
IV THE THEORY OF CONFIDENCE INTERVALS

The procedure of estimation, as I formulated it here, is

also called estimation fry a point* For practical applications

tb* estimation bj intervals seems to be much more important*

That is to say, we have to construct two functions of the ob-

servations £ (!) and 5 (E), where E denotes a point of the sam-

ple space, and we estimate the parameter to be within the In-

terval <T(E) = Qfi (E), "5 (£)]. in connection with the theory

of interval estimation, R. A. Fisher introduced the notion of

fiducial probability and fiducial limits, while Newman8) dev-

eloped the theory of Interval estimation based on the classical

theory of probability. I shall give here a brief outline of

Neyman's theory.

Before the sample has been drawn the point E Is a random

variable and, therefore, the values of £ (E) and ¥ (E) are also

random variables. Hence, before the sample has been drawn we

can speak of the probability that

(3) £ (B)*s 9 *?5 (g)

even if 9 Is considered merely as an unknown constant* After

the sample has been drawn and we have obtained a particular

sample point, say Bo, it does not make sense to speak of the

probability that

U) £ <!0) * e**"(B0),

if 0 is merely an unknown constant. Each term In the inequal-

ity (4) is a fixed constant, and the Inequality (4) is either

8) See reference 15
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right or wrong for those particular constant a. It would be pro-

per to talk about the probability of (4) if 9 Itself could be

considered as a randan variable having a certain probability

distribution, called an a priori probability distribution. In

this case we understand by the probability that (4) holds the

conditional probability, called also a posteriori probability,

under the assumption that E « E0 occurred. If an a priori dis-

tribution of 9 exists and if it is known then, using Bayes1 form-

ula, we can easily calculate the a posteriori probability dis-

tribution of 9. However, in practical applications we seldom

meet cases where the assumption of the existence of an a priori

probability distribution seems to be Justified; and even in

those rare cases in which the latter assumption can be made, we

usually do not know the shape of the a priori probability dis-

tribution and this makes the application of Bayes' theorem im-

possible. For these reasons the theory of Interval estimation

has to be developed in such a way that its validity should not

depend on the existence of an a priori probability distribution.

Hence, in this theory we shall speak only of the probability of

(3) but never of the probability of (4).

For any relationship R we will denote by p[Rf9J the proba-

bility of R calculated under the assumption that 9 is the true

value of the parameter.

A pair of functions 9 (E) and 7 (E) is called a confidence

interval of 9 if

1) 9 (E) rf ¥ (E) for all points of E

2) P[JJ (B)* 9 ̂ 9 (E) | ej a a for all values of 9,

where a is a fixed constant called t'he confidence coefficient.
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The practical meaning and Importance of the notion of the

confidence Interval la thlas If a large number of samples are

drawn and If in each case we make the statement that 0 la In-

cluded in the Interval f 9 (B), 9 (•)], then the relative fre-

quency of correct statements will approximately be equal to a*

In general, there exist infinitely many confidence Inter-

vals corresponding to a fixed confidence coefficient a, and we

have to set up some principle for choosing from among them. It

Is obvious that we want the confidence Interval corresponding

to a fixed confidence coefficient to be as "short19 as possible.

We have to give a precise definition of the notion "shortest*

confidence Interval •

A confidence Interval j(E) »j~9 (E), 9 (1)1 is called a

shortest confidence Interval corresponding to the confidence
/

coefficient a if

(a) PJJ9 (!)* 9« ? (E)J 9] »o and

(b) for any confidence Interval 4* (E) which satis-

fies (a)

for all values 9f and 9" of 9.

If a shortest confidence Interval exists, it seems to be the

most advantageous. Unfortunately, shortest confidence Inter-

vals exist only in quite exceptional eases. Therefore, we have

to Introduce some further principles on which the choice should

be based. Such a principle is the principle of unblasedness.

A confidence Interval «£(E) is called an unbiased confidence

Interval corresponding to the confidence coefficient a if

10 (E)* 9*3 (B) j 9] - a

and Pp) (E)* 9'4&? (E) | 9»] * a for all values 9fand0v*
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A confidence Interval <f(E) 10 called a shortest unbiased

confidence Interval corresponding to the confidence coefficient

a If <f(E) Is an unbiased confidence Interval with the confidence

coefficient a and If for any unbiased confidence Interval cff (E)

with the same confidence coefficient, we have

p£e (E)* e» ** ? (E) | e«] ** pQe* (E) ̂  e»^ ?• (i) f e«]
for all values e* end 9".

If we accept the principle of unblasedness, the shortest

unbiased confidence Interval seems to be the most favorable one.

Even shortest unbiased confidence Intervals exist only In a

restricted, but- Important, class of cases. If a shortest un-

biased confidence Interval does not exist, Heyman proposes the

use of a third type of confidence Interval, which he calls

frshort unbiased* confidence Interval• An unbiased confidence

Interval <f(E) with the confidence coefficient a Is called a

short unbiased confidence Interval If

-2L iTe(B)*e'«V(B)|e«|
"2 L.- • Jae»2

for all ev and for all unbiased confidence Intervals cff(E) with

the confidence coefficient a*

I have discussed only the case of a single unknown para-

meter* In the case of several unknown parameters some new prob-

lems arise, which do not occur In the case of a single para-

meter. However, I shall not discuss them, since the case of a

single parameter already provides a good Illustration of the

basic Ideas of the theories of Fisher, Neyman and Pearson*


