
I LINEAR ALGEBRA

A. Fields.

A field Is a set of elements In which a pair of opera-

tions called multiplication and addition is defined analogous

to the operations of multiplication and addition in the real

number system (which is itself an example of a field). In each

field F there exist unique elements called o and 1 which, under

the operations of addition and multiplication, behave with res-

pect to all the other elements of F exactly as their corres-

pondents in the real number system. In two respects, the ana-

logy is not completes Dmultlplication is not assumed to be com-

mutative in every field, and 2)a field may have only a finite

ntmber of elements.

More exactly, a field is a set of elements which, under

the above-mentioned operation of addition, forms an additive

abellan group and for which the elements, exclusive of zero,.

form a multiplicative group and, finally, in which the two

group operations are connected by the distributive law* Fur-

thermore, the product of o and any'element is defined to be o*

If multiplication in the field is commutative then the

field is called a commutative field.

B. Vector Spaces,

If V is an additive abelian group with elements A,B,...,

F a field with elements a,b,..., and if for each aeF and AeV

the product aA denotes an element of V, then V is called a



(left) vector apace over F if the following assumptions hold:

1) a(A + B) « aA * aB

2) (a + b) A = aA + bA

3) a(bA) * (ab) A

4) 1A » A

The reader may readily verify that if V is a vector space over

F, then oA • 0 and aO = 0 where o is the zero element of F and

0 that of V. For example, the first relation follows from the

equations}

aA a (a + o) A s aA + oA

Sometimes products between elements of F and V are

written in the form Aa in which case V is called a right vector

space over F to distinguish it from the previous case where mul-

tiplication by field elements is from the left. If, in the

discussion, left and right vector spaces do not occur simul-

taneously, we shall simply use the term w vector space."

C. Homogeneous Linear .Equations .

If in a field F, â j i=l,2,...,m, J=l,2,...,n are m.n

elements, it is frequently necessary to know conditions guaran-

teeing the existence of elements in F such that the following

equations are satisfied:

, %
 ftll*l * ft12*2 * ••• «* ftln*n - °

(1) • • • •

The reader will recall that such equations are called linear

homogeneous equations, and a set of elements, x^, xg* . ..,xn

of F, for which all the above equations are true, is called a

solution of the system. If not all of the elements Xĵ Xg, ...,



are o the solution Is called non-trivial; otherwise, it Is

called trivial.

THEOREM 1: A system of linear homogeneous equations

always has a non-trivial solution if the number of unknowns ex-

ceeds the number of equations.

The proof of this follows the method familiar to

most high school students, namely, successive elimina-

tion of unknowns. It is, of course, obvious that one

homogeneous equation ftj,zl * *%*% + ••• + 9^f^ * o n>l,

has a non-trivial solution. Indeed, if one of the a^fs

is o, say &i a o, then x1 » 1, Xg = x3 » ... a ̂  » o

will serve as a solution; otherwise, x^ » a2, Xg » -a^

and X£ * X4 » ... « XQ » o is a solution.

We shall proceed by complete Induction. Let us

suppose that each system of k equations in more than k

unknowns has a non-trivial solution when k<m. In the

system of equations (1) we assume that n>m, and denote

the expression â x̂  + ... + *in*n b? Ll» 1»1,2,...,».

We seek elements xlf ..., x^ not all o such that

LX * L2 8 ••• s Iin 3 o. If a^j * o for each 1 and J,

then any choice of x1,...f XQ will serve as a solution.

If not all aj* are o, then we may assume that »iî  o,

for the order in which the equations are written or in

which the unknowns are numbered has no Influence on the

existence or non-existence of a simultaneous solution.

We can find a non-trivial solution to our given system

of equations, if and only if we can find a non-trivial



solution to the following systems

L * o

., - oai:L 1

For, If x̂ , •••,% 13 a solution of these latter equa-

tions then, since 1̂  = 0, the second term in each of

the remaining equations is o and, hence, Lg * Lg - •••

» Igi * o. Conversely, if (1) is satisfied, then the

new system is clearly satisfied. The reader will

notice that the new system was set up in such a way as

to "eliminate11 x̂  from the last n-1 equations. Further-

more, if a non- trivial solution of the last n-1 equa-

tions, when viewed as equations in Xg,...,̂ , exists

then taking xI » - -^ (a12*2 + a!3*3 «••••+ ain*n)

would give us a solution to the whole system* However,

the last n-1 equations have a solution by our inductive

assumption, from which the theorem follows.

