Table of contents

- Chap. 1 Existence and main properties of W
 - $1.0 \ \underline{Introduction}$
 - 1.1 Existence of \mathbf{W} and first properties
- 1.1.1 A few more notations
- 1.1.2 A Feynman-Kac penalisation result
- 1.1.3 Definition of \mathbf{W}
- 1.1.4 Study of the canonical process under $W_{\infty}^{(\lambda\delta_0)}$
- 1.1.5 Some remarkable properties of \mathbf{W}
- 1.1.6 Another approach to Theorem 1.1.6
- 1.1.7 Relation between W and other penalisations (than the Feynman-Kac ones)
 - 1.2 W-Brownian martingales associated to W
- 1.2.1 Definition of the martingales $(M_t(F), t \ge 0)$
- 1.2.2 Examples of martingales $(M_t(F), t \ge 0)$
- 1.2.3 A decomposition Theorem for positive Brownian supermartingales
- 1.2.4 A decomposition result for the martingale $(M_t(F), t \ge 0)$
- 1.2.5 A penalisation Theorem, for functionals in class C
- 1.2.6 Some other results about the martingales $(M_t(F), t \ge 0)$
 - 1.3 Invariant measures related to \mathbf{W}_x and $\mathbf{\Lambda}_x$
- 1.3.1 The process $(\mathcal{X}_t, t \ge 0)$
- 1.3.2 The measure Λ_x
- 1.3.3 Invariant measures for the process $((X_t, L_t^{\bullet}), t \ge 0)$
- 1.3.4 Invariant measures for the process $(L_t^{X_t-\bullet}, t \ge 0)$

Chap. 2 Existence and properties of $\mathbf{W}^{(2)}$

- 2.1 Existence of $\mathbf{W}^{(2)}$
- 2.1.1 Notation and Feynman-Kac penalisations in two dimensions
- 2.1.2 Existence of the measure $\mathbf{W}^{(2)}$

- 2.2 Properties of $\mathbf{W}^{(2)}$
- 2.2.1 Some notation
- 2.2.2 Description of the canonical process under $W^{(2,q_0)}_{\infty}$
- 2.2.3 Another description of the measure $\mathbf{W}^{(2)}$
 - 2.3 Study of the winding process under $\mathbf{W}^{(2)}$
- 2.3.1 Spitzer's Theorem
- 2.3.2 An analogue of Spitzer's Theorem
 - 2.4 $W^{(2)}$ -martingales associated to $\mathbf{W}^{(2)}$
- 2.4.1 Definition of $\left(M_t^{(2)}(F), t \ge 0\right)$
- 2.4.2 A decomposition Theorem for positive $W^{(2)}$ -supermartingales
- 2.4.3 A decomposition Theorem of the martingales $(M_t^{(2)}(F), t \ge 0)$

Chap. 3 The analogue of the measure ${\bf W}$ for a class of linear diffusions

- 3.1 Main hypotheses and notations
- 3.1.1 Our framework is that of Salminen-Vallois-Yor
- 3.1.2 The semi-group of $(X_t, t \ge 0)$
- 3.1.3 The local time process
- 3.1.4 The process X conditioned not to vanish
- 3.1.5 A useful Proposition
 - 3.2 <u>The σ -finite measure \mathbf{W}^* </u>
- 3.2.1 Definition of \mathbf{W}^*
- 3.2.2 Some properties of \mathbf{W}^*
- 3.2.3 Relation between the measure \mathbf{W}^* and penalisations
- 3.3 The example of Bessel processes with dimension $d \ (0 < d < 2)$
- 3.3.1 Transcription of our notation in the context of Bessel processes
- 3.3.2 The measure $\mathbf{W}^{(-\alpha)}$
- 3.3.3 Relations between $\mathbf{W}^{(-\alpha)}$ $(d = 2(1 \alpha))$ and Feynman-Kac penalisations
 - 3.4 Another description of $\mathbf{W}^{(-\alpha)}$ (and of $\mathbf{W}_g^*)$

- 3.5 Penalisations of α -stable symmetric Lévy process $(1 < \alpha \leq 2)$
- 3.5.1 Notation and classical results
- 3.5.2 Definition of the σ -finite measure **P**
- 3.5.3 The martingales $(M_t(F), t \ge 0)$ associated with **P**
- 3.5.4 Relations between **P** and penalisations

Chap. 4 An analogue of the measure \mathbf{W} for discrete Markov chains

- 4.0 Introduction
- 4.1 Construction of the σ -finite measures $(\mathbb{Q}_x, x \in E)$
- 4.1.1 Notation and hypothesis
- 4.1.2 A family of new measures
- 4.1.3 Definition of the measures $(\mathbb{Q}_x, x \in E)$
 - 4.2 Some properties of $(\mathbb{Q}_x, x \in E)$
- 4.2.1 Martingales associated with $(\mathbb{Q}_x, x \in E)$
- 4.2.2 Properties of the canonical process under $(\mathbb{Q}_x, x \in E)$
- 4.2.3 Dependence of \mathbb{Q}_x on x_0
- 4.2.4 Dependence of \mathbb{Q}_x on ϕ
 - 4.3 Some examples
- 4.3.1 The standard random walk
- 4.3.2 The "bang-bang random walk"
- 4.3.3 The random walk on a tree
- 4.3.4 Some more general conditions for the existence of ϕ
- 4.3.5 The standard random walk on \mathbb{Z}^2