Notations.

- (i) Q: the field of rational numbers; Q: its algebraic closure.
 R: the field of real numbers; C: the field of complex numbers;
 Re, Im: the real and the imaginary parts.
- (ii) **Z**: the ring of rational integers. $\mathbf{Z}^{(p)} = \bigcup_{n=0}^{\infty} \frac{1}{p^n} \mathbf{Z}$, where p is a prime number.
- (iii) $k_{\mathfrak{p}}$: a \mathfrak{p} -adic number field; $O_{\mathfrak{p}}$: the ring of integers of $k_{\mathfrak{p}}$; \mathfrak{p} : the maximal ideal of $O_{\mathfrak{p}}$; $\mathcal{U}_{\mathfrak{p}}$: the multiplicative group $O_{\mathfrak{p}} \mathfrak{p}$; $q = N\mathfrak{p} = (O_{\mathfrak{p}} : \mathfrak{p})$; ord_{\mathfrak{p}}: the normalized additive valuation of $k_{\mathfrak{p}}$. $\mathbf{Q}_{\mathfrak{p}}$: the p-adic number field; $\mathbf{Z}_{\mathfrak{p}}$: the ring of integers of $\mathbf{Q}_{\mathfrak{p}}$.
- (iv) $G_{\mathbf{R}} = PSL_2(\mathbf{R})$, $G_{\mathfrak{p}} = PSL_2(k_{\mathfrak{p}})$; $PSL_2 = SL_2/\pm 1$, $PL_2 = GL_2/\text{center}$; $G = G_{\mathbf{R}} \times G_{\mathfrak{p}}$. If $S \subset G$ (subset), $S_{\mathbf{R}}$, $S_{\mathfrak{p}}$ are set-theoretical projections of S to $G_{\mathbf{R}}$, $G_{\mathfrak{p}}$, respectively.
- (v) \mathfrak{H} : the complex upper half plane, $G_{\mathbb{R}} = \operatorname{Aut}(\mathfrak{H})$ by Chapter 1, §3.
- (vi) If $K \supset k$ are fields, then Aut K, Aut_k K are the automorphism groups of K, or the automorphism groups of K over k, respectively. If $\sigma \in \operatorname{Aut} K$, $\sigma|_k$ is its restriction to k. K^{\times} is the multiplicative group $K \{0\}$.
- (vii) If L is a G_p -field over \mathbb{C} , then Σ is the set of all non-trivial non-equivalent discrete valuations of L over \mathbb{C} , considered as a complex manifold (see Chapter 2).
- (viii) If Γ is a group, then 1 or $I \in \Gamma$ denotes the identity element of Γ ; if $\gamma \in \Gamma$, then $Int(\gamma)$ is the inner automorphism $x \mapsto \gamma^{-1}x\gamma$ of Γ ; $\{\gamma\}_{\Gamma}$ is the Γ -conjugacy class containing γ . If $\Gamma^0 \subset \Gamma$, then $\mathcal{H}(\Gamma, \Gamma^0)$ is the Hecke ring with respect to the left Γ^0 -coset decomposition of Γ (if it is defined).
 - (ix) Finally, if S is a set, |S| or #(S) denotes its cardinality.