
Part IV

Gandy Forcing

30 Π} equivalence relations

Theorem 30.1 (Silver [99]) Suppose (X,E) is a Π} equivalence relation, i.e.
X is a Borel set and E C X2 is a Π} equivalence relation on X. Then either E
has countably many equivalence classes or there exists a perfect set of pairwise
inequivalent elements.

Before giving the proof consider the following example. Let WO be the set
of all characteristic functions of well-orderings of ω. This is a Π* subset of 2ωxω.
Now define x ~ y iff there exists an isomorphism taking x to y or #, y £ WO.
Note that (2 ω x ω ,~) is a Σ\ equivalence relation with exactly ω\ equivalence
classes. Furthermore, if we restrict ~ to WO, then (WO, ~) is a H{ equivalence
relation (since well-orderings are isomorphic iff neither is isomorphic to an initial
segment of the other). Consequently, Silver's theorem is the best possible.

The proof we are going to give is due to Harrington [33], see also Kechris and
Martin [51], Mansfield and Weitkamp [71] and Louveau [62]. A model theoretic
proof is given in Harrington and Shelah [38].

We can assume that X is Δ} and JE7 is Πj, since the proof readily relativizes
to an arbitrary parameter. Also, without loss, we may assume that X = ωω

since we just make the complement of X into one more equivalence class.
Let F be the partial order of nonempty Σ* subsets of ωω ordered by inclusion.

This is known as Gandy forcing. Note that there are many trivial generic filters
corresponding to Σ{ singletons.

Lemma 30.2 // G is F-generic over V, then there exists a £ ωω such that
G = {p 6 F : a 6 p} and {a} = f]G.

proof:
For every n an easy density argument shows that there exists a unique s £ωn

such that [s] G G where [s] = {x G ωω : s C x}. Define a G ωω by [a \ n] G G
for each n. Clearly, f)GC{a}.

Now suppose B G G, we need to show a G B. Let B = p[T\.

Claim: There exists x eωω such that p[τχϊn>ain] G G for every n£ω.
proof:

This is by induction on n. Suppose p[τχln>atn] G G. Then

since
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and both of these are in G. But note that

mζω

and so by a density argument there exists m = x(n) such that

This proves the Claim.
•

By the Claim we have that (x,a) e [T\ (since elements of F are nonempty)
and so a G p[T] = B. Consequently, p|G = {α}. Now suppose that a G p G F
and p £ G. Then since

is dense there must be q G G with g Π p = 0. But this is impossible, because
a G q Πp, but g ( Ί p = 0 i s a Π { sentence and hence absolute.
•

We say that a £ ωω is IP-generic over V iff G = {p G F : α G p} is F-generic
over V.

L e m m a 3 0 . 3 If a is Ψ-generic over V and a = (αo,αi) (where (,) is <Λe sΐαn-
rfαrrf pairing function), then αo αnrf αi are both Ψ-geneήc over V.

proof:
The proof is symmetric so we just do it for αo Note that we are not claiming

that they are product generic only that each is separately generic. Suppose
D C F is dense open. Let

E={peΨ:{xo :xep}eD}.

To see that E is dense let q G F be arbitrary. Define

qo = {xo : x G g}.

Since qo is a nonempty Σ} set and D is dense, there exists ro < qo with ro G D.
Let

r = {x € q : xo e r0}.

Then ΓGί? and r < q.
Since £7 is dense we have that there exists p € E with a €p and consequently,

αo € Po = {so : x G p} G 2λ
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L e m m a 3 0 . 4 Suppose B C ωω is U\ and for every x,y G B we have that xEy.
Then there exists a A \ set D with B C D C ωω and such that for every x,y£D
we have that xEy.

proof:
Let A - {x G ωω : Vy y G B -+ xEy}. Then A is a Πj set which contains

the Σ* set 5, consequently by the Separation Theorem 27.5 or 28.2 there exists
a A\ set D with B C D C A. Since all elements of B are equivalent, so are all
elements of A and hence D is as required.
•

Now we come to the heart of Harrington's proof. Let B be the union of all
A\ subsets of ωω which meet only one equivalence class of E, i.e.

