical quantity the measurements of

which can have only the values 1 and 0. If x is the corres-

ponding sequence, then Pn(x) is the success ratio for the

first n trials and p(x) is the probability of the event.

Algebra of events. If x and y are 1,0-sequences, they

can be regarded as the sequences of successes and failures

associated with two events. It is easily seen that ~x » 1 • x

represents the event "not xn, x*y represents the event

"x and yir, and xvy »~(~x«~y) s x •*• y - x«y represents the

event nx or y (or both)w. We have the relations

p(~x) * 1 - p(x), p(xvy) • p(x) + p(y) - p(x»y).

The event *x if yn is denoted by x c y and is defined as

follows:

* c v • x(nl) *(n2J *(nfc)x c. y — x ,x ,.. .x , •. •

where nk is the trial on which the k-th success of y occurs.

The sequence x c y is in general infinite and is obtained as
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the result of a selection operation on the sequence x, the

n-th term x'n' being selected if and only if the n-th trial of

y is a success (i.e., y'n' = 1). We have the relation

p(x)p(ycx)= p(x-y).

Mutually exclusive events. Two events x and y are said

to be mutually exclusive provided x«y = 0. If the events*

x,,Xg,...,xn are mutually exclusive, then

pfx-j^v xg v... vxn) = pCa^) * p(xg) + ••• * P(Xn)*

Independent events. The events x1,x2,...,xn are said to

be Independent if

pCẑ Xg*...̂ ) = p(x1)p(x2)...p(xn)

and if a similar condition holds for every subset of these

events. If two events x and y are Independent, then

p(xcy) » p(x) and p(ycx) = p(y).

This algebra forms the basis for the solution of the usual

probability problems.

Fundamental function. The function y^fu) depends on the

variable u and the interval I, and is defined as follows

' 1 if u is in I

otherwise.

If x is a sequence associated with a physical quantity, then

(̂x) is a 1,0-sequence representing an event which succeeds

or falls on its k-th trial according as the k-th measurement

of x does or does not fall within I. The probability that

the measurement will fall within I is p[?j(x)].

Note that subscripts are used to indicate dif-
ferent sequences whereas superscripts are used to
Indicate the different terms of a given sequence.

C
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Tchebycheff 's inequality. Let I be the interval

p(x) - e < u < p(x) + e. Then -^Pjfu) ̂  fu-p(x)] /e2 and

hence we obtain the following inequality of Tchebycheff:

"Thus the probability that a measurement will be in error by

more than e (i.e., fall outside the interval) is at most

o2(x)/e2.

Independence of physical quantities. Let x and y be the

sequences associated with two physical quantities. Then x and

y are independent provided the events f>j(x) and ̂ j(y) are

Independent for every pair of intervals I and J. It can be

proved that if x and y are independent, then p(x»y) = p(x)p(y).

If x and y are dependent, then

r(x,y) = [p(x-y) - p(x)p(y)]/o(x)a(y)

measures the correlation between them. If x.fXof*«x are

independent, then

o2[(x1 + X-, + ••• *xn)/n] = [o
2(x1L-«-a

2(x2)-i'... + o
2(xn)]/n

2.

Thus for the average (x.^ + Xg + • • • + x̂ /n of n physical

quantities, Tchebycheff fs inequality takes the form

P̂ t̂U+x̂ .-.+xJ/n]} < [o2(x) + a^xg)*--. + o^)]/*2*2.

Independence of indi vidual observations . We shall intro-

duce certain 1,0-sequences in terms of which we can give a pre-

cise meaning to the Intuitive boncept of independence of

observations. Let (r,n) be a sequence in which the lfs occur

in the terms whose superscripts are r +1, r+n + 1, r+2n + l, ...
if.

and the O's occur in the remaining terms. Then the sequence

Note that in the definition of a, c y, x need not
be a 1,0-sequence whereas y must be such a sequence.
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x c (r,n) Is obtained by selecting the (r+l)-st term of the

sequence x and every n-th term thereafter. Note that the

first terms of the sequences xc(0fn), xc(l,n),...,xc(n*l,n)

constitute the first n terms of the sequence x (I.e., the first

n observations). The second terms of these sequences consti-

tute the second group of n terms of x, etc. We shall say that

the observations are Independent provided the sequences

x c (o,n), x c (l,n),...,x c (n-l,n) are Independent for

every n. If this condition Is satisfied and If further

pjpjlx c (r,n)] j- » ptVjCx}] for every Interval 1 and every

pair of Integers r,n such that 0 < r < n, then x Is said to be

admissible. It can be proved that If x Is admissible, then

p[x c (r,n)] = p(x) and o[x c (r,n)] = a(x). It Is reasonable

to assume that the sequence x associated with any physical

quantity Is admissible.

Error of the average of n trials. Let us consider the,

average X̂ n where

Xn » x c (o,n) * x c (l,n) + ••• * x c (n-l,n)

and where x Is admissible. The following formulas are readily

established

Xr/n * pn(ac)' pnf* C (n»111' Pn
tx C

Applying the Tchebycheff Inequality we get

= «8(«>/«8-

Thus the probability that a term of Xn/n shall be In error by
n O

more than e Is at most o (x)/ne . This Is a precise formula-

tion of a more common elliptical statement, namely, that the
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probability that the first term pn(x} shall be Ipr error by

more than e Is at most 02(x)/ne2. It Is customary to replace

o2(x) by 02(x) since the latter quantity can be calculated

from the first n measurements. As the Inequality Is exceed-

ingly generous It probably continues to hold after this

replacement*

Distribution functions* Let Ifl and IJ be respectively

the Intervals - •• < u < s, - •» < u < a and let

Pt<Pls(x)] = F(s+0), p[fit(x)] = F(s-0), and

[F(s - 0) + P(s + 0)]/2 - F(s). In general*

F(s+0) - I**, F(s *e), F(s-O) - |?f0 F(s-e), F(s) Is mono-

tone, F(- • ) - 0, and F(+- ) » 1. Finally, If I& b is the

interval a < u < b, then

(x)] - F(b 4-0) - F(a

The function F(s) is called the distribution function associ-

ated with the sequence x.

