Notations and symbols

```
    \(A:=B \quad A\) is defined by \(B(B=: A\) as well \()\).
    \(\forall \cdots, \quad\) For any \(\cdots\),
    \(\exists \cdots, \quad\) There exists \(\cdots\),
\(P \Longrightarrow Q \quad P\) implies \(Q\) (logical inclusion).
\(P \Longleftrightarrow Q \quad P\) and \(Q\) are equivalent.
    s.t. such that
                    end of proof.
            \(\mathbb{N}:=\{0,1,2, \ldots\}, 0\) and natural numbers.
            \(\mathbb{N}^{+}:=\{1,2, \ldots\}\), the set of all positive integers.
            \(\mathbb{Z}:=\{\ldots,-2,-1,0,1,2, \ldots\}\), the set of all integers.
            \(\mathbb{R}:=\) the set of all real numbers.
            \(\mathbb{C}:=\) the set of all complex numbers.
            \(\lfloor t\rfloor:=\) the largest integer not exceeding real number \(t\) (rounding down).
            \(\lceil t\rceil:=\) the smallest integer no less than real number \(t\) (rounding up).
            \(\mathbf{1}_{B}(x):=\) the indicator function of set \(B= \begin{cases}1 & (x \in B), \\ 0 & (x \notin B) .\end{cases}\)
        \(\# B \quad:=\) the number of elements of set \(B\).
            \(2^{B}:=\) the set of all subsets of \(B\).
            \(B^{c}\) := the complementary set to \(B\).
        \(A \backslash B:=A \cap B^{c}\).
            \(\emptyset:=\) the empty set.
            \(\operatorname{Pr}\) := probability (when no probability space is explicitly specified).
            \(\mathbf{E}[X]\) := the mean (expectation) of random variable \(X\).
    \(\mathbf{E}[X ; B]:=\mathbf{E}\left[X \mathbf{1}_{B}\right]\).
    \(\mathbf{V}[X]\) := the variance of random variable \(X\).
\(\mathcal{N}\left(m, \sigma^{2}\right):=\) the normal (Gaussian) distribution with mean \(m\) and variance \(\sigma^{2}\).
    \(O(f(n))\) := Landau's symbol,
        \(g(n)=O(f(n)) \Longleftrightarrow \exists c>0\) s.t. \(|g(n)| \leq c f(n)\).
            0 := zero. This is used mainly in Chapter 6 to distinguish the number " 0 "
        from the letter " O ".
\(a \bmod N:=a\) modulo \(N\), the remainder, on division of \(a\) by \(N\).
        When \(N=1\), it means the fractional part of \(a\).
```

