32 Σ_1^1 equivalence relations

Theorem 32.1 (Burgess [14]) Suppose E is a Σ_1^1 equivalence relation. Then either E has $\leq \omega_1$ equivalence classes or there exists a perfect set of pairwise E-inequivalent reals.

proof:

We will need to prove the boundedness theorem for this result. Define

 $WF = \{T \subseteq \omega^{<\omega} : T \text{ is a well-founded tree} \}.$

For $\alpha < \omega_1$ define $WF_{<\alpha}$ to the subset of WF of all well-founded trees of rank $< \alpha$. WF is a complete Π_1^1 set, i.e., for every $B \subseteq \omega^{\omega}$ which is Π_1^1 there exists a continuous map f such that $f^{-1}(WF) = B$ (see Theorem 17.4). Consequently, WF is not Borel. On the other hand each of the $WF_{<\alpha}$ are Borel.

Lemma 32.2 For each $\alpha < \omega_1$ the set $WF_{<\alpha}$ is Borel.

proof:

Define for $s \in \omega^{<\omega}$ and $\alpha < \omega_1$

 $WF_{\leq \alpha}^s = \{T \subseteq \omega^{<\omega} : T \text{ is a tree, } s \in T, r_T(s) < \alpha\}.$

The fact that $WF^s_{\leq \alpha}$ is Borel is proved by induction on α . The set of trees is Π^0_1 . For λ a limit

$$WF^{s}_{<\lambda} = \bigcup_{\alpha < \lambda} WF^{s}_{<\alpha}.$$

For a successor $\alpha + 1$

 $T \in WF^{s}_{\leq \alpha+1}$ iff $s \in T$ and $\forall n \ (s \ n \in T \to T \in WF^{s \ n}_{\leq \alpha})$.

Another way to prove this is take a tree T of rank α and note that $WF_{<\alpha} = \{\hat{T} : \hat{T} \prec T\}$ and this set is Δ_1^1 and hence Borel by Theorem 26.1.

Lemma 32.3 (Boundedness) If $A \subseteq WF$ is Σ_1^1 , then there exists $\alpha < \omega_1$ such that $A \subseteq WF_{\alpha}$.

proof:

Suppose no such α exists. Then

$$T \in WF$$
 iff there exists $T \in A$ such that $T \preceq T$.

But this would give a Σ_1^1 definition of WF, contradiction.

There is also a lightface version of the boundedness theorem, i.e., if A is a Σ_1^1 subset of WF, then there exists a recursive ordinal $\alpha < \omega_1^{CK}$ such that $A \subseteq WF_{\leq \alpha}$. Otherwise,

$$\{e \in \omega : e \text{ is the code of a recursive well-founded tree }\}$$

would be Σ_1^1 .

Now suppose that E is a Σ_1^1 equivalence relation. By the Normal Form Theorem 17.4 we know there exists a continuous mapping $(x, y) \mapsto T_{xy}$ such that T_{xy} is always a tree and

$$xEy$$
 iff $T_{xy} \notin WF$.

Define

$$xE_{\alpha}y$$
 iff $T_{xy} \notin WF_{<\alpha}$.

By Lemma 32.2 we know that the binary relation E_{α} is Borel. Note that E_{α} refines E_{β} for $\alpha > \beta$. Clearly,

$$E = \bigcap_{\alpha < \omega_1} E_\alpha$$

and for any limit ordinal λ

$$E_{\lambda} = \bigcap_{\alpha < \lambda} E_{\alpha}.$$

While there is no reason to expect that any of the E_{α} are equivalence relations, we use the boundedness theorem to show that many are.

Lemma 32.4 For unboundedly many $\alpha < \omega_1$ the binary relation E_{α} is an equivalence relation.

proof:

Note that every E_{α} must be reflexive, since E is reflexive and $E = \bigcap_{\alpha < \omega_1} E_{\alpha}$. The following claim will allow us to handle symmetry.

