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14 Cohen real model

I have long wondered if there exists an uncountable separable metric space of
order 2 in the Cohen real model. I thought there weren’t any. We already know
from Theorem 13.3 that since there is an uncountable Luzin set in Cohen real
model that for every o with 3 < @ < w; there is an uncountable separable metric
space X with ord(X) = a.

Theorem 14.1 Suppose G is FIN(x, 2)-generic over V where k > wy. Then in
V[G] there is a separable metric space X of cardinality wy with ord(X) = 2.

proof:

We may assume that £ = w;. This is because FIN(k,2) x FIN(w;,2) is
isomorphic to FIN(«,2) and so by the product lemma we may replace V by
V[H] where (H,G) is FIN(«,2) x FIN(w1, 2)-generic over V.

We are going to use the fact that forcing with FIN(w;, 2) is equivalent to any
finite support w; iteration of countable posets. The main idea of the proof is to
construct an Aronszajn tree of perfect sets, a technique first used by Todorcevic
(see Galvin and Miller [30]). We construct an Aronszajn tree (A, ) and a family
of perfect sets ([T;] : s € A) such that D is the same order as <. We will then
show that if X = {z, : s € A} is such that z, € [T}], then the order of X is 2.

In order to insure the construction can keep going at limit ordinals we will
need to use a fusion argument. Recall that a perfect set corresponds to the
infinite branches [T of a perfect tree T C 2<%, i.e., a tree with the property
that for every s € T there exist a ¢t € T such that botht"0 € T andt"1 € T.
Such a T is called a splitting node of T. There is a natural correspondence of
the splitting nodes of a perfect tree T' and 2<%.

Given two perfect trees T and 7" and n € w define T' <, T if T C T and
the first 2<" splitting nodes of T remain in 7".

Lemma 14.2 (Fusion) Suppose (T, : n € w) is a sequence of perfect sets such
that T4y <n T, for every n € w. Then T = ()., In is a perfect tree and
T <, T, for every n € w.

n€w

proof:

T =(\,c, Tn, then T is a perfect tree because the first 2<" splitting nodes
of T,, are in T,, for every m > n and thus in T'.
a

By identifying FIN(w1,2) with ), , FIN(w,2) we may assume that

G=(Gq:a<w)

where Gg is FIN(w, 2)-generic over V[G4 : a < fi] for each 8 < w;.
Given an Aronszajn tree A we let A, be the nodes of A at level «, i.e.

Ay ={s€A:{t€ A:td s} has order type a}
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and

Aca = 45.

B<a

We use (G4 : a < wi) to construct an Aronszajn tree (4, <) and a family of
perfect sets ([T,] : s € A) such that

1. s <t implies Ty D T3,

2. if s and t are distinct elements of A, then [T},] and [T}] are disjoint,
3. every s € A, has infinitely many distinct extensions in Aq4,

4. for each s € A¢q and n < w there exists t € A, such that Ty <,, Ty,
5

. for each s € Ay and t € A4y with s < ¢, we have that [Ti] is a generic
perfect subset of [T,] obtained by using G (explained below in Case 2),
and

6. {Ts :s€A<a} GV[Gp :ﬂ<a]‘

The first three items simply say that {[T,] : s € A} and its ordering by C
determines (A4, <), so what we really have here is an Aronszajn tree of perfect
sets. Item (4) is there in order to allow the construction to proceed at limits
levels.

Item (5) is what we do a successor levels and guarantees the set we are
building has order 2. Item (6) is a consequence of the construction and would
be true for a closed unbounded set of ordinals no matter what we did anyway.

Here are the details of our construction.

Case 1. « a limit ordinal.

The construction is done uniformly enough so that we already have that
{Ts : s € Aca} € V[Gp : B < a]. Working in V[Gp : 8 < a] choose a sequence
ap for n € w which strictly increases to a. Given any s, € A4, we can choose
by inductive hypothesis a sequence s,, € A,,, for m > n such that

Ts m41 <m T,

-
If T = (\uon Tsm> then by Lemma 14.2 we have that T <, T,,. Now let
{T; : t € Aq} be a countable collection of perfect trees so that for every n and
s € Aq, there exists t € Ay with T; <, T,. This implies item (4) because for
any s € A<o and n < w there exists some m > n with s € A<, hence by
inductive hypothesis there exists § € A,,, with T; <,, T, and by construction
there exists t € A, with T3 <,; T3 and so T3 <, T, as desired.

Case 2. Successor stages.
Suppose we already have constructed

{Ts :s € Acapr1 }EVI[Gg: B< a+1].
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Given a perfect tree T' C 2<“ define the countable partial order P(T') as follows.
p € P(T)iff p is a finite subtree of T"and p < ¢ iff p O ¢ and p is an end extension
of ¢, i.e., every new node of p extends a terminal node of ¢. It is easy to see that
if G is IP(T')-generic over a model M, then

Te = J{p:p€ G}

is a perfect subtree of T'. Furthermore, for any D C [T] dense open in [T] and
coded in M, [Tg] C D. i.e., the branches of T are Cohen reals (relative to T')
over M. This means that for any Borel set B C [T] coded in M, there exists an
clopen set C' € M such that

CN[Tg] = BN[Tg].

