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16 Covering number of an ideal

This section is a small diversion.8 It is motivated by Theorem 11.1 of Martin
and Solovay.

Define for any ideal / in

cov(J) = min{|Z| : 1 C /, ( J I = 2ω}.

The following theorem is well-known.

Theorem 16.1 For any cardinal K the following are equivalent:

1. MAκ(ctbl), i.e. for any countable poset, P, and family V of dense subsets
ofψ with \V\< K there exists a IP-filterG with GnDφQfor every D G V,
and

2. cov(meager(2α;)) > K.

proof:
MAΛ(ctbl) implies cov(meager(2α')) > «, is easy because if U C 2ω is a dense

open set, then
D = {s € 2<ω : [s] C U}

is dense in 2<ω.
cov(meager(2α')) > K implies MAΛ(ctbl) follows from the fact that any count-

able poset, P, either contains a dense copy of 2<ω or contains a p such that every
two extensions of p are compatible.
•

Theorem 16.2 (Miller [77]) cof(cov(meager(2ω))) > ω, e.g., it is impossible to
have cov(meager(2ω)) = Hω.

proof:
Suppose for contradiction that K = cov(meager(2^)) has countable cofinality

and let κn for n € ω be a cofinal sequence in «. Let (Ca : α < «) be a family of
closed nowhere dense sets which cover 2ω. We will construct a sequence Pn C 2ω

of perfect sets with the properties that

l -Pn+i Q Pn,

2. Pn Γ){J{Ca : a < κn} = 0, and

3. Vα < K Ca Π Pn is nowhere dense in Pn.

This easily gives a contradiction, since f]n<ω ^n is nonempty and disjoint from
all Ca, contradicting the fact that the Ca 's cover 2ω.

8 All men's gains are the fruit of venturing. Herodotus BC 484-425.
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We show how to obtain PQ , since the argument easily relativizes to show how
to obtain Pn+i given Pn. Since cov(meager(2ω)) > κn there exists a countable
sequence

D={xn:neω}C2ω

such that D is dense and for every n

U Cα.
α</cn

Consider the following forcing notion IP.

P = {(if, n) : n G ω and H G [D]<ω }

This is ordered by ( # , n) < (K, m) iff

1. i/3tf,

2. n > m, and

3. for every x E H there exists y € K with x f m = y \ m.

Note that P is countable.

For each nβω define En C P by (fί, m) G ̂ n iff

1. m > n and

2. Vx G #3t/ G i f x ί n = y f n but x f m / ί / f m .

and for each α < KQ let

For G a P-filter, define X C D b y

X = {J{H :3n(H)n)eG}

and let P = cl(X). It easy to check that the ϋVs are dense and if G meets
each one of them, then P is perfect (i.e. has no isolated points). The Fα for
α < «o are dense in P. This is because D Π Cα = 0 so given (iί, n) G P there
exists m > n such that for every x G -ff we have [# f m]Π Cα = 0 and thus
(#,ra) G Fα. Note that if G Π F α ^ 0, then P Π C α = |l. Consequently, by
Theorem 16.1, there exists a P-filter G such that G meets each En and all Fα

for α < /co Hence P = cl(X) is a perfect set which is disjoint from each Cα

for α < /Co. Note also that for every α < K we have that Cα Π D is finite and
hence Cα Π X is finite and therefore C α Π P is nowhere dense in P. This ends
the construction of P = Po and since the Pn can be obtained with a similar
argument, this proves the Theorem.
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Quest ion 16.3 (Fremlin) Is the same true for the measure zero ideal in place
of the ideal of meager sets?

Some partial results are known (see Bartoszynski, Judah, Shelah [7][8][9]).

T h e o r e m 16.4 (Miller [77]) It is consistent that cov(meager(2α'1)) = #ω.

proof:
In fact, this holds in the model obtained by forcing with FIN(Kω,2) over a

model of GCH.

cov(meager(2ωi)) > #ω: Suppose for contradiction that

{Ca:a<ωn}eV[G}

is a family of closed nowhere dense sets covering 2ωi. Define

Ea = {se PIN(α;i, 2) : [s] Π Ca = 0}.

