
Appendix 

We begn t h s  appendix with a statement and proof of a result due to Basu 
(1955). Consider a measurable space (%, 3) and a probability model 
{Pe(8 E 0) defined on (%, 9). Consider a statistic T defined on (%, 3) to 
(9, a,), and let 3, = {T-'(B)I B E 3,). Thus 9, is a a-algebra and 
9, c 9. Conditional expectation given 3, is denoted by &( .I%,). 

Definition A.1. The statistic T is a sufficient statistic for the family {Pe(8 E 

0) if, for each bounded 3 measurable function f ,  there exists a 3, 
measurable function j'such that Go( f 13,) = f a.e. Po for all 8 E 0. 

Note that the null set where the above equality does not hold is allowed 
to depend on both 8 and f .  The usual intuitive description of sufficiency is 
that the conditional distribution of X E % (C(X) = Po for some 8 E 0) 
given T(X) = t does not depend on 8. Indeed, if P(.(t) is such a version of 
the conditional distribution of X given T(X) = t, then f defined by f (x) = 

h (T(x)) where 

serves as a version of Ge( f 193,) for each 8 E 0. 
Now, consider a statistic U defined on (%, 3) to (%, 93,). 

Definition A.2. The statistic U is called an ancillary statistic for the family 
{Po18 E 0) if the distribution of U on (%, 3,) does not depend on 
8 E @-that is, if for all B E a,, 

for all 8, q E 0. 



In many instances, ancillary statistics are functions of maximal invariant 
statistics in a situation where a group acts transitively on the family of 
probabilities in question-see Section 7.5 for a discussion. 

Finally, gven a statistic T on (%, 3 )  to (%,a,) and the parametric 
family {Pe18 E 0) ,  let {Q,l8 E O) be the induced family of distributions of 
T o n  (9, %,)-that is, 

Definition A.3. The family {Qele E O) is called boundedly complete if the 
only bounded solution to the equation 

is the function h = 0 a.e. Q, for all 8 E O. 

At times, a statistic T is called boundedly complete-this means that the 
induced family of distributions of T is boundedly complete according to the 
above definition. If the family {Q,l8 E O) is an exponential family on a 
Euclidean space and if O contains a nonempty open set, then {Q,l8 E 0) is 
boundedly complete-see Lehmann (1959, page 132). 

Theorem (Basu, 1955). If T is a boundedly complete sufficient statistic and 
if U is an ancillary statistic, then, for each 8, T(X) and U(X) are 
independent. 

Proof. It suffices to show that, for bounded measurable functions h and k 
on % and %, we have 

Since U is ancillary, a = &, k(U( X)) does not depend on 8, so &,(k(U) - 
a )  = 0 for all 8. Hence 

& , [ & , ( ( k ( ~ )  - a)l3,)] = 0 for all 8. 

Since T is sufficient, there is a '33, measurable function, say j', such that 
&,((k(U) - a)l3,) = a.e. Po. But since j' is 3, measurable, we can write 
j ' ( x )  = J/ (T(x)) (see Lehmann, 1959, Lemma 1, page 37). Also, since k is 



bounded, j can be taken to be bounded. Hence 

and t+b is bounded. The bounded completeness of T implies that is 0 a.e. Q, 
where Qe(B) = Pe(TP1(B)), B E 9 , .  Thus h(T)J/(T) = 0 a.e. Q,, so 

= & @ h ( ~ ) ( k ( U )  - a) .  

Thus (A. 1) holds. 

This Theorem can be used in many of the examples in the text where we 
have used Proposition 7.19. 

The second topic in this Appendix concerns monotone likelihood ratio 
and its implications. Let % and 9 be subsets of the real line. 

Definition A.4. A nonnegative function k defined on % X 9 is totally 
positive of order 2 (TP-2) if, for x, < x, and y, < y,, we have 

In the case that 9 is a parameter space and k(.  , y)  is a density with respect 
to some fixed measure, it is customary to say that k has a monotone 
likelihood ratio when k is TP-2. This nomenclature arises from the observa- 
tion that, when k is TP-2 and y, < y,, then the ratio k(., y,)/k(., y,) is 
nondecreasing in x-assuming that k(.,  y,) does not vanish. Some obvious 
examples of TP-2 functions are: exp[xy], xy for x > 0, yx  for y > 0. If 
x = g(s) and y = h(t) where g and h are both increasing or decreasing, 
then k,(s, t )  = k(g(s), h(t)) is TP-2 whenever k is TP-2. Further, if J/,(x) 

0, t+b,(y) 2 0, and k is TP-2, then k,(x, y)  = J/,(x)J/,(y)k(x, y)  is also 
TP-2. 