To see why this is true let p € P(T') and B Borel. Since B has the Baire property
relative to [T] by extending each terminal node of p, if necessary, we can obtain
q > p such that for every terminal node s of ¢ either [s] N B is meager in [T] or
[s] N B is comeager in [T] N [s]. If we let C be union of all [s] for s a terminal
node of ¢ such that [s] N B is comeager in [T] N [s], then

glFBNTg =CnNTg.
To get Tg <, T we could instead force with
P(T,n) = {p € P(T) : p end extends the first 2<" splitting nodes of T'}.

Finally to determine A,4; consider

Z{P(T,,m) 18 € Ag,m € w}.
This poset is countable and hence G,41 determines a sequence
(Tom : s € Aq,m € W)

of generic perfect trees such that Ty ,, <., T;. Note that genericity also guaran-
tees that corresponding perfect sets will be disjoint. We define Ay41 to be this
set of generic trees.

This ends the construction.

By taking generic perfect sets at successor steps we have guaranteed the
following. For any Borel set B coded in V[Gg : 8 < a+ 1] and T; for t € Ag41
there exists a clopen set C; such that

C:N[T] = BN[T].

Suppose X = {z, : s € A} is such that z, € [T}] for every s € A. Then X
has order 2. To verify this, let B C 2% be any Borel set. By ccc there exists a
countable a such that B is coded in V[Gp : # < a + 1]. Hence,

Bn |J [ml= | (@nI[T]).

t€Aa41 t€EAa41
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Hence BN X is equal to a B3 set intersected X:

xn |J @nm)

t€EAL+1

union a countable set:

@nx\ U m

tEAa-f-l

and therefore BN X is I in X.
a

Another way to get a space of order 2 is to use the following argument. If
the ground model satisfies CH, then there exists a Sierpiriski set. Such a set
has order 2 (see Theorem 15.1) in V and therefore by the next theorem it has
order 2 in V[G]. It also follows from the next theorem that if X = 2“ NV, then
X has order w; in V[G]. Consequently, in what I think of as “the Cohen real
model”, i.e. the model obtained by adding ws Cohen reals to a model of CH,
there are separable metric spaces of cardinality w; and order « for every a with
2<a<w;.

Theorem 14.3 Suppose G is FIN(k, 2)-generic over V and V |= “ord(X) = a”.
Then V[G] E “ord(X) = a”.

By the usual ccc arguments it is clearly enough to prove the Theorem for
FIN(w,2). To prove it we will need the following lemma.

Lemma 14.4 (Kunen, see [55]) Suppose p € FIN(w,2), X is a second countable
[

Hausdorff space in V, and B is a name such that
p IFE}(_Z X is a IO -set.
Then the set .
{zxeX:p|FZ€B}
is a %-set in X.
proof:

This is proved by induction on a.
For @« = 1 let B € V be a countable base for the closed subsets of X, i.e.,

o
every closed set is the intersection of elements of B. Suppose p |F“B is a closed
set in X”. Then for every z € X p |F“2 € é” iff for every ¢ < p and for every
C €B if ¢|F“BC C”, then z € C. But

{z€X:Yg<pVBEB(¢|F “BCC” —zeC))

is closed in X.
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Now suppose @ > 1 and p |- ée H2(X). Let B, be a sequence which is
either constantly o — 1 if a is a successor or which is unbounded in « if a is a
limit. By the usual forcing facts there exists a sequence of names (B, : n € w)
such that for each n,

plt B, €15,

and
pl-B= n ~ By.

n<w

Then for every z € X

plFZ€B
iff

Vnew p|kz €~ B,
iff
VnewVg<p q|fFz€B,.
Consequently,
o 0
{zxeX:plrz€B}= n ﬂ ~{z:q|-%€Bn}.
né€w ¢<p

]

Now let us prove the Theorem. Suppose V [=“ord(X) = @”. Then in V[G]
for any Borel set B € Borel(X)

[
B= U{:cEX:pH—:bEB}.
PEG

By the lemma, each of the sets {z € X : p |F & Eé} is a Borel set in V, and
since ord(X) = a, it is a £Y set. Hence, it follows that B is a 0 set. So,
V[G] £ ord(X) < a. To see that ord(X) > « let 8 < a and suppose in V the
set A C X is B} but not IIj. This must remain true in V[G] otherwise there
exists a p € G such that
plF“dis mY”
but by the lemma
{reX:plFeeA}=A

is I} which is a contradiction.
|

Part of this argument is similar to one used by Judah and Shelah [45] who

showed that it is consistent to have a Q-set which does not have strong measure
zZero.

