Part IV Gandy Forcing

30 Π_1^1 equivalence relations

Theorem 30.1 (Silver [99]) Suppose (X, E) is a \prod_{1}^{1} equivalence relation, i.e. X is a Borel set and $E \subseteq X^2$ is a \prod_{1}^{1} equivalence relation on X. Then either E has countably many equivalence classes or there exists a perfect set of pairwise inequivalent elements.

Before giving the proof consider the following example. Let WO be the set of all characteristic functions of well-orderings of ω . This is a Π_1^1 subset of $2^{\omega \times \omega}$. Now define $x \simeq y$ iff there exists an isomorphism taking x to y or $x, y \notin WO$. Note that $(2^{\omega \times \omega}, \simeq)$ is a Σ_1^1 equivalence relation with exactly ω_1 equivalence classes. Furthermore, if we restrict \simeq to WO, then (WO, \simeq) is a Π_1^1 equivalence relation (since well-orderings are isomorphic iff neither is isomorphic to an initial segment of the other). Consequently, Silver's theorem is the best possible.

The proof we are going to give is due to Harrington [33], see also Kechris and Martin [51], Mansfield and Weitkamp [71] and Louveau [62]. A model theoretic proof is given in Harrington and Shelah [38].

We can assume that X is Δ_1^1 and E is Π_1^1 , since the proof readily relativizes to an arbitrary parameter. Also, without loss, we may assume that $X = \omega^{\omega}$ since we just make the complement of X into one more equivalence class.

Let \mathbb{P} be the partial order of nonempty Σ_1^1 subsets of ω^{ω} ordered by inclusion. This is known as *Gandy forcing*. Note that there are many trivial generic filters corresponding to Σ_1^1 singletons.

Lemma 30.2 If G is \mathbb{P} -generic over V, then there exists $a \in \omega^{\omega}$ such that $G = \{p \in \mathbb{P} : a \in p\}$ and $\{a\} = \bigcap G$.

proof:

For every *n* an easy density argument shows that there exists a unique $s \in \omega^n$ such that $[s] \in G$ where $[s] = \{x \in \omega^{\omega} : s \subseteq x\}$. Define $a \in \omega^{\omega}$ by $[a \upharpoonright n] \in G$ for each *n*. Clearly, $\bigcap G \subseteq \{a\}$.

Now suppose $B \in G$, we need to show $a \in B$. Let B = p[T].

Claim: There exists $x \in \omega^{\omega}$ such that $p[T^{x \mid n,a \mid n}] \in G$ for every $n \in \omega$. proof:

This is by induction on n. Suppose $p[T^{x \mid n, a \mid n}] \in G$. Then

$$p[T^{x \restriction n, a \restriction n+1}] \in G$$

since

$$p[T^{x \restriction n, a \restriction n+1}] = [a \restriction n+1] \cap p[T^{x \restriction n, a \restriction n}]$$

and both of these are in G. But note that

$$p[T^{x \restriction n, a \restriction n+1}] = \bigcup_{m \in \omega} p[T^{x \restriction n \hat{n}, a \restriction n+1}]$$

and so by a density argument there exists m = x(n) such that

$$p[T^{x \restriction n \hat{n}, a \restriction n+1}] \in G.$$

This proves the Claim.

By the Claim we have that $(x, a) \in [T]$ (since elements of \mathbb{P} are nonempty) and so $a \in p[T] = B$. Consequently, $\bigcap G = \{a\}$. Now suppose that $a \in p \in \mathbb{P}$ and $p \notin G$. Then since

$$\{q \in \mathbb{P} : q \leq p \text{ or } q \cap p = \emptyset\}$$

is dense there must be $q \in G$ with $q \cap p = \emptyset$. But this is impossible, because $a \in q \cap p$, but $q \cap p = \emptyset$ is a Π_1^1 sentence and hence absolute.

We say that $a \in \omega^{\omega}$ is P-generic over V iff $G = \{p \in \mathbb{P} : a \in p\}$ is P-generic over V.

Lemma 30.3 If a is \mathbb{P} -generic over V and $a = \langle a_0, a_1 \rangle$ (where \langle , \rangle is the standard pairing function), then a_0 and a_1 are both \mathbb{P} -generic over V.

proof:

The proof is symmetric so we just do it for a_0 . Note that we are not claiming that they are product generic only that each is separately generic. Suppose $D \subseteq \mathbb{P}$ is dense open. Let

$$E = \{p \in \mathbb{P} : \{x_0 : x \in p\} \in D\}.$$

To see that E is dense let $q \in \mathbb{P}$ be arbitrary. Define

$$q_0 = \{x_0 : x \in q\}.$$

Since q_0 is a nonempty Σ_1^1 set and D is dense, there exists $r_0 \leq q_0$ with $r_0 \in D$. Let

$$r = \{x \in q : x_0 \in r_0\}.$$

Then $r \in E$ and $r \leq q$.

