$\mathrm{ON} \mathrm{CH}+2^{\aleph_{1}} \rightarrow(\alpha)_{2}^{2}$ FOR $\alpha<\omega_{2}$
 Saharon Shelah ${ }^{1}$

§1. Introduction.

We prove the consistency of

$$
\mathrm{CH}+2^{\aleph_{1}} \text { is arbitrarily large }+2^{\aleph_{1}} \nrightarrow\left(\omega_{1} \times \omega\right)_{2}^{2}
$$

(Theorem 1). In fact, we can get $2^{\aleph_{1}} \nrightarrow\left[\omega_{1} \times \omega\right]_{\aleph_{0}}^{2}$, see 1 A . In addition to this theorem, we give generalizations to other cardinals (Theorems 2 and 3). The $\omega_{1} \times \omega$ is best possible as CH implies

$$
\omega_{3} \rightarrow(\omega \times n)_{2}^{2} .
$$

We were motivated by a question of J. Baumgartner, in his talk in the MSRI meeting on set theory, October 1989 , on whether $\omega_{3} \rightarrow(\alpha)_{2}^{2}$ for $\alpha<\omega_{2}$ (if $2^{\aleph_{1}}=\aleph_{2}$, it follows from the Erdős-Rado theorem). Baumgartner proved the consistency of a positive answer with CH and $2^{\aleph_{1}}$ large. He has also proved [BH] in $\mathrm{ZFC}+\mathrm{CH}$ a related polarized partition relation:

$$
\binom{\aleph_{3}}{\aleph_{2}} \rightarrow\binom{\aleph_{1}}{\aleph_{1}}_{\aleph_{0}}^{1,1}
$$

Note. The main proof here is that of Theorem 1. In that proof, in the way things are set up, the main point is proving the \aleph_{2}-c.c. The main idea in the proof is using \mathbf{P} (defined in the proof). It turns out that we can use as elements of \mathcal{P} (see the proof) just pairs (a, b). Not much would be changed if we used $\left\langle\left(a_{n}, \alpha_{n}\right): n<\omega\right\rangle, a_{n}$ a good approximation of the nth part of the suspected monochromatic set of order type $\omega_{1} \times \omega$. In 1A, 2 , and 3 we deal with generalizations and in Theorem 4 with complementary positive results.
§2. The main result.
Theorem 1. Suppose
(a) CH
(b) $\lambda^{\aleph_{1}}=\lambda$.

Then there is an \aleph_{2}-c.c., \aleph_{1}-complete forcing notion \mathbf{P} such that
(i) $|\mathbf{P}|=\lambda$
(ii) $\Vdash_{\mathbf{P}} " 2^{\aleph_{1}}=\lambda, \quad \lambda \nrightarrow\left(\omega_{1} \times \omega\right)_{2}^{2} "$
(iii) $\Vdash_{\mathbf{p}} \mathrm{CH}$
(iv) Forcing with \mathbf{P} preserves cofinalities and cardinalities.
${ }^{1}$ Publication number 424. Partially supported by BSF.

Proof. By Erdős and Hajnal [EH] there is an algebra B with $2^{\aleph_{0}}=\aleph_{1}$ ω-place functions, closed under composition (for simplicity only), such that

$$
\begin{gather*}
\text { If } \alpha_{n}<\lambda \text { for } n<\omega, \text { then for some } k \\
\alpha_{k} \in \operatorname{cl}_{\mathbf{B}}\left\{\alpha_{l}: k<l<\omega\right\} .
\end{gather*}
$$

(\otimes implies that for every large enough k, for every $m, \alpha_{k} \in \operatorname{cl}_{\mathbf{B}}\left\{\alpha_{l}: m<l<\right.$ $\omega\}$.) Let

$$
\mathcal{R}_{\delta}=\left\{b: b \subseteq \lambda, \operatorname{otp}(b)=\delta, \alpha \in b \Rightarrow b \subseteq \operatorname{cl}_{\mathbf{B}}(b \backslash \alpha)\right\}
$$