Using ccc, there exists Σ G [Nω]α'Λ in V with

{EQ:a<ωn}eV[G\Σ].

Let X C Nω be a set in V of cardinality ω\ which is disjoint from Σ. By the
product lemma G \ X is FIN(X,2)-generic over V[G \ Σ]. Consequently, if
H : ω\ —• 2 corresponds to G via an isomorphism of X and u>i, then H £ Ca

for every a < ωn.

cov(meager(2ωi)) < Nω: Note that for every uncountable X C ω\ with
X e V[G] there exists n € ω a Z E [ωx]

ωi Π V[G \ ωn] with Z C X. To
see this note that for every a E X there exists p G G such that p |h a G X
and p G FIN(ωn,2) for some n £ ω. Consequently, by ccc, some n works for
uncountably many a.

Consider the family of all closed nowhere dense sets C C2ωi which are coded
in some V[G \ ωn] for some n. We claim that these cover 2ωi. This follows from
above, because for any Z C ω\ which is infinite the set

C = {x G 2ωi :VaeZ x(a) = 1}

is nowhere dense.

•
T h e o r e m 16.5 (Miller /77/y) It is consistent that there exists a ccc σ-ideal I in
Borel(2α') such that cov(/) = Xω.

proof:
0 0

Let ψ = FIN(u>i,2)* <Q> where Q is a name for the Silver forcing which
codes up generic filter for FIN(u>i,2) just like in the proof of Theorem 11.1.
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Let Πα<N ^ ^ e the direct sum (i.e. finite support product) of ttω copies of IP.
Forcing with the direct sum adds a filter G = (Gα <* < #ω) where each Gα is
P-generic. In general, a direct sum is ccc iff every finite subproduct is ccc. This
follows by a delta-system argument. Every finite product of Ψ has ccc, because
P is σ-centered, i.e., it is the countable union of centered sets.

Let V be a model of GCH and G = {Gα : <* < #ω) be Πα<Nw

 p generic over
V. We claim that in V[G] if / is the σ-ideal given by Sikorskί's Theorem 9.1
such that Γ L < N W

 F i s densely embedded into Boτel(2ω)/I then cov(/) = Nω.
First define, mj>, to be the cardinality of the minimal failure of MA for IP,

i.e., the least K such that there exists a family \Ί> \ = K of dense subsets of IP such
that there is no IP-filter meeting all the D E 2>.

L e m m a 16.6 In V[(Gα <* < $ω)] we have that mj> = Hω.

proof:

Note that for any set D C IP there exists a set Σ G [Nω]ω i in V with D G
V[(Ga : a G Σ)]. So if \V\ = ωn then there exists Σ G [K]ωn in V with
V G V[(Gα : a G Σ)]. Letting α G « ω \ Σ w e get Ga a IP-filter meeting every
DeV. Hence m r > Kω.

On the other hand:

Claim: For every X G [u>i]ωi Π V[(Ga : a < K)] there exists n G ω and
Y G M " 1 Π V[{Ga : « < Kn>] with Y CX.
proof:

o
For every a € X there exist p € G and n < ω such that p |h ά GX and

domain(p) C ^ n . Since X is uncountable there is one n which works for un-
countably many a G X.
•

It follows from the Claim that there is no H which is FIN(ωi, 2) generic over
all the models F[(Gα : a < Nn)]j but forcing with IP would, add such an H and
so rrif < #ω and the Lemma is proved.

Lemma 16.7 IfΨ is ccc and dense in the cBa Borel(2ω)//, then mj> = cov(J).

proof:
This is the same as Lemma 11.2 equivalence of (1) and (3), except you have

to check that m is the same for both IP and Boτel(2ω)/L

m
Kunen [56] showed that least cardinal for which MA fails can be a singular

cardinal of cofinality α>i, although it is impossible for it to have cofinality ω (see
Fremlin [27]). It is still open whether it can be a singular cardinal of cofinality
greater than ωι (see Landver [59]). Landver [60] generalizes Theorem 16.2 to
the space 2Λ with basic clopen sets of the form [s] for s € 2 < κ . He uses a
generalization of a characterization of cov(meager(2α;)) due to Bartoszynski [6]
and Miller [78].