Remark: If the linear homogeneous equations had

been written in the fora 2Xj*jj 3 o, i=l,2,...,n, the

above theorem would still hold and with the same proof

although with the order in which terms are written

changed in a few Instances.

&• Dependence and Independence <of Vectors.

In a vector space V over a field F, the vectors Ap...,̂

are called dependent if there exist elements xi,...fxn not

all o of F such that x̂ Â  + x2Ag * ... + XnAn = 0. If the



vectors Â , ...,An are not dependent, they are called independent.
Tne dimension of a vector space V over a field F is the

maximum number of independent elements in V* Thus, the dimen-

sion of V is n if there are n independent elements in V, but no

set of more than n independent elements.

A system AI,...̂  of elements in V is called a genera-

ting system of V if each element A of V can be expressed linear-

ly in terms of Ai,...,Am, i.e., A = Zâ Ai for a suitable choice

of aj., i=l,...,m, in F.

THEOREM 2: In any generating system the maximum number

of independent vectors is equal to the dimension of the vector

space .

Let A^, ••.,Am be a generating system of a vector

space V of dimension n. Let r be the maximum number of

Independent elements in the generating system. By a

suitable reordering of the generators we may assume

Â ,...,AP independent* By the definition of dimension,

it follows that r ̂  n. For each J, AI, ...,Ar, Ar+j are

dependent, and in the relation

axAx + agA2 + ... * a^ + a^j A^j « 0

expressing this, ar+j ̂  o, for the contrary would assert

the dependence of AI, . .., Ar. Thus,

It follows that AX, ..., Ar is also a generating system

since in the linear relation for any element of V the

tens involving Ar+j, J/o, can all be replaced by linear

expressions in Â , ..., Ar.

Now, let BI, ..., Bt be any system of vectors in V



where t>r, then there exist a^j such that
rBJ *«5ialJ Ai» 3-1*2,...,t,since the Aj/s form a genera-

ting system. If we can show that B̂ , ..., B̂  are de-

pendent this will give us r * n, and the theorem will

follow from this together with the previous Inequality

r $ n. Thus, we must exhibit the existence of a non-

trivial solution out of F of the equation

X1B1 + X2B2 + *•• + *tBt s °* To thls end' lt w111 be

sufficient to choose the x̂ 's so as to satisfy the

linear equations 2 a^j xj = o, 1«1,2, ...,r,since

these expressions will be the coefficients of AI when

In I xjBj the BJ'S are replaced by 2 aj.j AI and

terms are collected* A solution to the equations

,2.â j xj » o, 1=1,2,...,r, always exists by Theorem 1.

Remark: Any n independent vectors A!,...,An in an

n dimensional vector space form a generating system.

For any vector A, the vectors A, A-̂ ,..., An are de-

pendent and the coefficient of A, in the dependence re-

lation, cannot be zero. Solving for A in terms of
Al> •••» An» exhibits A^, ..., An as a generating system.
A subset of a vector space is called a subspace if

it is a subgroup of the vector space and if, in addition, the

multiplication of any -element in the subset by any element

of the field is also In the subset. If Â , ...,Ag are

elements of a vector space V, then the set of all elements of

the form â Â  + ... + aaA8 clearly forms a subspace of V. It

is also evident, from the definition of dimension, that the

dimension of any subspace never exceeds the dimension of the

whole vector space.
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An s -tuple of elements (â , ...,ag) in a field F will

be called a row vector* The totality of such s- tuples form a

vector space if we define

a) (a-̂ ag,...̂ ) » (b̂ ,bg,...b8) if and only if

a - b^, 1 * 1,...,s,

p) (â ,ag,...,ag) * (b̂ ,bg, ...,bg) • (â + ̂»
ag4' *

...,as+bs)

7) b(a1,«89...fas) m (ba-ĵ âĝ .̂ bag), for b an

element of F.

When the s-tuples are written vertically, / .'

they will be called column vectors.