B = (J{£> Cωω :DeΔ\ and Vx,y£D xEy).

Since E is H\ we know that by using Δ} codes that this union is Πf, i.e.,
z G B iff 3e £ ω such that

1. e is a Δ} code for a subset of ωω,

2. V#, t/ in the set coded by e we have xEy, and

3. z is in the set coded by e.

Note that item (1) is Π} and (2) and (3) are both A{ (see Theorem 29.1).

If B = ωω, then since there are only countably many Δj sets, there would
only be countably many E equivalence classes and we are done. So assume
A =~ B is a nonempty Σj set and in this case we will prove that there is a
perfect set of £"-inequivalent reals.

Lemma 30.5 Suppose c£ωω Γ\V. Then

where a is a name for the generic real (Lemma 30.2).

proof:

Suppose not, and let C C A be a nonempty Σj set such that C |h cEa. We
know that there must exists Co, c\ G C with CQ βc\. Otherwise there would
exists a Δ* superset of C which meets only one equivalence class (Lemma 30.4).
But we these are all disjoint from A. Let

Q = {c:coeC,c1eC, and c0 #ci}.

Note that Q is a nonempty Σ{ set. Let a G Q be IP-generic over V. Then by
Lemma 30.3 we have that both αo and αi are IP-generic over V and αo G C,
αi G C, and α0 # α i . But αt G C and C |h a.-jEc means that
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This contradicts the fact that E is an equivalence relation.
Note that "E is an equivalence relation" is a Πj statement hence it is abso-

lute. Note also that we don't need to assume that there are a which are IP-generic
over V. To see this replace V by a countable transitive model M of ZFC* (a
sufficiently large fragment of ZFC) and use absoluteness.
•

Note that the lemma implies that if (αo>αi) is P x P-generic over V and
a\ £ A, then αo $a\. This is because αx is P-generic over V[ao] and so αo can
be regarded as an element of the ground model.

Lemma 30.6 Suppose M is a countable transitive model of ZFC and P is a
partially ordered set in M. Then there exists {Gx : x £ 2ω}, a "perfect" set of
Ψ-filters, such that for every x φ y we have that (GXiGy) is P x Ψ-generic over
M.

proof:
Let Dn for n < ω list all dense open subsets of P x P which are in M.

Construct (ps : s £ 2<ω) by induction on the length of s so that

1. s C t implies p% < ps and

2. if \s\ = \t\ == n -f 1 and s and t are distinct, then (p8ipt) £ Dn.

Now define for any x £ 2ω

Finally to prove Theorem 30.1 let M be a countable transitive set isomorphic
to an elementary substructure of (14, £) for some sufficiently large K. Let {Gx :
x £ 2ω} be given by Lemma 30.6 with A £ Gx for all x and let

P={ax:xe2ω}

be the corresponding generic reals. By Lemma 30.5 we know that for every
x φ y £ 2ω we have that ax $ay. Note also that P is perfect because the map
x ,_+ aχ i s continuous. This is because for any n £ ω there exists m < ω such
that every ps with s £ 2 m decides o fn.

Corollary 30.7 Every Σ\ set which contains a real which is not A\ contains a
perfect subset.

proof:
Let ACωω be a,Σ\ set. Define xEy iff z, y £ A or x=y. Then is E is a Π}

equivalence relation. A A\ singleton is a Δ} real, hence Harrington's set B in
the above proof must be nonempty. Any perfect set of l?-inequivalent elements
can contain at most one element of ~ A.
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Corollary 30.8 Every uncountable Σ} set contains a perfect subset.

Perhaps this is not such a farfetched way of proving this result, since one of
the usual proofs looks like a combination of Lemma 30.2 and 30.6.




