19 Hereditarily countable sets

HC is the set of all hereditarily countable sets. There is a close connection between the projective hierarchy above level 2 and a natural hierarchy on the subsets of HC. A formula of set theory is Δ_0 iff it is in the smallest family of formulas containing the atomic formulas of the form " $x \in y$ " or "x = y", and closed under conjunction, $\theta \land \phi$, negation, $\neg \theta$, and bounded quantification, $\forall x \in y \text{ or } \exists x \in y$. A formula θ of set theory is Σ_1 iff it of the form $\exists u_1, \ldots, u_n \psi$ where ψ is Δ_0 .

Theorem 19.1 A set $A \subseteq \omega^{\omega}$ is Σ_2^1 iff there exists a Σ_1 formula $\theta(\cdot)$ of set theory such that

$$A = \{ x \in \omega^{\omega} : HC \models \theta(x) \}.$$

proof:

We note that Δ_0 formulas are absolute between transitive sets, i.e., if $\psi(\cdots)$ is Δ_0 formula, M a transitive set and \overline{y} a finite sequence of elements of M, then $M \models \psi(\overline{y})$ iff $V \models \psi(\overline{y})$. Suppose that $\theta(\cdot)$ is a Σ_1 formula of set theory. Then for every $x \in \omega^{\omega}$ we have that $HC \models \theta(x)$ iff there exists a countable transitive set $M \in HC$ with $x \in M$ such that $M \models \theta(x)$. Hence, $HC \models \theta(x)$ iff there exists $E \subseteq \omega \times \omega$ and $\hat{x} \in \omega$ such that letting $M = (\omega, E)$ then

- 1. E is extensional and well-founded,
- 2. $M \models \text{ZFC}^*$, (or just that ω exists)
- 3. $M \models \theta(\mathring{x}),$
- 4. for all $n, m \in \omega$ x(n) = m iff $M \models \overset{\circ}{x} (\overset{\circ}{n}) = \overset{\circ}{m}$.

Therefore, $\{x \in \omega^{\omega} : HC \models \theta(x)\}$ is a Σ_2^1 set. On the other hand given a Σ_2^1 set A there exists a Π_1^1 formula $\theta(x, y)$ such that $A = \{x : \exists y \theta(x, y)\}$. But then by Mostowski absoluteness (Theorem 17.5) we have that $x \in A$ iff there exists a countable transitive set M with $x \in M$ and there exists $y \in M$ such that $M \models ZFC^*$ and $M \models \theta(x, y)$. But this is a Σ_1 formula for HC.

The theorem says that $\Sigma_2^1 = \Sigma_1^{HC}$. Similarly, $\Sigma_{n+1}^1 = \Sigma_n^{HC}$. Let us illustrate this with an example construction.

Theorem 19.2 If V=L, then there exists a Δ_2^1 Luzin set $X \subseteq \omega^{\omega}$.

proof:

Let $\{T_{\alpha} : \alpha < \omega_1\}$ (ordered by $<_c$) be all subtrees T of $\omega^{<\omega}$ whose branches [T] are a closed nowhere dense subset of ω^{ω} . Define x_{α} to be the least constructed $(<_c)$ element of ω^{ω} which is not in

$$\bigcup_{\beta<\alpha} [T_{\beta}] \cup \{x_{\beta}: \beta<\alpha\}.$$

Define $X = \{x_{\alpha} : \alpha < \omega_1\}$. So X is a Luzin set. To see that X is Σ_1^{HC} note that $x \in X$ iff there exists a transitive countable M which models $ZFC^* + V = L$ such that $M \models x \in X$ (i.e. M models the first paragraph of this proof).

To see that X is Π_1^{HC} note that $x \in X$ iff for all M if M is a transitive countable model of $ZFC^* + V = L$ with $x \in M$ and $M \models "\exists y \in X \ x <_c y$ ", then $M \models "x \in X"$. This is true because the nature of the construction is such that if you put a real into X which is constructed after x, then x will never get put into X after this. So x will be in X iff it is already in X.