Since E is dense we have that there exists $p \in E$ with $a \in p$ and consequently,

$$a_0 \in p_0 = \{x_0 : x \in p\} \in D.$$

Lemma 30.4 Suppose $B \subseteq \omega^{\omega}$ is Π_1^1 and for every $x, y \in B$ we have that x E y. Then there exists a Δ_1^1 set D with $B \subseteq D \subseteq \omega^{\omega}$ and such that for every $x, y \in D$ we have that x E y.

proof:

Let $A = \{x \in \omega^{\omega} : \forall y \ y \in B \to xEy\}$. Then A is a Π_1^1 set which contains the Σ_1^1 set B, consequently by the Separation Theorem 27.5 or 28.2 there exists a Δ_1^1 set D with $B \subseteq D \subseteq A$. Since all elements of B are equivalent, so are all elements of A and hence D is as required.

Now we come to the heart of Harrington's proof. Let B be the union of all Δ_1^1 subsets of ω^{ω} which meet only one equivalence class of E, i.e.

$$B = \bigcup \{ D \subseteq \omega^{\omega} : D \in \Delta_1^1 \text{ and } \forall x, y \in D \ x Ey \}.$$

Since E is Π_1^1 we know that by using Δ_1^1 codes that this union is Π_1^1 , i.e., $z \in B$ iff $\exists e \in \omega$ such that

- 1. e is a Δ_1^1 code for a subset of ω^{ω} ,
- 2. $\forall x, y \text{ in the set coded by } e \text{ we have } xEy, \text{ and }$
- 3. z is in the set coded by e.

Note that item (1) is Π_1^1 and (2) and (3) are both Δ_1^1 (see Theorem 29.1).

If $B = \omega^{\omega}$, then since there are only countably many Δ_1^1 sets, there would only be countably many E equivalence classes and we are done. So assume $A = \sim B$ is a nonempty Σ_1^1 set and in this case we will prove that there is a perfect set of E-inequivalent reals.

Lemma 30.5 Suppose $c \in \omega^{\omega} \cap V$. Then

A ⊫_rčĘå

where \mathring{a} is a name for the generic real (Lemma 30.2).

proof:

Suppose not, and let $C \subseteq A$ be a nonempty Σ_1^1 set such that $C \models cEa$. We know that there must exists $c_0, c_1 \in C$ with $c_0 \not Ec_1$. Otherwise there would exists a Δ_1^1 superset of C which meets only one equivalence class (Lemma 30.4). But we these are all disjoint from A. Let

$$Q = \{c : c_0 \in C, c_1 \in C, \text{ and } c_0 \not \!\!\! E c_1\}.$$

Note that Q is a nonempty Σ_1^1 set. Let $a \in Q$ be \mathbb{P} -generic over V. Then by Lemma 30.3 we have that both a_0 and a_1 are \mathbb{P} -generic over V and $a_0 \in C$, $a_1 \in C$, and $a_0 \not \models a_1$. But $a_i \in C$ and $C \models a_i E c$ means that

$$a_0 Ec, a_1 Ec$$
, and $a_0 \not\!\!\! E a_1$.

This contradicts the fact that E is an equivalence relation.

Note that "E is an equivalence relation" is a Π_1^1 statement hence it is absolute. Note also that we don't need to assume that there are a which are \mathbb{P} -generic over V. To see this replace V by a countable transitive model M of ZFC* (a sufficiently large fragment of ZFC) and use absoluteness.

Lemma 30.6 Suppose M is a countable transitive model of ZFC^{*} and \mathbb{P} is a partially ordered set in M. Then there exists $\{G_x : x \in 2^{\omega}\}$, a "perfect" set of \mathbb{P} -filters, such that for every $x \neq y$ we have that (G_x, G_y) is $\mathbb{P} \times \mathbb{P}$ -generic over M.

proof:

Let D_n for $n < \omega$ list all dense open subsets of $\mathbb{P} \times \mathbb{P}$ which are in M. Construct $\langle p_s : s \in 2^{<\omega} \rangle$ by induction on the length of s that

1. $s \subseteq t$ implies $p_t \leq p_s$ and

2. if |s| = |t| = n + 1 and s and t are distinct, then $(p_s, p_t) \in D_n$.

Now define for any $x \in 2^{\omega}$

$$G_x = \{ p \in \mathbb{P} : \exists n \ p_{x \mid n} \leq p \}.$$

Finally to prove Theorem 30.1 let M be a countable transitive set isomorphic to an elementary substructure of (V_{κ}, \in) for some sufficiently large κ . Let $\{G_x : x \in 2^{\omega}\}$ be given by Lemma 30.6 with $A \in G_x$ for all x and let

$$P = \{a_x : x \in 2^\omega\}$$

Corollary 30.7 Every Σ_1^1 set which contains a real which is not Δ_1^1 contains a perfect subset.

proof:

Let $A \subseteq \omega^{\omega}$ be a Σ_1^1 set. Define xEy iff $x, y \notin A$ or x=y. Then is E is a Π_1^1 equivalence relation. A Δ_1^1 singleton is a Δ_1^1 real, hence Harrington's set B in the above proof must be nonempty. Any perfect set of E-inequivalent elements can contain at most one element of $\sim A$.

Corollary 30.8 Every uncountable Σ_1^1 set contains a perfect subset.

Perhaps this is not such a farfetched way of proving this result, since one of the usual proofs looks like a combination of Lemma 30.2 and 30.6.