The following result due to Karlin (1956) is of use in verifying that some 
of the more complicated densities that arise in statistics are TP-2. Here is 
the setting. Let %, 9 ,  and % be Borel subsets of R' and let p be a a-finite 
measure on the Borel subsets of 9. 



Lemma (Karlin, 1956). Suppose g is TP-2 on % X 9 and h is TP-2 on 
3 x %. If 

is finite for all x  E % and z  E %, then k  is TP-2. 

ProoJ: For x ,  < x ,  and z ,  < z , ,  the difference 

A = k ( x , , z , ) k ( x , , z , )  - k ( x , , z , ) k ( x , , z , )  

can be written 

Now, write A as the double integral over the set { y ,  < y2)  plus the double 
integral over the set { y ,  > y,). In the integral over the set { y ,  > y,), 
interchange y ,  and y, and then combine with the integral over { y ,  < y,). 
This yields 

On the set { y ,  < y,), both of the bracketed expressions are non-negative as 
g and h are TP-2. Hence A >, 0  so k  is TP-2. 

Here are some examples. 

+ Example A.1. With % = (0 ,  m), let 

be the density of a chi-squared distribution with m degrees of 
freedom. Since xmI2,  x  E % and m > 0 ,  is TP-2, f ( x ,  m )  is TP-2. 
Recall that the density of a noncentral chi-squared distribution with 



PROPOSITION A. I 469 

p degrees of freedom and noncentrality parameter A 2 0 is given by 

Observe that f ( x ,  p + 2 j )  is TP-2 in x and j and 
(X/2)Jexp[- iA]/j! is TP-2 in j and A. With 9 = {0,1,. . . ) and p 
as counting measure, Karlin's Lemma implies that h(x, A) is TP-2. 4 

4 Example A.2. Recall that, if Xi and X: are independent random 
variables, then Y = Xi/X; has a density given by 

If the random variable Xi is noncentral chi-squared, say x;(A), 
rather than central chi-squared, then Y = X2,(X)/Xi has a density 

Of course, Y has an unnormalized F(p,  m; A) distribution accord- 
ing to our usage in Section 8.4. Since f (y lp  + 2 j ,  n )  is TP-2 in y 
and j, it follows as in Example A.l that h is TP-2. 4 

The next result yields the useful fact that the noncentral Student's t 
distribution is TP-2. 

Proposition A.1. Suppose f 2 0 defined on (0, co) satisfies 

(i) j,"euxf(x) dx < +a for u E R1 
(ii) f(x/q) is TP-2 on (0, co) X (0, co). 

For 8 E R I  and t E R', define k by k(t, 8) = j,"eetxf(x) dx. Then k is 
TP-2. 

Proof. First consider t E R1 and 8 > 0. Sct v = Ox in the integral defining 
k to obtain 

1 " 
k ( t , 8 )  = -1 etVf - do. 

6 0 is) 



Now apply Karlin's Lemma to conclude that k is TP-2 on R1 x (0, co). A 
similar argument shows that k is TP-2 on R' x (-  co, 0). Since k(t, 0) is a 
constant, it is now easy to show that k is TP-2 on R1 x R'. 

+ Example A.3. Suppose X is N(p, 1) and Y is X2 The random 
variable T = X/ fi, which is, up to a factor of &', a noncentral 
Student's t random variable, has a density that depends on p-the 
noncentrality parameter. The density of TI (derived by writing 
down the joint density of X and Y, changing variables to T and 
W = @, and integrating out W) can be written 

where 

+ ( t )  = O t ( l  + t2)-I/2 

is an increasing function of t. Consider the function 

k ( v ,  p) = /n00 exp[opx] exp[-x2]x-" dx. 

With f (x )  = exp[-x2]x-", Proposition A.l shows k, and hence h,  
is TP-2. + 

We conclude this appendix with a brief description of the role of TP-2 in 
one sided testing problems. Consider a TP-2 densityp(xl8) for x E !X c R1 
and I3 E O c R'. Suppose we want to test the null hypothesis H,: I3 E 

( -  co, O,] n O versus H1 : 8 E (do, co) n 63. The following basic result is 
due to Karlin and Rubin (1956). 

Proposition A.2. Given any test Go of Ho versus Hl, there exists a test + of 
the form 

1 i f x > x o  

0 i f x < x ,  

with 0 a y a 1 such that Go+ a for 8 a 8, and Go+ 2 Go+, for 8 > 13,. 
For any such test +, Go+ is nondecreasing in 0. 


