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34 Proof of Louveau's Theorem

Finally, we arrive at our last section. The following summarizes how I feel now.

You are walking down the street minding your own business and
someone stops you and asks directions. Where's xxx hall? You don't
know and you say you don't know. Then they point at the next
street and say: Is that xxx street? Well by this time you feel kind of
stupid so you say, yea yea that's xxx street, even though you haven't
got the slightest idea whether it is or not. After all, who wants to
admit they don't know where they are going or where they are.

For a < ωfκ define D C ωω is Σ° (semihyp) iff there exists S a Π } set of
hyperarithmetic reals such that every element of S is a /?-code for some β < a
and

D = \J{P(T,q):(T,q)eS}.

A set is Π^(semihyp) iff it is the complement of a Σ° (semihyp) set. The
Πo(semihyp) sets are just the usual clopen basis ([s] for s G ω<w together with
the empty set) and ΣQ(semihyp) sets are their complements.

Lemma 34.1 Σ° (semihyp) sets are U{ and consequently Π° (semihyp) sets are
T1

proof:
x £ LKp( τ> ύ : (T> ύ £ S) i f f t h e r e e x i s t s (T> ύ € Δ} such that (Γ, q) G S

and x G P(T, q). Quantification over Δ} preserves Π} ( see Corollary 29.3 ) and
Lemma 33.4 implies that "x G P(T, q)n is Δ}.
•

We will need the following reflection principle in order to prove the Main
Lemma 34.3.

A predicate Φ C P(u>) is called IL{ on U\ iff for any Iί\ set N C ω x ω the
set {e : Φ(Ne)} is Π} (where Ne = {n : (e, n) G AT}).

Lemma 34.2 (Harrington [39] Kechris [48]) U{-Reflection. Suppose Φ(X) is
Il{ on Πj and Q is a H\ set

IfΦ(Q), then there exists a A\ setDCQ such that Φ(D).

proof:
By the normal form theorem 17.4 there is a recursive mapping e —* Te such

that e G Q iff Te is well-founded. Define for e G ω

ϊ = {e : -,(Γβ
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then N° is Σ\ and N1 is Πf. For e G Q we have 7Ve° = N} = De C Q is Δ | ; and
for e ^ Q we have that Ng1 = Q. If we assume for contradiction that }
for all e G Q, then

1

But this would mean that Q is Δj and this proves the Lemma.
•

Note that a Πj predicate need not be Π} on Π* since the predicate

Φ(X) = "0 £ X"

is ΔQ but not Πj on U{. Some examples of U{ on Π* predicates Φ(X) are

or
Φ(X)ifϊVx,y£X θ(x,y)

where θ is a Πj sentence.

Lemma 34.3 Suppose A is Σ\ and A C B G Σ^(semihyp), <Aen Mere exists
C G Σ£ (hyp) wtί& A C C C ΰ .

proof:
Let B = \J{P(Γ, g) : (T, g) G 5 } where S is a Π} set of hyperarithmetic

< α-codes. Let S C ω b e the U{ set of Δ}-codes for elements of 5, i.e.

e G 5 iff e is a Δ}-code for (Γe, qe) and (Γe, ge) G 5.

Now define the predicate Φ(X) for X C α as follows:

Φ(X) iff X C 5 and A C U e G Λ :

The predicate Φ(X) is U{ on Πj and Φ(5). Therefore by reflection (Lemma
34.2) there exists a Δ} set D C S such that Φ(D). Define (T,g) by

T = {e Λ s : e G D and 5 G Te} q(e~s) = ge(«) for e G I> and s G Te°.

Since D is Δ} it is easy to check that (T, q) is A\ and hence hyperarithmetic.
Since Φ(D) holds it follows that C = 5(T,g) the Σ°(hyp) set coded by (T,g)
has the property that A C C and since D C 5 it follows that C C.B.
•

Define for a < ωfκ the α-topology by taking for basic open sets the family

(J{Π^(semihyp):/?<α}.

As usual, c\a(A) denotes the closure of the set A in the a-topology.
The 1-topology is just the standard topology on ωω. The α-topology has its

basis certain special Σ\ sets so it is intermediate between the standard topology
and the Gandy topology corresponding to Gandy forcing.
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Lemma 34.4 If A is Σ\, then dα(A) is Π£(semihyp).

proof:
Since the Σ^(semihyp) sets for β < α form a basis for the α-closed sets,

dα(A) = f]{X DA:3β<αXe

By Lemma 34.3 this same intersection can be written:

clα(A) = f]{X DA:3β<α Xe

But now define (T, q) G Q iff (T, ?)GΔ}, (T, q) is a /?-code for some β < α, and
A C 5(T, g). Note that Q is a Πf set and consequently, ύα{A) is a Π° (semihyp)
set, as desired.
•

Note that it follows from the Lemmas that for 4 a Σ } set, clα(Λ) is a Σ} set
which is a basic open set in the /?-topology for any β > α.

Let P be Gandy forcing, i.e., the partial order of all nonempty Σj subsets
of ωω and let α be a name for the real obtained by forcing with F, so that by
Lemma 30.2, for any G which is F-generic, we have that p G G iff αG G p.

Lemma 34.5 For any a < ωfκ, p G P, and C G Π£ (coded in V) if

p |hαG C,

then
clQ(p) |hαG C.

proof:
This is proved by induction on α.
For a = 1 recall that the α-topology is the standard topology and C is a

standard closed set. If p |hαG C, then it better be that p C C , else there exists
s G ω<ω with q = pC)[s] nonempty and [s]ΠC = 0. But then q < p and g |hα£ C.
Hence p C C and since C is closed, cl(p) C C. Since cl(p) |h α G cl(p), it follows
that cl(p) |h a G C.

For α > 1 let

where each Cn is Πjg for some β < a. Suppose for contradiction that

cla(p) fαe C

Then for some n <ω and r < c/o(p) it must be that

r\ha£Cn.
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Suppose that Cn is Π^ for some β < a. Then by induction

dβ(r)\haeCn.

But clβ(r) is a Π^(semihyp) set by Lemma 34.4 and hence a basic open set in the

α-topology. Note that since they force contradictory information (cl^(r) |Hα^ C

and p |hα£ C) it must be that dβ(r) dp = 0, (otherwise the two conditions
would be compatible in F). But since cl^(r) is α-open this means that

cl / 3(r)nclα(p) = 0

which contradicts the fact that r < c\a(p).
•

Now we are ready to prove Louveau's Theorem 33.1. Suppose A and B are
Σ} sets and C is a Π° set with A C C and C Π B = 0. Since A C C it follows
that

Λ |hα€ C.

By Lemma 34.5 it follows that

clα(Λ) \\-ae C.

Now it must be that da{A) Π B = 0, otherwise letting p = clα(A) Π β would be
a condition of F such that

p |hαe C

and
p \\-ae B

which would imply that B Π C φ 0 in the generic extension. But by absolute-
ness B and C must remain disjoint. So clα(A) is a Πα(semihyp)-set (Lemma
34.4) which is disjoint from the set B and thus by applying Lemma 34.3 to its
complement there exists a Π° (hyp)-set C with da(A) C C and C Π B = 0.
•

The argument presented here is partially from Harrington [34], but contains
even more simplification brought about by using forcing and absoluteness. Lou-
veau's Theorem is also proved in Sacks [93] and Mansfield and Weitkamp [71].