Integrals. Let g(u) be a continuous function and let

Then it is easy to see that

m[F(b+0) - F(a*0)] < G(b) - G(a) <

where m and H are respectively the minimum and the maximum of

g(u) in Ia b. Next suppose that F(s) possesses a continuous

derivative Ff(s). It follows from the above mean value

.
It Is possible to construct a sequence violat-

ing all of these conditions except the monotone-
ity but such sequences are exceptional and do not
correspond to physical measurements.
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property that & » ( s ) » g(s)F f (s) and G(s) • /* g(t)F'(t)dt.

Hence _

p[gU)l =/Js(s)Ff(s)ds -/_ g(s)dP(s).

The expected value p[g(x)] exists under much more general con-

ditions than those stated above and can be taken as a defini-

tion of the Stielt jes Integral on the right when the Riemann

integral in the middle falls to exist. For example, let

x = Xj + 2xg + ••• + 6xg where x^,Xr>j«**fXg are mutually

exclusive 1,0-sequences such that pfx^^) =p(xg) = ••• =p(xg) = 3/6.

This sequence represents the throwing of a die. The distribu-

tion function F( s) is discontinuous at the points

s=l, 2, ... 6 and constant elsewhere. We get

/jtTsdF(s) - p(x) - (1+2 +••• +6)/6 - 3.5
and . _ _

/*-s2dF(s) - pfx2) - (1+4 + -- +36)/6 - 91/6.

As the student is usually unfamiliar with Stielt jes integra-

tion, this approach is decidedly advantageous.

Moment generating functions. The function

p(eixt) = y(t) « j£
m elstdF(s) (where t is a constant

sequence) is called the moment generating function of the

sequence x. It uniquely determines the distribution function

as the following computation shows. First consider the

Integral

1 />+* e1* - elxVist ( 1, lf * < * <PT t (x) + <PT (x)1 ,£„ ® - e e dt - 1 1/2 If x « s - npX'_+VIfXi
1 1 1 * V 0 1 f x > s 2

>115 - ei3CViat
 dt] . pf»IjC«) » »ia(x) ,

t o *

SrT

Thus
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But
1 +•» e1* - elxte"lst 1 + - -it - -»**̂ -ist+ 00 Al U ttlXTi^-1- p[2_̂ e ê

2iri

Hence

The probability Integral , Let x^ - x c (k *l,n) and

^ = x-^ * Xg * ••• * xn, where x is admissible, p(x) = 0, and

pfx2) - 1 » o2(x). Then

Hence

^ _ ̂

... .

Thus if Pn(s) is the distribution function for. the sequence

, it follows that

where

The latter equality can be established by showing that
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The problem of application. In conclusion, I should

like to make a remark about the problem of application. Sup-

pose we make the physical hypothesis that the probability of

some event is 1/2, i.e., that the associated sequence x is

such that p(x) = 1/2. Suppose further that we make 1000

trials of the event and obtain the result Piooot*) * »491»

We are tempted to believe that the result is a confirmation

of our hypothesis. However, if the result confirms the hypo-

thesis, it must verify some Implication of the hypothesis*

But our hypothesis actually does not imply anything about the

value of PIOOÔ *)* No one of tne P°ssiDle values

0, «001, »002, ... 1 is excluded by the hypothesis p(x) » 1/2.

This argument would seem to Indicate that there is no way of

verifying any probability (or any expected value) by means of

statistical data* However, this is not the case. In fact,

the hypothesis p(x) * w has an infinitude of verifiable

implications. Each implication depends on a pair of positive

numbers e, H and is stated as followsi There exists an

integer n such that n > N and lpn(x) - w| < e* For example,

the hypothesis p(x) = 1/2 implies the existence of an Integer

n such that n > 500 and |pn(x) - 1/21 < ,01. Since we have

obtained the value PIQOÔ  * *491, the number n = 1000 sat-

isfies the conditions and therefore the hypothesis Is veri-

fied by this result;

Of course, this theory leaves much to be desired. Physi-

cal experiment cannot establish either the truth or the fal-

sity of. a hypothesis concerning a probability. However,

See also the editor's note following this
section concerning the same problem.
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suppose that someone makes a hypothesis concerning a probabil-

ity p(x) and that he makes the claim that there is no one of

the implications of this hypothesis which cannot be verified

experimentally. He is then claiming that p(x) is a limit

point of the sequence pn(x). If further the above individual

subscribes to the physical hypothesis that such limit points

are unique, he thereby assigns a physical meaning to p(x).

Undoubtedly, practical objections can be raised. It may hap-

pen that verification of a given implication is impossible

within the lifetime of the experimenter or of the object on

which experimentation is performed. Thus in spite of the fact

that we have clarified the relation between probability and

experiment, some vagueness remains. In discussing this sub-

ject, Wald (On the principles of statistical inference, Notre

Dame Mathematical Lectures, No. 1) remarks that *... such

vagueness is always associated with the application of theory

to real phenomena.11

In this outline I have indicated some of the ways in

which probabilities can be computed from expected values and

from other probabilities. I have also given a brief explana-

tion of the precise sense in which these computations can be

verified by statistical data. I hope this will help clarify

the relations between probabilities and physical measurement.


