Index

Symbols	$E^{(m)}(k_0,\ldots,k_{l-1};\alpha)\cdots\cdots 58$
#xiv	E xiv
$(u)_i \cdots 27$	∃xiv
:= ······xiv	$F^{(m)}(k_0,\ldots,k_{l-1};\alpha)\cdots\cdots 51$
«,»····9	$G^n(x_1, x_2, \ldots, x_n)$ ····································
⟨ <i>t</i> ⟩······52	<i>K</i> (<i>y</i>) ······31
$\langle x_1, x_2, \ldots, x_n \rangle \cdots 27$	$K_A(x \mid y)$
≈12	<i>L</i> (<i>p</i>)······30
\in_{U} 43	⇔······xiv
[<i>t</i>]xiv	⇒······xiv
$\lceil t \rceil_m \cdots 2$	m(x)
$\lfloor t \rfloor_m \cdots 2$	$m_U(x)$
<i>_t _</i> xiv	mod ······xiv
$\{0,1\}^*$	$\mu_{z < t}(q(p, y, z))$ 33
0 · · · · · · xiv	$\mu_{\mathbf{y}}(p(x_1,\ldots,x_n,\mathbf{y}))\cdots 24$
Øxiv	$\mathcal{N}(m,\sigma^2)$ ····································
$1_{B}(x)$ ····································	\mathbb{N}^+ xiv
2^B xiv	N xiv
$A(\boldsymbol{\alpha}^{(m),s})$	NP 45
∀xiv	O(f(n)) ···································
$\alpha_j^{(m)L}$	\mathbb{P} 1
$\alpha_i^{(m)U}$ 52	$P_{(m)}$ ····································
$\alpha^{(m),s}$ 53	$P_m - \cdots - 1$
$B(\boldsymbol{\alpha}^{(m),s})$ 53	\mathbb{P}^k ····································
B1	P 45
\mathcal{B}^{m} 104	Pr ······xiv
\mathcal{B}^{τ} 104	Pr_{γ} ····································
\mathcal{B}_m ····································	$r_i(x)$ 57
$\mathcal{B}_{ au}$ 4	\mathbb{R} ····································
β73	$S_{f,A}(n)$ ····································
$\beta_i^{(m)}$ 52	$\widetilde{S}_{f,\widetilde{A}}(n)$ 46
□ ······xiv	s_1, s_2
\mathbb{C} xiv	$\sigma(m, j)$
<i>D</i> 53	$T_f(n)$
d_i ····································	$T_f(x, y, \alpha, \epsilon_1, \epsilon_2)$
$\delta_{f,A}(n)$ ····································	\mathbb{T}^1 1
$\widetilde{\delta}_{f,\widetilde{A}}(n)$ 46	\mathbb{T}^k ····································
D_m 2	V xiv

132 INDEX

$X_n^{(m)}(x;\alpha)$.57	halting problem ·····29
$Y_n^{(m)}(x;\alpha)$	49	i.i.d3
\mathbb{Z} ····································	xiv	— sampling 16, 96
Figures		Kleene's normal form25
Figure 2.1		Kolmogorov complexity31
Figure 3.1	25	L^2 -robust······87
Figure 3.2	26	Lebesgue probability space1
Figure 4.1	66	mean square error ·····99
Figure 4.2	67	Monte Carlo
Figure 5.1	92	— integration11, 16
Figure 5.2	.93	— method11
Figure 5.3	.93	quasi — method ······87
Figure 5.4 1	104	pairwise independent ····· 18, 20, 85, 88,
Tables		99, 102, 105
Table 4.1	-56	$P \neq NP$ conjecture45
Table 5.1	91	polynomial
Table 5.2 1	102	parameter43
Table 5.3 1	103	— time function43
Theorems etc.		pseudorandom generator ····· 10, 14, 44
Lemma 4.12'	.57	B-B-S generator ······48
Theorem 4.13'		computationally secure — ····· 15, 44
Theorem 4.11'		cryptographically secure — ···· 15, 45
Terms		initialization of —14
algorithm ·····	30	next-bit-unpredictable —46
B-B-S generator·····		— secure against <i>A</i> 10, 15
canonical order ······		seed of —44
Chebyshev's inequality		— by means of Weyl transformation
coin tossing process		50
complexity ······		pseudorandom number ······ 14
Kolmogorov — ······		seed of — 10, 14, 45
space —·····		quasi Monte Carlo method ······ 87
time —15,		Rademacher functions 57, 73, 94
critical sample number56, 1		random function43
distribution function		random number ············· 10, 13, 31
DRWS		random sequence39
dyadic expansion mapping		recursive
empty word		—ly enumerable set ······27
entropy		maximal — null set ······39
enumerating function		partial — function ······23
enumeration theorem		primitive — function — 24
ergodicity······77, 78,		total — function ·······25
· ·	93	
Gödel — function ······	27	rejection method ················· 6, 97, 106
		RWS
— number		sampling9
gambling9,		dynamic random Weyl —
generic value9,	11	fundamental inequality about —…85

INDEX 133

i.i.d.— 16, 96
random Weyl — 17, 88
SD91
secure
— against <i>A</i> ·············· 10, 15
computationally — 15, 44
cryptographically —15, 45
significance level ······ 34, 40
simulatable ·····4
stopping time ······4
measurable with respect to — · · · · · 4
test20, 34
sequential — ·····40
universal — 34
universal sequential —40
torus ······1
universal
— sequential test······40
— algorithm 30
— function28
— test ····· 34
— Turing machine ····· 28
van der Corput sequence ·····87
Weyl
dynamic random — sampling ······ 99
pseudorandom generator by means of
— transformation ······50
random — sampling17, 88
— transformation 50