Notations and symbols

Here are notations and symbols frequently used in this monograph.

- $\mathbb{N}=$ the set of all natural numbers. In this monograph, natural number means positive integer. Thus $0 \notin \mathbb{N}$.
$\mathbb{Z}=$ the set of all integers.
$\mathbb{Q}=$ the set of all rational numbers.
$\mathbb{R}=$ the set of all real numbers.
$\mathbb{C}=$ the set of all complex numbers.
- $\mathcal{B}\left(\mathbb{R}^{n}\right)=$ the Borel σ-algebra of $\mathbb{R}^{n}, \mathcal{B}(\mathbb{C})=$ the Borel σ-algebra of \mathbb{C}.
- We denote the imaginary unit by $\sqrt{-1}$. The letter ' i ' is not used for the imaginary unit, because we wish to use this as an index. For $z \in \mathbb{C}$, let

$$
\begin{aligned}
\operatorname{Re} z & =\text { the real part of } z \\
\operatorname{Im} z & =\text { the imaginary part of } z \\
\bar{z} & =\text { the conjugate of } z
\end{aligned}
$$

- $\mu=$ the 1-dimensional Lebesgue measure.
- For $a, b \in \mathbb{R}$, let

$$
\begin{aligned}
& a \vee b=\max \{a, b\}, a \wedge b=\min \{a, b\}, \\
& a^{+}=a \vee 0, a^{-}=(-a)^{+}=(-a) \vee 0
\end{aligned}
$$

- For $A \subset X$ where X is a universal set,

$$
\begin{aligned}
& \mathbf{1}_{A}(x)= \begin{cases}1, & x \in A, \\
0, & x \in X \backslash A,\end{cases} \\
& \begin{aligned}
A^{\complement} & =X \backslash A \\
& =\{x \in X ; x \notin A\} .
\end{aligned}
\end{aligned}
$$

$\mathbf{1}_{A}$ is called the defining function (or indicator function) of A, and A^{\complement} the complement of A.

- For a set A, card $A=$ the cardinality of A. Let $\boldsymbol{\aleph}_{0}=\operatorname{card} \mathbb{N}$ and $\boldsymbol{\aleph}=\operatorname{card} \mathbb{R} . \aleph_{0}$ is called the countable infinite cardinality and $\boldsymbol{\aleph}$ the cardinality of the continuum. When card $A \leq \boldsymbol{\aleph}_{0}$, i.e., A is at most countable, this is written as \#A. \#A is the number of elements of A.
- For $a \in \mathbb{R}$, let

$$
\begin{aligned}
& \lfloor a\rfloor=\max \{n \in \mathbb{Z} ; n \leq a\}, \\
& \lceil a\rceil=\min \{n \in \mathbb{Z} ; a \leq n\} .
\end{aligned}
$$

$\lfloor\cdot\rfloor: \mathbb{R} \rightarrow \mathbb{Z}$ and $\lceil\cdot\rceil: \mathbb{R} \rightarrow \mathbb{Z}$ are called the floor function and ceiling function, respectively. Also let

$$
\{a\}=a-\lfloor a\rfloor \in[0,1) .
$$

$\{a\}$ and $\lfloor a\rfloor$ are called the fractional part and integral part of a, respectively.

- The letter ' p ' is mainly used for prime numbers. Sometimes so is the letter ' q '. Arranging prime numbers in ascending order, we denote the i th prime number by p_{i}.
- We denote the inverse functions of $\cos :[0, \pi] \rightarrow[-1,1], \tan :\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow(-\infty, \infty)$, $\cot :(0, \pi) \rightarrow(-\infty, \infty)$ by $\cos ^{-1}, \tan ^{-1}, \cot ^{-1}$, respectively.
- We use the following abbreviations:
a.e. $=$ almost every, almost everywhere,
a.s. $=$ almost sure, almost surely,
def $=$ definition,
i.e. $=$ id est (in Latin) $=$ that is (in English),
iff $=$ if and only if,
i.p. $=$ in probability,
L.H.S. $=$ (the) left-hand side,
R.H.S. $=$ (the) right-hand side, s.t. $=$ such that.

