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18.2. SUBSTITUTION THEOREM. If G and H are recursive, there is a recursive

Fsuch that

(4) Ffax) 2 G(XzH(w), α, x)

for all α,z such that λz//(z,α,z) is a real. In particular, if H is total, then the F

defined by (4) is recursive.

Proof. Let g be an index of G. If Az//(*,a,5) is a real, then the

right side of (4) is, by (1),

We can use this as our definition of F(α,j). o

In particular, it follows that \y is a recursive expression when it is used in

front of an expression defined for all values of y.

REMARK. If H is not total, there may be α,z such that F(α,j) is defined,

but such that λz//(y,α, j) is not a real and hence such that the right side of (4) is

not defined.

The results of §13 and §14 extend without difficulty. However, in §13 it

is natural to consider a further extension in which we allow quantifiers on real

variables. We investigate this in the next section.

19. The Analytical Hierarchy

A relation is analytical if it has an explicit definition with a prefix

consisting of quantifiers, which may be either universal or existential and may be

on either number variables or real variables, and a recursive matrix. The basic

theory of analytical relations is due to Kleene.

We begin with some rules for simplifying prefixes. As before, these may

change the matrix, but they leave it recursive.

Two quantifiers are of the same kind if they are both universal or both

existential; they are of the same type if they are both on real variables or both on
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number variables.

I. Two adjacent quantifiers of the same kind and same type can be

replaced by one quantifier of that kind and type.

For number quantifiers, this is just contraction of quantifiers as in §13.

In order to treat real quantifiers, we need an analogue of (x) . for reals. We

define (α) to be Xy a(<x,y>). Here we have a better result than for numbers:x

given an infinite sequence a^a^... of reals, there is an a such that (0)^ = α?. for

all i. In fact, we can define a by a(x) = α/ x ((z)ι). Moreover, (α) is a
WQ l x

recursive expression when used in contexts of the form (α) ( _ ); for we may
x

replace this context by a(<x, _ >). We can then justify contraction of

quantifiers for real variables just as we did for number variables in §13.

II. A number quantifier can be replaced by a real quantifier of the same

kind.

This follows from the equivalences

3xP(x) <-> 3αP(α(0)).

III. If a number quantifier is immediately followed by a real quantifier,

the real quantifier may be moved to the front of the number quantifier.

This follows from the equivalences

VαVαP(α,j)~VαV:rP(α,:r),

«-» 3a3zP(a,:r),

«-» 3αVjP((α) .j),x

The first two of these are obvious. In the third, both sides say that there is an

infinite sequence αfi, α,, ... such that P(α ,j) for all x. If we put ->Pfor P in the

third, bring the quantifiers to the front by prenex rules, and drop the -i from both

sides, we get the fourth.
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We say that a prefix is Π (Σ ) if all of the real quantifiers precede all of

the number quantifiers; there are exactly n real quantifiers; the real quantifiers

alternate in kind; and the prefix begins with V (3). A relation is Π if it has a

definition with a Π prefix and a recursive matrix; similarly for Σ . A relation

is Δ^ if it is both Π^ and Σ*.

19.1. PROPOSITION. Every analytical relation is either Π; or Σ^ for some n.
n> 71

Proof. By first using III, then applying contraction of quantifiers to

the real variables, o

A Π* or Σ prefix may be further simplified as follows. If there are any

number quantifiers of the same kind as the last real quantifier, we change then to

real quantifiers by II; move then to just after the last real quantifier by III; and

then contract them with the last real quantifier. The remaining number

quantifiers are of the opposite kind to the last real quantifier, and may be

contracted to one number quantifier of this kind. If there are no number

quantifiers left, we can add a superfluous one of the opposite kind to the last real

quantifier. In summary: we may suppose that there is exactly one number

quantifier, which is if the opposite kind to the last real quantifier.

We can still say some more. Consider, for example, a ΓL relation P. By

the above, we have P(α,j) «-» V/JQ(a,*,/?) where Q is Σj . Then, using (3) of §14,

f^a.'x) <—» V(ByR("a(y),'x,0(y),y) with R recursive. We can even omit the last y,

since it may be replaced by lh(/?(t/)). Thus any Π, relation of α,x can be written

yp3yR(a(y),'x,β(y)) with R recursive. Taking negations, any ΣJ relation of α,3

can be written 3(NyR(a(y),~x,β(y)) with R recursive. Similar results hold for πί

and Σ, relations.

19.2. PROPOSITION. If R is Π^ or Σ^, then R is Δ[ for all k > n. If R is

arithmetical, it is Δ for all n.

Proof. By adding superfluous quantifiers, α
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We shall now say that P is reducible to Q if

P(α,3) <—> Q(λyG1(p,α,j),...,λy(rw ί̂ Q:,?),/7'̂ ,̂?),...̂ ^ ,̂?))
1 rib 1 At

where Gj,...,G ,Fp...,F> are total and recursive.

19.3. PROPOSITION. If P is FT and Q is reducible to P, then P is Π and

similarly with Σ^ or Δ* in place of Π . α
7lι ill 71

The analogue of the table in §12 is the following table.

P,ζ? --P P V < 2 PkQ VαP 3αP SarP

It is proved and used in the same way as the earlier table.

The classification of analytical relations into the Π and Σ relations is
71 71

called the analytical hierarchy.

19.4. A N A L Y T I C A L ENUMERATION THEOREM. For every τι, m, and k, there is a

Π (w,AH-l)-ary function which enumerates the class of Π (ra,fc)-ary relations;
71 71

and similarly with Σ for Π .
71 71

Proof. Suppose, for example,we want to enumerate the EL

(l,l)-ary relations. Every such relation R is of the form Vα3/?P where P is Π?

by the remarks after 19.1. Thus if Q is Πj and enumerates the Π? (3,l)-ary

relations, then Vα3/?Q(α,/?,7,:r,f) is the desired enumerating function, α

19.5. ANALYTICAL HIERARCHY THEOREM. For each n, there is a Π set which

is not Σ , hence not Π^ or Σ^ for any k < n. The same holds with Π and Σ

interchanged.

Proof. As in the arithmetical case, α

20. The Projective Hierarchy

The results of the last section can be relativized to a class Φ of total

functions of number variables. A particularly interesting case is that in which Φ