Claim: For every $\alpha < \omega_1$ there exists $\beta < \omega_1$ such that for every x, y

proof:

Let

$$A = \{T_{xy} : x E_{\alpha} y \text{ and } y \not \!\!\! E_{\alpha} x\}.$$

The next claim is to take care of transitivity.

Claim: For every $\alpha < \omega_1$ there exists $\beta < \omega_1$ such that for every x, y, z

proof: Let

 $B = \{T_{xy} \oplus T_{yz} : x E_{\alpha}y, y E_{\alpha}z, \text{ and } x \not\!\!E_{\alpha}z\}.$

The operation \oplus on a pair of trees T_0 and T_1 is defined by

$$T_0 \oplus T_1 = \{(s,t) : s \in T_0, t \in T_1, \text{ and } |s| = |t|\}.$$

Note that the rank of $T_0 \oplus T_1$ is the minimum of the rank of T_0 and the rank of T_1 . (Define the rank function on $T_0 \oplus T_1$ by taking the minimum of the rank functions on the two trees.)

Now we use the Claims to prove the Lemma. Using the usual Lowenheim-Skolem argument we can find arbitrarily large countable ordinals λ such that for every $\alpha < \lambda$ there is a $\beta < \lambda$ which satisfies both Claims for α . But this means that E_{λ} is an equivalence relation. For suppose $xE_{\lambda}y$ and $y \not E_{\lambda}x$. Then since $E_{\lambda} = \bigcap_{\alpha < \lambda} E_{\alpha}$ there must be $\alpha < \lambda$ such that $xE_{\alpha}y$ and $y \not E_{\alpha}x$. But by the Claim there exist $\beta < \lambda$ such that $x \not E_{\beta}y$ and hence $x \not E_{\lambda}y$, a contradiction. A similar argument using the second Claim works for transitivity.

Let G be any generic filter over V with the property that it collapses ω_1 but not ω_2 . For example, Levy forcing with finite partial functions from ω to ω_1 (see Kunen [54] or Jech [43]). Then $\omega_1^{V[G]} = \omega_2^V$. By absoluteness, E is still an equivalence relation and for any α if E_{α} was an equivalence relation in V, then it still is one in V[G]. Since

$$E_{\omega_1^V} = \bigcap_{\alpha < \omega_1^V} E_\alpha$$

$$V[G] \models \exists P \text{ perfect } \forall x \forall y \ (x, y \in P \text{ and } x \neq y) \rightarrow x \not \!\!\! E y.$$

Hence, by Shoenfield Absoluteness 20.2, V must think that there is a perfect set of E-inequivalent reals.

A way to avoid taking a generic extension of the universe is to suppose Burgess's Theorem is false. Then let M be the transitive collapse of an elementary substructure of some sufficiently large V_{κ} (at least large enough to know about absoluteness and Silver's Theorem). Let M[G] be obtained as in the above proof by Levy collapsing ω_1^M . Then we can conclude as above that M thinks E has a perfect set of inequivalent elements, which contradicts the assumption that M thought Burgess's Theorem was false.

By Harrington's Theorem 25.1 it is consistent to have Π_2^1 sets of arbitrary cardinality, e.g it is possible to have $\mathfrak{c} = \omega_{23}$ and there exists a Π_2^1 set B with $|B| = \omega_{17}$. Hence, if we define

$$xEy$$
 iff $x = y$ or $x, y \notin B$

then we get Σ_2^1 equivalence relation with exactly ω_{17} equivalence classes, but since the continuum is ω_{23} there is no perfect set of *E*-inequivalent reals.

See Burgess [15] [16] and Hjorth [41] for more results on analytic equivalence relations. For further results concerning projective equivalence relations see Harrington and Sami [37], Sami [94], Stern [107] [108], Kechris [49], Harrington and Shelah [38], Shelah [95], and Harrington, Marker, and Shelah [39].