III. ON FUNCTIONS OF HIGHER RANK

1. The Algebra of Functions of Higher Rank.

As in the first chapter, we shall denote functions by small letters f, g, h, \ldots But we shall assume now that with each function f a positive integer r, called the rank of f, is associated. The rank will correspond to the number of variables of f in the classical notation. Whenever it is necessary to indicate the rank of f we shall write $f(r)$ or, where no confusion with powers can arise, briefly $\mathrm{P}^{\mathbf{r}}$.
only one operation will be assumed, substitution, denoted by juxtaposition. If f is of rank r, then for each ordered r-tuple of functions g_{1}, \ldots, g_{r} there is a function $f\left(g_{1}, \ldots, g_{r}\right)$. It is called the function obtained from f by substituting g_{1} at the index i for $1=1, \ldots, r$. If a function f is followed by r functions in parentheses, separated by commas, it will be understood that f is of rank r. If g_{i} is of rank s_{i}, then $f\left(g_{1}, \ldots, g_{r}\right)$ is of rank $s_{1}+\cdots+s_{r}$.

Substitution will be assumed to satisfy the following

laws:

I. Associative Law.

$$
\begin{aligned}
& {\left[f\left(g_{1} s_{1}, \ldots, g_{r} s_{r}\right)\right]\left(h_{1}, \ldots, h_{s_{1}}+\ldots+s_{r}\right) } \\
= & f\left[g_{1}\left(h_{1}, \ldots, h_{s_{1}}\right), \ldots, g_{r}\left(h_{s_{r-1}}+1, \ldots, h_{s_{r}}\right)\right] .
\end{aligned}
$$

For some purposes it is convenient to denote the s_{1} functions substituted into g_{i} by $h_{11}, \ldots, h_{1_{s_{i}}}(i=1,2, \ldots, r)$. In this notation the associative law reads:

$$
\begin{aligned}
& {\left[f\left(g_{1}, \ldots, g_{r}\right)\right]\left(h_{11}, \ldots, h_{r s_{r}}\right) } \\
= & f\left[g_{1}\left(h_{11}, \ldots, h_{1 s_{1}}\right), \ldots, g_{r}\left(h_{r 1}, \ldots, h_{r s_{r}}\right)\right] .
\end{aligned}
$$

II. Law of a Neutral riamont.

$$
j f=f(j, \ldots, j)=f
$$

III. Law of Depression. If for the function f of rank $r>1$ we have

$$
f=f(j, \ldots, j, g, j, \ldots, j)
$$

no matter which function g we substitute at the index i, then there exists a function $f_{(1)}$ whose rank is by 1 less than that of f, for which

$$
f_{(1)}=f(j, \ldots, j, g, j, \ldots, j), \text { and thus }
$$

$$
f_{(1)}\left(g_{1}, \ldots, g_{r-1}\right)=f\left(g_{1}, \ldots, g_{1-1}, g_{1} g_{1} ; \ldots, g_{r-1}\right) .
$$

We say of such a function P that it admits the suppression of the index i. In the classical notation, a function admitting the suppression of the index i is one which does not depend upon its i-th variable, as $f(x, y, z)=4 \cdot x+5 \cdot 10 g z$ does not depend upon y.

Definition: If for a function f of rank 1 we have fg $=\mathrm{f}$ for each g , then I is called a constant.

If for a function f of rank r we have $f=f\left(g_{1}, \ldots, g_{r}\right)$ no matter which functions g_{1}, \ldots, g_{r} we substitute, then we can suppress any $r-1$ of the indices and thus arrive at a constant function. We may call I a constant function of rank r. By substituting r constant functions into any function of rank r, we obtain a constant function.

If a function of rank r admits the suppression of each of its indices, then it is constant. F.g.? for $r=2$,

$$
\begin{aligned}
\text { if } f(g, j) & =f \text { and } f(j, h)=f, \\
\text { then } f(g, h) & =[f(j, h)](g, j ;=f(g, j)=f .
\end{aligned}
$$

It is easy to prove that the function obtained from f by substituting a constant at the index i, admits the suppression of the index if if the rank of f is >1, and is a constant if the rank of f is $=1$.
IV. Law of Identification. Let R be the set of numbers $\{1, \ldots, r\}$, and $R=R_{1}+\ldots+R_{m}$ a splitting of R into $m(<r)$ mutually disjoint, non-vacuous sets $R_{j}=\left\{i_{j, 1}, \ldots, i_{j, k_{j}}\right\}$. Then for each function f of rank r there exists a function $f_{R_{1}}, \ldots, R_{m}$ of rank m such that $f_{R_{1}}, \ldots, R_{m}\left(g_{1}, \ldots, g_{m}\right)$ is equal to the function obtained from f by substituting g_{1} at the indices belonging to R_{1}, \ldots, and g_{m} at the indices belonging to $R_{m \cdot}$ For instance, if $R=\{1, \ldots, 6\}, R_{1}=\{1,2,4\}$, $R_{2}=\{5\}, R_{3}=\{3,6\}$, and f is of rank 6 , then there is a function $f_{R_{1}}, R_{2}, R_{3}$ of rank 3 such that

$$
f_{R_{1}, R_{2}, R_{3}}\left(g_{1}, g_{2}, g_{3}\right)=f\left(g_{1}, g_{1}, g_{3}, g_{1}, g_{2}, g_{3}\right)
$$

Obtaining $f_{R_{1}}, R_{2}, R_{3}$ from R corresponds to the formation of $f(x, x, y, x, z, y)$ from $f\left(x_{1}, \ldots, x_{6}\right)$ in the classical notation. For each function f we have $f_{R} g=f(g, \ldots, g)$. This is the case $m=1$.