So by \otimes we have
If α is a limit ordinal, $b \subseteq \lambda, \operatorname{otp}(b)=\alpha$, then for some $\alpha \in b, \quad b \backslash \alpha \in \bigcup_{\delta} \mathcal{R}_{\delta}$.
Let $\mathcal{R}_{<\omega_{1}}=\bigcup_{\alpha<\omega_{1}} \mathcal{R}_{\alpha}$. Let \mathbf{P} be the set of forcing conditions

$$
(w, c, \mathcal{P})
$$

where w is a countable subset of $\lambda, c:[w]^{2} \rightarrow\{$ red, green $\}=\{0,1\}$ (but we write $c(\alpha, \beta)$ instead of $c(\{\alpha, \beta\}))$, and \mathcal{P} is a countable family of pairs (a, b) such that
(i) a, b are subsets of w
(ii) $b \in \mathcal{R}_{<\omega_{1}}$ and a is a finite union of members of $\mathcal{R}_{<\omega_{1}}$
(iii) $\sup (a)<\min (b)$
(iv) if $\sup (a) \leq \gamma<\min (b), \quad \gamma \in w$, then $c(\gamma, \cdot)$ divides a or b into two infinite sets.
We use the notation

$$
p=\left(w^{p}, c^{p}, \mathcal{P}^{p}\right)
$$

for $p \in \mathbf{P}$. The ordering of the conditions is defined as follows:

$$
p \leq q \Longleftrightarrow w^{p} \subseteq w^{q} \& c^{p} \subseteq c^{q} \& \mathcal{P}^{p} \subseteq \mathcal{P}^{q}
$$

Let

$$
\underset{\sim}{c}=\bigcup\left\{c^{p}: p \in{\underset{\sim}{P}}_{\mathbf{P}}\right\} .
$$

FACT A. \mathbf{P} is \aleph_{1}-complete.
Proof. Trivial-take the union.
FACT B. For $\gamma<\lambda,\left\{q \in \mathbf{P}: \gamma \in w^{q}\right\}$ is open dense.
Proof. Let $p \in \mathrm{P}$. If $\gamma \in w^{p}$, we are done. Otherwise we define q as follows: $w^{q}=w^{p} \cup\{\gamma\}, \mathcal{P}^{q}=\mathcal{P}^{p}, c^{q} \upharpoonright w^{p}=c^{p}$ and $c^{q}(\gamma, \cdot)$ is defined so that if $(a, b) \in \mathcal{P}^{q}$, then $c^{q}(\gamma, \cdot)$ divides a and b into two infinite sets.

FACT C. $\Vdash_{\mathbf{P}}$ " $2^{\aleph_{1}} \geq \lambda$ and $\underset{\sim}{c}:[\lambda]^{2} \rightarrow\{$ red, green $\} . "$

Proof. The second phrase follows from Fact B. For the first phrase, define $\underset{\sim}{\rho} \in^{\omega_{1}} 2$, for $\alpha<\lambda$, by: ${\underset{\sim}{\alpha}}_{\rho}(i)=\underset{\sim}{c}(0, \alpha+i)$. Easily

$$
\Vdash_{\mathbf{P}}{ }^{\rho} \rho_{\alpha} \in{ }^{\omega_{1}} 2 \text { and for } \alpha<\beta<\lambda,{\underset{\sim}{\alpha}}^{\rho} \neq{\underset{\sim}{\beta}}^{\rho} "
$$

so $\Vdash_{\mathbf{P}}{ }^{\prime} 2^{\aleph_{1}} \geq \lambda$."
Fact D. P satisfies the \aleph_{2}-c.c.
Proof. Suppose $p_{i} \in \mathbf{P}$ for $i<\aleph_{2}$. For each i choose a countable family \mathcal{A}^{i} of subsets of $w^{p_{i}}$ such that $\mathcal{A}^{i} \subseteq \mathcal{R}_{<\omega_{1}}$ and $(a, b) \in \mathcal{P}^{p_{i}}$ implies $b \in \mathcal{A}^{i}$ and a is a finite union of members of \mathcal{A}^{i}. For each $\gamma \in c \in \mathcal{A}^{i}$ choose a function $F_{\gamma, c}^{i}$ (from those in the algebra B) such that $F_{\gamma, c}^{i}(c \backslash(\gamma+1))=\gamma$. Let v_{i} be the closure of w_{i} (in the order topology).

