21 Mansfield-Solovay Theorem

Theorem 21.1 (Mansfield [70], Solovay [101]) If $A \subseteq \omega^{\omega}$ is a $\boldsymbol{\Sigma}_{2}^{\mathbf{1}}$ set with constructible parameter which contains a nonconstructible element of ω^{ω}, then A contains a perfect set which is coded in L.
proof:
By Shoenfield's Theorem 20.1, we may assume $A=p[T]$ where $T \in L$ and $T \subseteq \bigcup_{n<\omega} \omega_{1}^{n} \times \omega^{n}$. Working in L define the following decreasing sequence of subtrees as follows.
$T_{0}=T$,
$T_{\lambda}=\bigcap_{\beta<\lambda} T_{\beta}$, if λ a limit ordinal, and
$T_{\alpha+1}=\left\{(r, s) \in T_{\alpha}: \exists\left(r_{0}, s_{0}\right),\left(r_{1}, s_{1}\right) \in T_{\alpha}\right.$ such that $\left(r_{0}, s_{0}\right),\left(r_{1}, s_{1}\right)$ extend (r, s), and s_{0} and s_{1} are incompatible $\}$.

Each T_{α} is tree, and for $\alpha<\beta$ we have $T_{\beta} \subseteq T_{\alpha}$. Thus there exists some α_{0} such that $T_{\alpha_{0}+1}=T_{\alpha_{0}}$.

Claim: $\left[T_{\alpha_{0}}\right]$ is nonempty.
proof:
Let $(x, y) \in[T]$ be any pair with y not constructible. Since $A=p[T]$ and A is not a subset of L, such a pair must exist. Prove by induction on α that $(x, y) \in\left[T_{\alpha}\right]$. This is easy for α a limit ordinal. So suppose $(x, y) \in\left[T_{\alpha}\right]$ but $(x, y) \notin\left[T_{\alpha+1}\right]$. By the definition it must be that there exists $n<\omega$ such that $(x \upharpoonright n, y \upharpoonright n)=(r, s) \notin T_{\alpha+1}$. But in L we can define the tree:

$$
T_{\alpha}^{(r, s)}=\left\{(\hat{r}, \hat{s}) \in T_{\alpha}:(\hat{r}, \hat{s}) \subseteq(r, s) \text { or }(r, s) \subseteq(\hat{r}, \hat{s})\right\}
$$

which has the property that $p\left[T_{\alpha}^{(r, s)}\right]=\{y\}$. But by absoluteness of well-founded trees, it must be that there exists $\left(u, y_{0}\right) \in\left[T_{\alpha}^{(r, s)}\right]$ with $\left(u, y_{0}\right) \in L$. But then $y_{0}=y \in L$ which is a contradiction. This proves the claim.

Since $T_{\alpha_{0}+1}=T_{\alpha_{0}}$, it follows that for every $(r, s) \in T_{\alpha_{0}}$ there exist

$$
\left(r_{0}, s_{0}\right),\left(r_{1}, s_{1}\right) \in T_{\alpha_{0}}
$$

such that $\left(r_{0}, s_{0}\right),\left(r_{1}, s_{1}\right)$ extend (r, s) and s_{0} and s_{1} are incompatible. This allows us to build by induction (working in L):

$$
\left\langle\left(r_{\sigma}, s_{\sigma}\right): \sigma \in 2^{<\omega}\right\rangle
$$

with $\left(r_{\sigma}, s_{\sigma}\right) \in T_{\alpha_{0}}$ and for each $\sigma \in 2^{<\omega}\left(r_{\sigma_{0}}, s_{\sigma_{0}}\right),\left(r_{\sigma_{1}}, s_{\sigma_{1}}\right)$ extend ($\left.r_{\sigma}, s_{\sigma}\right)$ and $s_{\sigma_{0}}$ and $s_{\sigma_{1}}$ are incompatible. For any $q \in 2^{\omega}$ define

$$
x_{q}=\bigcup_{n<\omega} r_{q \mid n} \text { and } y_{q}=\bigcup_{n<\omega} s_{q \mid n}
$$

Then we have that $\left(x_{q}, y_{q}\right) \in\left[T_{\alpha_{0}}\right]$ and therefore $P=\left\{y_{q}: q \in 2^{\omega}\right\}$ is a perfect set such that

$$
P \subseteq p\left[T_{\alpha_{0}}\right] \subseteq p[T]=A
$$

and P is coded in L.

This proof is due to Mansfield. Solovay's proof used forcing. Thus we have departed ${ }^{9}$ from our theme of giving forcing proofs.

[^0]
[^0]: 9 "Consistency is the hobgoblin of little minds. With consistency a great soul has simply nothing to do." Ralph Waldo Emerson.