We remark that for each function f of rank 2, and each two functions g_{1} and g_{2} of rank 1 , we clearly have

$$
\left[f\left(g_{1}, g_{2}\right)\right]_{R} h=f\left(g_{1} h, g_{2} h\right)
$$

V. Iam of Permutation. If f is a function of rank r and if p is the permutation i_{1}, \ldots, i_{r} of the numbers 1,..., r, then there is a function fof rank r such that for each r-tuple of constant functions c_{1}, \ldots, c_{r} we have

$$
f p\left(c_{1}, \ldots, c_{r}\right)=f\left(c_{1_{1}}, \ldots, c_{1_{r}}\right)
$$

For each function P^{T} of rank r the permutations p for which $f^{P} p=f^{T}$, form a subgroup Γf^{r} of Z_{p}, the symuotric group of P
 then f^{P} is called a symmotric function.

In formulating this law, wo substituted into P only con stant functions, since without this restriction none but constant functions f would satisfy the law. Indeed, let f be a function of rank 2, and let p be the permutation 2,1 of the numbers 1,2. If we had postulated the axistence of a function f_{p} such that $f p\left(g_{1}, g_{2}\right)=f\left(g_{2}, g_{1}\right)$ for each pair of functions $\mathrm{G}_{1}, \mathrm{~B}_{2}$ of rank 1, then by substituting the functions h_{1}, h_{2} into the two above functions of rank 2 we should obtain

$$
\left[f p\left(g_{1}, g_{2}\right)\right]\left(h_{1}, h_{2}\right)=\left[f\left(g_{2}, g_{1}\right)\right]\left(h_{1}, h_{2}\right) .
$$

By virtue of the associative law for substitution this equality would imply

$$
f p\left(g_{1} h_{1}, g_{2} h_{2}\right)=f\left(g_{2} h_{1}, g_{1} h_{2}\right)
$$

for each quadruple of functions $g_{1}, g_{2}, h_{1}, h_{2}$. Applying this formula to

$$
g_{1}=h_{2}=0, h_{1}=1
$$

we see that

$$
f_{p}\left(0, g_{2} 0\right)=f\left(g_{2}, 0\right)
$$

for each function g_{2}. Now, since $\mathrm{g}_{2} \mathrm{O}$ is a constant, we see that $f_{p}\left(0, g_{2} O\right)$ is a constant. Hence, f would permit the auppression of the index l. Similarly we could prove that f would permit the suppression of the index 2. Thus f would be a constant.
2. Sum and Product.

We call a function f of rank 2 associative if

$$
f\left[f\left(g_{1}, g_{2}\right), g_{3}\right]=f\left[g_{1}, f\left(g_{2}, g_{3}\right)\right]
$$

A constant function n is said to be neutral with respect to P if

$$
f(n, g)=f(g, n)=g
$$

An associative, symmetric function of rank 2 may be considered as an associative, commatative binary operation. Inatead of $\mathrm{f}(\mathrm{g}, \mathrm{h})$ we may write goh. We shall postulate the existence of two such functions and p whose corresponding operations will be denoted by + and ., and called addition and multiplication, respectively. We shall postulate the existence of neutral elements denoted by 0 and 1 , respectively, and shall assume a distributive connection of s and p.

In order to establish the comection of these concepts with those of the Algebra of Functions developed in Part I, we remark that the sum of two functions g and h of rank l considered in Part I, is $[s(g, h)]_{R}$ rather than $s(g, h)$. For $s(g, h)$ is a function of rank 2 whereas the sum of two functions considered in Part I was a function of rank l. We had $(f+g) h=f h+g h$. By virtue of the remark following the Law of Identification in the preceding section, this formula (i.e., the a.s.d. law) is indeed valid for $[\mathrm{s}(\mathrm{g}, \mathrm{h})]_{\mathrm{R}}$. In the classical notation, $s(g, h)$ corresponds to $g(x)+h(y)$ while $[s(g, h)]_{R}$ corresponds to the $\operatorname{sum} g(x)+h(x)$ which we considered in Part I. Similarly the product goh of Part I is $[p(g, h)]_{R}$.

3. The Algebra of Partial Derivatives.

If f is a function of rank r, we introduce r operators D_{i}. We call $D_{1} f$ the partial derivative of f for the index i. This operator is connected with substitution and identification according to the following postulates:
I. $\quad D_{1 j}\left[f\left(g_{1}, \ldots, g_{r}\right)\right]=D_{i} f\left(g_{1}, \ldots, g_{r}\right) \cdot D_{j} g_{i}$.

Here the aymbol if refers to the j-th index in g_{1}, in the same way as we could denote the $s_{1}+\cdots+s_{r}$ functions to be substituted into the function $f\left(g_{1}, \ldots, g_{r}\right)$ by
$h_{11}, \ldots, h_{1_{1}}, \ldots, h_{r 1}, \ldots, h_{r_{s}}$.
II.

$$
D_{1} I_{R_{1}}, \ldots, R_{m}={\underset{j i n R_{1}}{2}\left(D_{j} f\right)_{R_{1}}, \ldots, R_{m} .}
$$

Here $R_{1}+\cdots+R_{m}$ is a decomposition of the set $R=\{1, \ldots, r\}$ into non-vacuous, disjoint subsets.

A detailed development of the Algebra of Partial Derivation on this foundation will be the content of another publication.