We may assume that $\left\langle v_{i}: i<\omega_{2}\right\rangle$ is a Δ-system (we have CH) and that $\operatorname{otp}\left(v_{i}\right)$ is the same for all $i<\omega_{2}$. Without loss of generality (w.l.o.g.) for $i<j$ the unique order-preserving function $h_{i, j}$ from v_{i} onto v_{j} maps p_{i} onto p_{j}, \mathcal{A}^{i} onto $\mathcal{A}^{j}, w^{p_{i}} \cap w^{p_{j}}=w^{p_{0}} \cap w^{p_{1}}$ onto itself, and

$$
F_{\gamma, c}^{i}=F_{h_{i, j}(\gamma), h_{i, j}{ }_{c}}^{j}
$$

for $\gamma \in c \in \mathcal{A}^{i}$ (remember: \mathbf{B} has $2^{\aleph_{0}}=\aleph_{1}$ functions only). Hence

$$
\begin{equation*}
h_{i, j} \text { is the identity on } v_{i} \cap v_{j} \text { for } i<j . \tag{1}
\end{equation*}
$$

Clearly by the definition of $\mathcal{R}_{<\omega_{1}}$ and the condition on $F_{\gamma, c}^{i}$:

> If $a \in \mathcal{A}^{i}, i \neq j$ and $a \nsubseteq w^{p_{i}} \cap w^{p_{j}}$, \quad then $a \backslash\left(w^{p_{i}} \cap w^{p_{j}}\right)$ is infinite.

We define q as follows.

$$
w^{q}=w^{p_{0}} \cup w^{p_{1}}
$$

$$
\mathcal{P}^{q}=\mathcal{P}^{p_{0}} \cup \mathcal{P}^{p_{1}}
$$

c^{q} extends $c^{p_{0}}$ and $c^{p_{1}}$ in such a way that, for $e \in\{0,1\}$,
$(*)$ for every $\gamma \in w^{p_{e}} \backslash w^{p_{1-e}}$ and every $a \in \mathcal{A}^{1-e}, c^{q}(\gamma, \cdot)$ divides a into two infinite parts, provided that
$(* *) a \backslash w^{p_{e}}$ is infinite.
This is easily done and $p_{0} \leq q, p_{1} \leq q$, provided that $q \in \mathbf{P}$. For this the problematic part is c^{q} and, in particular, part (iv) of the definition of P. So suppose $(a, b) \in \mathcal{P}^{q}$, e.g., $(a, b) \in \mathcal{P}^{p_{0}}$. Suppose also $\gamma^{*} \in w^{q}$ so that $\sup (a) \leq$ $\gamma^{*}<\sup (b)$. If $\gamma^{*} \in w^{p_{0}}$, there is no problem, as $p_{0} \in \mathbf{P}$. So let us assume $\gamma^{*} \in w^{q} \backslash w^{p_{0}}=w^{p_{1}} \backslash w^{p_{0}}$. If $a \backslash w^{p_{1}}$ or $b \backslash w^{p_{1}}$ is infinite, we are through in view of condition (*) in the definition of c^{q}. Let us finally assume $a \backslash w^{p_{1}}$ is finite. But $a \subseteq w^{p_{0}}$. Hence $a \backslash\left(w^{p_{0}} \cap w^{p_{1}}\right)$ is finite and \otimes_{2} implies it is empty, i.e., $a \subseteq w^{p_{0}} \cap w^{p_{1}}$. Similarly, $b \subseteq w^{p_{0}} \cap w^{p_{1}}$. So $h_{0,1} \upharpoonright(a \cup b)$ is the identity. But $(a, b) \in \mathcal{P}^{p_{0}}$. But $h_{i, j}$ maps p_{i} onto p_{j}. Hence $(a, b) \in \mathcal{P}^{p_{1}}$. As $p_{1} \in \mathbf{P}$, we get the desired conclusion.

