
1. Comput ability

Recursion theory is, at least in its initial stages, the theory of

computability. In particular, the first task of recursion theory is to give a

rigorous mathematical definition of computable.

A computation is a process by which we proceed from some initially given

objects by means of a fixed set of rules to obtain some final results. The initially

given objects are called inputs: the fixed set of rules is called an algorithm: and

the final results are called outputs.

We shall always suppose that there is at most one output; for a

computation with k outputs can be thought of as k different computations with

one output each. On the other hand, we shall allow any finite number of inputs

(including zero).

We shall suppose that each algorithm has a fixed number k of inputs. We

do not, ever, require that the algorithm give an output when applied to every

fc-tuple of inputs. In particular, for some fc-tuples of inputs the algorithm may

go on computing forever without giving an output.

An algorithm with k inputs computes a function F defined as follows. A

fc—tuple of inputs z,,...,a;, is in the domain of F iff the algorithm has an output

when applied to the inputs jp...,j^ in this case, F(jp...,j,) is that output. A

function is computable if there is an algorithm which computes it.

As noted, an algorithm is set of rules for proceeding from the inputs to the

output. The algorithm must specify precisely and unambiguously what action is

to be taken at each step; and this action must be sufficiently mechanical that it

can be done by a suitable computer.

It seems very hard to make these ideas precise. We shall therefore

proceed in a different way. We shall give a rigorous definition of a class of

functions. It will be clear from the definition that every function in the class is

computable. After some study of the class, we shall give arguments to show that



every computable function is in the class. If we accept these arguments, we have

our rigorous definition of computable.

2. Functions and Relations

We must first decide what inputs and outputs to allow. For the moment,

we will take our inputs and outputs to be natural numbers, i.e., non-negative

integers. We agree that number means natural number unless otherwise

indicated. Lower case Latin letters represent numbers.

We now describe the functions to which the notion of computability

applies. Let ω be the set of numbers. For each fc, ω is the set of i-tuples of

numbers. Thus ω is ω, and ω has just one member, the empty tuple. When

it is not necessary to specify fc, we write xfor j,,...,j,.

A fc-ary function is a mapping of a subset of ω into ω. We agree that a

function is always a fc-ary function for some fc We use capital Latin letters

(usually F, G, and If) for functions.

A fc-axy function is total if its domain is all of ω . A 0-ary total function

is clearly determined by its value at the empty tuple. We identify it with this

value, so that a 0—ary total function is just a number. A 1-ary total function is

called a real. (This terminology comes from set theory, where reals are often

identified with real numbers. It will lead to no confusion, since we never deal

with real numbers.)

A common type of algorithm has as output a yes or no answer to some

question about the inputs. Since we want our outputs to be numbers, we

identify the answer yes with the number 0 and the answer no with the number 1.

We now describe the objects computed by such algorithms.

A fc-arv relation is a subset of ω . We use capital Latin letters (generally

P, Q, and R) for relations. If R is a relation, we usually write R(x) for j G R.

If R is 2—ary, we may also write x R y for R(x,y).