THEOREM 3. The row (column) vector space F11 of all

n-tuples from a field F is a vector space of dimension n over F»

The n elements

^ 1 * o j • • • j o )

en • (0,0, ...,

are Independent and generate Fn. Both remarks follow

from the relation (a-̂ ag, ...,a^) = 2aiei*

We call a rectangular array

of elements of a field F a matrix. By the right row rank of a

matrix, we mean the maximum number of independent row vectors
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among the rows (â , •••*ain' of the matrix when multiplication

by field elements is from the right. Similarly, we define left

row rank, right column rank and left column rank.

THEOREM 4. In any matrix the right column rank

equals the left row rank and the left column rank equals the

right row rank. If the field is commutative, these four num-

bers are equal to each other and are called the rank of the

matrix.

Call the column vectors of the matrix Ĉ ,...,Cn

and the row vectors R̂ , ...,Rm. The column vector 0 is

and any dependence C-jx̂  4 Cgxg +... + C-p- » 0

o t

is equivalent to a solution of the equations

(1)

Any change in the order in which the rows of the

matrix are written gives rise to the same system of

equations and, hence, does not change the column

rank of the matrix, but also does not change the row

rank since the changed matrix would have the same set

of row vectors. Call c the right column rank and r '

the left row rank of the matrix. By the above re-

marks we may assume that the first r rows are indep-

endent row vectors. The row vector space generated

by all the rows of the matrix has, by Theorem 1, the

dimension r and is even generated by the first r
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rows. Thus, each row after the rth is linearly ex-

pressible in terms of the first r rows. Consequent-

ly, any solution of the first r equations in (1) will

be a solution of the entire system since any of the

last n-r equations Is obtainable as a linear combina-

tion of the first r. Conversely, any solution of (1)

will also be a solution of the first r equations.

This means that the matrix

consisting of the first r rows of the original matrix

has the same right column rank as the original. It

has also the same left row rank since the r rows were

chosen independent. But the column rank of the am-

putated matrix cannot exceed r by Theorem 3. Hence,

c - r. Similarly, calling cv the left column rank

and r1 the right row rank, cf * rf. If we form the

transpose of the original matrix, that is, replace

rows by columns and columns by rows, then the left

row rank of the transposed matrix equals the left

column rank of the original. If then to the trans-

posed matrix we apply the above considerations we

arrive at r ̂  c and r1 * cf.

£. yon-homo geneous Linear Equations.

The system of non-homogeneous linear equations
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allxl +a!2*2 + ••. *

has a solution If and only If the column vector / b\ lies

In the apace, generated by the vectors

"mlJ
k *

This means that there is a solution If and only if the right

column rank of the matrix / &ii****in \
 is the same as the

right column rank of the augmented matrix

since the vector space generated by the original must be the

same as the vector space generated by the augmented matrix and

In either case the dimension Is the same as the rank of the

matrix by Theorem 2.

By Theorem 4, this means that the row ranks are

equal. Conversely, If the row rank of the augmented matrix Is

the same as the row rank of the original matrix, the column

ranks will be the same and the equations will have a solution*

If the equations (2) have a solution, then any rela-

tion among the rows of the original matrix subsists among the
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rows of the augmented matrix. For equations (2) this merely

means that like combinations of equals are equal. Conversely,

if each relation which subsists between the rows of the orig-

inal matrix also subsists between the rows of the augmented

matrix, then the row rank of the augmented matrix is the same

as the row rank of the original matrix. In terms of the

equations this means that there will exist a solution if and

only if the equations are consistent, i.e., if and only if

any dependence between the left hand sides of the equations also

holds between the right sides.

THEOREM 5. If in equations (2) m « n, there exists a

unique solution if and only if the corresponding homogeneous

equations
allxl + a!2*2 * •••4alnxn ' °

have only the trivial solution.

If they have only the trivial solution, then the

column vectors are independent. It follows that

the original n equations in n unknowns will have a

unique solution if they have any solution, since the

difference, term by term, of two distinct solutions

would be a non-trivial solution of the homogeneous

equations. A solution would exist since the n Indep-

endent column vectors form a generating system for

the n- dimensional space of column vectors.

Conversely, let us suppose our equations have

one and only one solution. In this case, the homo-

geneous equations added term by term to a solution
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of the original equations would yield a new aolutic

to the original equations. Hence the homogeneous

equations have only the trivial solution.