FACT E. $\Vdash_{\mathbf{P}}$ "There is no $\underset{\sim}{c}$-monochromatic subset of λ of order-type $\omega_{1} \times$ $\omega . "$

Proof. Let p force the existence of a counterexample. Let G be \mathbf{P}-generic over V with $p \in G$. In $V[G]$ we can find $A \subseteq \lambda$ of order-type $\omega_{1} \times \omega$ such that ${\underset{c}{c}}^{G} \upharpoonright[A]^{2}$ is constant. Let $A=\bigcup_{n<\omega} A_{n}$ where otp $\left(A_{n}\right)=\omega_{1}$ and $\sup \left(A_{n}\right) \leq$ $\min \left(A_{n+1}\right)$. We can replace A_{n} by any $A_{n}^{\prime} \subseteq A_{n}$ of the same cardinality. Hence we may assume w.l.o.g.
(*) ${ }_{1}$

$$
A_{n} \in \mathcal{R}_{\omega_{1}} \quad \text { for } n<\omega
$$

Let $\delta_{n}=\sup \left(A_{n}\right)$ and

$$
\begin{aligned}
& \beta_{n}=\min \left\{\beta: \delta_{n} \leq \beta<\lambda, d(\beta, \cdot)\right. \text { does not } \\
&\text { divide } \left.\bigcup_{l \leq n} A_{l} \text { into two infinite sets }\right\}
\end{aligned}
$$

where $d={\underset{\sim}{c}}^{G}$. Clearly $\beta_{n} \leq \min \left(A_{n+1}\right)$. Hence $\beta_{n}<\beta_{n+1}$. Let $d_{n} \in\{0,1\}$ be such that $d\left(\beta_{n}, \gamma\right)=d_{n}$ for all but finitely many $\gamma \in \bigcup_{l<n} A_{l}$. Let u be an infinite subset of ω such that d_{n} is constant for $n \in u$ and $\left\{\beta_{n}: n \in u\right\} \in \mathcal{R}_{\omega}$. Let $A_{l}=\left\{\alpha_{i}^{l}: i<\omega_{1}\right\}$ in increasing order. So p forces all this on suitable names

$$
\left\langle{\underset{\sim}{\beta}}^{\beta}: n<\omega\right\rangle,\left\langle{\underset{\sim}{\alpha}}_{i}^{l}: i<\omega_{1}\right\rangle,\left\langle{\underset{\sim}{\delta}}_{n}: n<\omega\right\rangle .
$$

As \mathbf{P} is \aleph_{1}-complete, we can find $p_{0} \in \mathbf{P}$ with $p \leq p_{0}$ so that p_{0} forces $\beta_{\sim}=\beta_{l}$ and ${\underset{\sim}{~}}_{n}=\delta_{n}$ for some β_{l} and δ_{n}. We can choose inductively conditions $\tilde{p}_{k} \in \mathbf{P}$ such that $p_{k} \leq p_{k+1}$ and there are $i_{k}<j_{k}$ and α_{i}^{l} (for $i<j_{k}$) with

$$
\begin{aligned}
& p_{k+1} \Vdash \text { " } \alpha_{i_{k}}^{l}>\sup \left(w^{p_{k}} \cap \delta_{l}\right), \\
& \alpha_{i}^{l} \in w^{p_{k+1}} \text { for } i<j_{k}, \\
& \left\{\alpha_{i}^{l}: i<i_{k}\right\} \subseteq \operatorname{cl}\left\{\alpha_{i}^{l}: i_{k}<i<j_{k}\right\}, \\
& \alpha_{i}^{l}=\alpha_{i}^{l} \text { for } i<j_{k}, \\
& \underset{\sim}{c}\left(\beta_{n}, \alpha_{i}^{l}\right)=d_{n} \text { for } l \leq n, i>i_{0}, \text { and } \\
& \gamma \in\left[\delta_{m}, \beta_{m}\right) \cap w^{p_{k}} \text { implies } \underset{\sim}{c}(\gamma, \cdot) \text { divides } \\
& \quad\left\{\alpha_{i}^{l}: i<j_{k}, l \leq m\right\} \text { into two infinite sets" }
\end{aligned}
$$

(remember our choice of β_{m}). Let

$$
\begin{aligned}
l(*) & =\min (u) \\
a & =\left\{\alpha_{i}^{l}: l \leq l(*), i<\bigcup_{k} j_{k}\right\} \\
b & =\left\{\beta_{l}: l \in u\right\} \\
q & =\left(\bigcup_{k} w^{p_{k}}, \bigcup_{k} c^{p_{k}}, \bigcup_{k} \mathcal{P}^{p_{k}} \cup\{(a, b)\}\right) .
\end{aligned}
$$

