Contents

Notations and symbols xi
Introduction 1
1 Almost periodic functions 5
1.1 Definition and some properties 5
1.2 Mean values 10
1.3 Convolutions 13
1.4 Approximation theorem 18
1.5 Parseval equality 23
2 Probability measure \mathbf{P} on $\mathbb{R}^{\mathbb{B}}$ 27
2.1 Definition of the probability measure \mathbf{P} 27
2.2 Limit theorem on the probability space $\left(\mathbb{R}^{\mathbb{B}}, \mathbf{P}\right)$ 32
3 Complex random variable $\sum_{p}-\log \left(1-\frac{e(-\log p)}{p^{\sigma}}\right)$ on $\left(\mathbb{R}^{\mathbb{B}}, \mathbf{P}\right)$ 43
3.1 Complex random variables $e(\lambda)$ 43
3.2 Logarithm functions of a complex variable 47
3.3 Complex random variable $\sum_{p}-\log \left(1-\frac{e(-\log p)}{p^{\sigma}}\right)$ 49
3.4 Some properties of the distribution of $\sum_{p}-\log \left(1-\frac{e(-\log p)}{p^{\sigma}}\right)$ 51
4 Riemann zeta function 67
4.1 Euler-Maclaurin summation formula 67
4.2 Analytic continuation to the entire complex plane 75
4.3 Functional equation 81
4.4 No zeros on the line $\operatorname{Re} s=1$ 93
5 Bohr-Jessen limit theorem 97
5.1 Log zeta function 97
5.2 Presentation of the main theorem 101
5.3 Proof of the main theorem 104
6 Some facts from analytic number theory 119
6.1 Square mean value estimate of $\zeta(s)$ 119
6.2 Stirling's formula and estimate of $\Gamma^{(l)}(\sigma+\sqrt{-1} t)$ 148
6.3 Carlson's mean value theorem 171
6.4 Proof of Claim 5.5 189
Appendix 193
A. 1 Several facts from probability theory 193
A.1.1 Convergence of probability measures 193
A.1.2 Characteristic functions 194
A.1.3 Kolmogorov's extension theorem 195
A.1.4 Almost sure convergence theorem for independent random variables 195 195
A.1.5 Lindeberg's central limit theorem 196
A. 2 Gauss's product formula of the gamma function 196
A. 3 A proof of $\zeta(2)=\frac{\pi^{2}}{6}$ 202
A. 4 The second mean value theorem for integrals 205
Bibliography 209
Index of theorem 213
Index 215