Now $q \in \mathbf{P}$. To see that q satisfies condition (iv) of the definition of \mathbf{P}, let $\sup (a) \leq \gamma<\min (b)$. Then $\sup \left\{\alpha_{i_{k}}^{l(*)}: k<\omega\right\} \leq \gamma<\beta_{l(*)}$. But $\gamma \in w^{q}=$
$\bigcup_{k} w^{p_{k}}$, so for some $k, \gamma \in w^{p_{k}}$. This implies

$$
\gamma \notin\left(\alpha_{i_{k+1}}^{l(*)}, \delta_{l(*)}\right)
$$

whence $\gamma \geq \delta_{l(*)}$ and

$$
\left\{\alpha_{i}^{l}: l \leq l(*), i<j_{k}\right\} \subseteq a
$$

which implies the needed conclusion.
Also $q \geq p_{k} \geq p$. But now, if $r \geq q$ forces a value to $\alpha_{U_{k} j_{k}}^{l(*)}$; we get a contradiction.

Remark 1A. Note that the proof of Theorem 1 also gives the consistency of $\lambda \nrightarrow\left[\omega_{1} \times \omega\right]_{\aleph_{0}}^{2}:$ replace " $c(\gamma, \cdot)$ divides a set x into two infinite parts" by " $c(\gamma, \cdot)$ gets all values on a set x."

§3. Generalizations to other cardinals.

How much does the proof of Theorem 1 depend on \aleph_{1} ? Suppose we replace \aleph_{0} by μ.

Theorem 2. Assume $2^{\mu}=\mu^{+}<\lambda=\lambda^{\mu}$ and $2 \leq \kappa \leq \mu$. Then for some μ^{+}-complete μ^{++}-c.c. forcing notion \mathbf{P} of cardinality 2^{μ} :

$$
\Vdash_{\mathbf{P}} 2^{\mu}=\lambda, \quad \lambda \nrightarrow\left[\mu^{+} \times \mu\right]_{\kappa}^{2}
$$

Proof. Let B and \mathcal{R}_{δ} be defined as above (for $\delta \leq \mu^{+}$). Clearly
$\oplus \quad$ If $a \subseteq \lambda$ has no last element, then for some $\alpha \in a, a \backslash \alpha \in \bigcup_{\delta} \mathcal{R}_{\delta}$.
Hence, if $\delta=\operatorname{otp}(a)$ is additively indecomposable, then $a \backslash \alpha \in \mathcal{R}_{\delta}$ for some $\alpha \in a$.

Let $\mathbf{P}_{\boldsymbol{\mu}}$ be the set of forcing conditions

$$
(w, c, \mathcal{P})
$$

where $w \subseteq \lambda,|w| \leq \mu, c:[w]^{2} \rightarrow \kappa$, and \mathcal{P} is a set of $\leq \mu$ pairs (a, b) such that
(i) a, b are subsets of w
(ii) $b \in \mathcal{R}_{\mu}$, and a is a finite union of members of $\bigcup_{\mu \leq \delta<\mu+} \mathcal{R}_{\delta}$
(iii) $\sup (a)<\min (b)$
(iv) if $\sup (a) \leq \gamma<\min (b), \quad \gamma \in w$, then the function $c(\gamma, \cdot)$ gets all values $(<\kappa)$ on a or on b.
With the same proof as above we get

$$
\begin{aligned}
& \mathbf{P}_{\mu} \text { satisfies the } \mu^{++} \text {-c.c., } \\
& \mathbf{P}_{\mu} \text { is } \mu^{+} \text {-complete, }
\end{aligned}
$$

(so cardinal arithmetic is clear) and

$$
\Vdash_{\mathbf{P}_{\mu}} \lambda \nrightarrow\left[\mu^{+} \times \mu\right]_{\kappa}^{2} .
$$

What about replacing μ^{+}by an inaccessible θ ? We can manage by demanding

$$
\begin{array}{r}
\left\{a \cap(\alpha, \beta):(a, b) \in \mathcal{P}, \bigcup_{n} \operatorname{otp}(a \cap(\alpha, \beta)) \times n=\operatorname{otp}(a)\right. \\
(\alpha, \beta) \text { maximal under these conditions }\}
\end{array}
$$

is free (meaning there are pairwise disjoint end segments) and by taking care in defining the order. Hence the completeness drops to θ-strategical completeness. This is carried out in Theorem 3 below.

Theorem 3. Assume $\theta=\theta^{<\theta}>\aleph_{0}$ and $\lambda=\lambda^{<\theta}$. Then for some θ^{+}-c.c. θ-strategically complete forcing $\mathbf{P},|\mathbf{P}|=\lambda$ and

$$
\Vdash_{\mathbf{P}} 2^{\theta}=\lambda, \lambda \nrightarrow(\theta \times \theta)_{2}^{2} .
$$

Proof. For W a family of subsets of λ, each with no last element, let
$\operatorname{Fr}(W)=\{f: f$ is a choice function on W such that $\{a \backslash f(a): a \in W\}$ are pairwise disjoint $\}.$
If $\operatorname{Fr}(W) \neq \emptyset, W$ is called free.
Let $\mathbf{P}_{<\theta}$ be the set of forcing conditions

$$
(w, c, \mathcal{P}, W)
$$

where $w \subseteq \lambda, \quad|w|<\theta, \quad c:[w]^{2} \rightarrow$ \{red, green\}, W is a free family of $<\theta$ subsets of w, each of which is in $\bigcup_{\delta<\theta} \mathcal{R}_{\delta}$, and \mathcal{P} is a set of $<\theta$ pairs (a, b) such that
(i) a, b are subsets of w
(ii) $b \in \mathcal{R}_{\omega}$
(iii) $\sup (a)<\min (b)$ and for some $\delta_{0}<\delta_{1}<\cdots<\delta_{n}, \delta_{0}<\min (a), \sup (a) \leq$ $\delta_{n}, \quad a \cap\left[\delta_{l}, \delta_{l+1}\right) \in W$
(iv) if $\sup (a) \leq \gamma<\min (b), \quad \gamma \in w$, then $c(\gamma, \cdot)$ divides a or b into two infinite sets.
We order $\mathbf{P}_{<\theta}$ as follows:

$$
\begin{aligned}
p \leq q \text { iff } & w^{p} \subseteq w^{q}, c^{p} \subseteq c^{q}, \mathcal{P}^{p} \subseteq \mathcal{P}^{q}, W^{p} \subseteq W^{q} \text { and every } \\
& f \in \operatorname{Fr}\left(W^{p}\right) \text { can be extended to a member of } \operatorname{Fr}\left(W^{q}\right)
\end{aligned}
$$

§4. A provable partition relation.

Claim 4. Suppose $\theta>\aleph_{0}, n, r<\omega$, and $\lambda=\lambda^{<\theta}$. Then

$$
\left(\lambda^{+}\right)^{r} \times n \rightarrow(\theta \times n, \theta \times r)_{2}^{2}
$$

Proof. We prove this by induction on r. Clearly the claim holds for $r=0,1$. So w.l.o.g. we assume $r \geq 2$. Let c be a 2-place function from $\left(\lambda^{+}\right)^{r} \times n$ to $\{$ red, green $\}$. Let $\chi=\beth_{2}(\lambda)^{+}$. Choose by induction on l a model N_{l} such that

$$
N_{l} \prec\left(H(\chi), \in,<^{*}\right),
$$

$\left|N_{l}\right|=\lambda, \lambda+1 \subseteq N_{l}, \quad N_{l}^{<\theta} \subseteq N_{l}, \quad c \in N_{l}$ and $N_{l} \in N_{l+1}$. Here <* is a well-ordering of $H(\chi)$. Let

$$
A_{l}=\left[\left(\lambda^{+}\right)^{r} \times l,\left(\lambda^{+}\right)^{r} \times(l+1)\right),
$$

and let $\delta_{l} \in A_{l} \backslash N_{l}$ be such that $\delta_{l} \notin x$ whenever $x \in N_{l}$ is a subset of A_{l} and $\operatorname{otp}(x)<\left(\lambda^{+}\right)^{r}$. W.l.o.g. we have $\delta_{l} \in N_{l+1}$. Now we shall show

$$
\begin{equation*}
\text { If } Y \in N_{0}, Y \subseteq A_{m},|Y|=\lambda^{+} \text {and } \delta_{m} \in Y \tag{*}
\end{equation*}
$$

then we can find $\beta \in Y$ such that $c\left(\beta, \delta_{l}\right)=$ red for all $l<n$.
Why does (*) suffice? Assume (*) holds. We can construct by induction on $i<\theta$ and for each i by induction on $l<n$ an ordinal $\alpha_{i, l}$ such that
(a) $\alpha_{i, l} \in A_{l}$ and $j<i \Rightarrow \alpha_{j, l}<\alpha_{i, l}$
(b) $\alpha_{i, l} \in N_{0}$
(c) $c\left(\alpha_{i, l}, \delta_{m}\right)=$ red for $m<n$
(d) $c\left(\alpha_{i, l}, \alpha_{i_{1}, l_{1}}\right)=$ red \quad when $i_{1}<i$ or $i_{1}=i \& l_{1}<l$.

Accomplishing this suffices as $\alpha_{i, l} \in A_{l}$ and

$$
l<m \Rightarrow \sup A_{l} \leq \min A_{m}
$$

Arriving in the inductive process at (i, l), let

$$
Y=\left\{\beta \in A_{l}: c\left(\beta, \alpha_{j, m}\right)=\operatorname{red} \quad \text { if } j<i, m<n, \text { or } j=i, m<l\right\}
$$

Now clearly $Y \subseteq A_{l}$. Also $Y \in N_{0}$ as all parameters are from N_{0}, their number is $<\theta$ and $N_{0}^{<\theta} \subseteq N_{0}$. Also $\delta_{l} \in Y$ by the induction hypothesis (and $\delta_{l} \in A_{l}$). So by (*) we can find $\alpha_{i, l}$ as required.

Proof of $(*) . Y \nsubseteq N_{0}$, because $\delta_{m} \in Y$ and $Y \in N_{0}$. As $|Y|=\lambda^{+}$, we have $\operatorname{otp}(Y) \geq \lambda^{+}$. But $\lambda^{+} \rightarrow\left(\lambda^{+}, \theta\right)^{2}$, so there is $B \subseteq Y$ such that $|B|=\lambda^{+}$and $c \upharpoonright B \times B$ is constantly red or there is $B \subseteq Y$ such that $|B|=\theta$ and $c \mid B \times B$ is constantly green. In the former case we get the conclusion of the claim. In the latter case we may assume $B \in N_{0}$, hence $B \subseteq N_{0}$, and let $k \leq n$ be maximal such that

$$
B^{\prime}=\left\{\xi \in B: \bigwedge_{l<k} c\left(\delta_{l}, \xi\right)=\operatorname{red}\right\}
$$

has cardinality θ. If $k=n$, any member of B^{\prime} is as required in (*). So assume $k<n$. Now $B^{\prime} \in N_{k}$, since $B \in N_{0} \prec N_{k}$ and $\left\{N_{l}, A_{l}\right\} \in N_{k}$ and $\delta_{l} \in N_{k}$ for $l<k$. Also

$$
\left\{\xi \in B^{\prime}: c\left(\delta_{k}, \xi\right)=\operatorname{red}\right\}
$$

is a subset of B^{\prime} of cardinality $<\theta$ by the choice of k. So for some $B^{\prime \prime} \in N_{0}$, $c \uparrow\left\{\delta_{k}\right\} \times\left(B^{\prime} \backslash B^{\prime \prime}\right)$ is constantly green (e.g., as $B^{\prime} \subseteq N_{0}$, and $N_{0}^{<\theta} \subseteq N_{0}$). Let

$$
Z=\left\{\delta \in A_{k}: c \upharpoonright\{\delta\} \times\left(B^{\prime} \backslash B^{\prime \prime}\right) \text { is constantly green }\right\}
$$

and

$$
Z^{\prime}=\left\{\delta \in Z:\left(\forall \alpha \in B^{\prime} \backslash B^{\prime \prime}\right)\left(\delta<\alpha \Leftrightarrow \delta_{k}<\alpha\right)\right\}
$$

So $Z \subseteq A_{k}, \quad Z \in N_{k}, \quad \delta_{k} \in Z$ and therefore $\operatorname{otp}(Z)=\operatorname{otp}\left(A_{k}\right)=\left(\lambda^{+}\right)^{r}$. Note that $k \neq m \Rightarrow Z^{\prime}=Z$ and $k=m \Rightarrow Z^{\prime}=Z \backslash \sup \left(B^{\prime} \backslash B^{\prime \prime}\right)$, so Z^{\prime} has the same properties. Now we apply the induction hypothesis; one of the following holds (note that we can interchange the colours): (a) There is $Z^{\prime \prime} \subseteq Z^{\prime}$, $\operatorname{otp}\left(Z^{\prime \prime}\right)=\theta \times n, c \upharpoonright Z^{\prime \prime} \times Z^{\prime \prime}$ is constantly red, w.l.o.g. $Z^{\prime \prime} \in N_{k}$, or (b) there is $Z^{\prime \prime} \subseteq Z^{\prime}, \operatorname{otp}\left(Z^{\prime \prime}\right)=\theta \times(r-1), c \upharpoonright Z^{\prime \prime} \times Z^{\prime \prime}$ green and w.l.o.g. $Z^{\prime \prime} \in N_{k}$. If (a), we are done; if $(\mathrm{b}), Z^{\prime \prime} \cup\left(B^{\prime} \backslash B^{\prime \prime}\right)$ is as required.

Remark 4 A. So $\left(\lambda^{+}\right)^{n+1} \rightarrow(\theta \times n)^{2}$ for $\lambda=\lambda^{<\theta}, \theta=\operatorname{cf}(\theta)>\aleph_{0}$ (e.g., $\left.\lambda=2^{<\theta}\right)$.

Remark $4 B$. Suppose $\lambda=\lambda^{<\theta}, \theta>\aleph_{0}$. If c is a 2-colouring of $\left(\lambda^{+r}\right)^{s} \times n$ by k colours and every subset of it of order type $\left(\lambda^{+(r-1)}\right)^{s} \times n$ has a monochromatic subset of order type θ for each of the colours, one of the colours being red, then by the last proof we get
(a) There is a monochromatic subset of order type $\theta \times n$ and of colour red or
(b) There is a colour d and a set Z of order type $\left(\lambda^{+r}\right)^{s}$ and a set B of order type θ such that $B<Z$ or $Z<B$ and

$$
\{(\alpha, \beta): \alpha \in B, \beta \in Z \text { or } \alpha \neq \beta \in B\}
$$

are all coloured with d.
So we can prove that for 2 -colourings by k colours c

$$
\left(\lambda^{+r}\right)^{s} \times n \rightarrow\left(\theta \times n_{1}, \ldots, \theta \times n_{k}\right)^{2}
$$

when r, s, n are sufficiently large (e.g., $n \geq \min \left\{n_{l}: l=1, \ldots, k, s \geq \sum_{l=1}^{k} n_{l}\right\}$) by induction on $\sum_{l=1}^{k} n_{l}$.

Note that if c is a 2-colouring of $\lambda^{+2 k}$, then for some $l<k$ and $A \subseteq \lambda^{+2 k}$ of order type $\lambda^{+(2 l+2)}$ we have
(*) If $A^{\prime} \subseteq A, \operatorname{otp}\left(A^{\prime}\right)=\lambda^{+2 l}$, and d is a colour which appears in A, then there is $B \subseteq A^{\prime}$ of order type θ such that B is monochromatic of colour d.
We can conclude $\lambda^{+2 k} \rightarrow(\theta \times n)_{k}^{2}$.

References

[BH] J. Baumgartner and A. Hajnal, in preparation.
[EH] P. Erdős and A. Hajnal, Unsolved problems in set theory, Axiomatic set theory, Proceedings of symposia in pure mathematics, vol. XIII part I, American Mathematical Society, Providence 1971, pp. 17-48.

Institute of Mathematics
The Hebrew University
Jerusalem, Israel
Department of Mathematics
Rutgers University
New Brunswick, NJ, USA