It is natural to ask if there are spaces of order 2 of higher cardinality.
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Theorem 14.5 Suppose G is FIN(k, 2)-generic over V where V is a model of
CH and k > wy. Then in V[G] for every separable metric space X with | X| > wy,
we have ord(X) > 3.

proof:
This will follow easily from the next lemma.

Lemma 14.6 (Miller [79]) Suppose G is FIN(«,2)-generic over V where V is
a model of CH and k > wy. Then V[G] models that for every X C 2“ with
|X| = ws there exists a Luzin set Y C 2% and a one-to-one continuous function
f:Y—-X.

proof:
Let (1o : @ < wy) be a sequence of names for distinct elements of X. For
each @ and n choose a maximal antichain A U B such that

p |F Ta(n) = 0 for each p € AZ and

p |k 7a(n) = 1 for each p € BS.

Let Xo C & be union of domains of elements from | J,,¢,, AfUBy. Since each X,
is countable we may as well assume that the X,’s form a A-system, i.e. there
exists R such that X, N Xg = R for every a # . We can assume that R is the
empty set. The reason is we can just replace AZ by

AZ={pl(~R):p€AZ andp| R € G}

and similarly for BZ. Then let V[G | R] be the new ground model.
Let
(Jo: Xa mw:a<ws)

be a sequence of bijections in the ground model. Each j, extends to an order
preserving map from FIN(X,,2) to FIN(w,2). By CH, we may as well assume
that there exists a single sequence, ((A,, By) : n € w), such that every j, maps
(A2,BS :n €w) to ((An,Bn) :n Ew).

The Luzin set is Y = {ya : @ < wy} where ya(n) = G(j;!(n)). The
continuous function, f, is the map determined by ((A,, By) : n € w):

f(z)(n) =0iff Im = [m € A,.

This proves the Lemma.
u

If f:Y — X is one-to-one continuous function from a Luzin set Y, then
ord(X) > 3. To see this assume that Y is dense and let D C Y be a countable
dense subset of Y. Then D is not G in Y. This is because any G set containing
D is comeager and therefore must meet Y in an uncountable set. But note that
f(D) is a countable set which cannot be G5 in X, because f~!(f(D)) would be
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Gs in Y and since f is one-to-one we have D = f~!(f(D)). This proves the
Theorem.
[ |

It is natural to ask about the cardinalities of sets of various orders in this
model. But note that there is a trivial way to get a large set of order 3. Take a
clopen separated union of a large Luzin set (which has order 3) and a set of size
wy with order 3. One possible way to strengthen the notion of order is to say
that a space X of cardinality « has essential order f iff every nonempty open
subset of X has order @ and cardinality k. But this is also open to a simple trick
of combining a small set of order § with a large set of small order. For example,
let X C 2¢ be a clopen separated union of a Luzin set of cardinality ¥ and set
of cardinality w;, of order 8 > 3. Let (P, : n € w) be a sequence of disjoint
nowhere dense perfect subsets of 2¥ with the property that for every s € 2<%
there exists n with P, C [s]. Let X,, C P, be a homeomorphic copy of X for
each n < w. Then Unew Xy, is a set of cardinality k which has essential order .

With this cheat in mind let us define a stronger notion of order. A separable
metric space X has hereditary order 3 iff every uncountable Y C X has order f.
We begin with a stronger version of Theorem 13.3.

Theorem 14.7 If there ezxists a Luzin set X of cardinality k, then for every o
with 2 < a < wy there exists a separable metric space Y of cardinality k£ which
is hereditarily of order c.

proof:

This is a slight modification of the proof of Theorem 13.3. Let Q4 be the
following partial order. Let (a, : n € w) be a sequence such that if « is a limit
ordinal, then a, is a cofinal increasing sequence in « and if @ = § + 1 then
oy, = 3 for every n.

The rest of the proof is same except we use Q441 instead of P, for successors
and Q, for limit a instead of taking a clopen separated union. By using the
direct sum (even in the successor case) we get a stronger property for the order.

Let A
Qo = H Qa.
be the closed subspace of
I
new

and let B be the collection of clopen subsets of Q, which are given by rank zero
conditions of Q(a), i.e., all rectangles of the form [, c,, [pn] such that p, € Qa,
with domain(p) C T and py, the trivial condition for all but finitely many n.

As in the proof of Theorem 13.3 we get that the order of {[B] : B € B} as a
subset of Borel(Q,)/meager(Q,) is . Because we took the direct sum we get
the stronger property that for any nonempty clopen set C in Qa the order of
{[BNC):B€B}isa.

But know given X a Luzin set in Q, we know that for any uncountable
Y C X there is a nonempty clopen set C C Q such that Y N C is a super-
Luzin set relative to C. (The accumulation points of Y, the set of all points all
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of whose neighborhoods contain uncountably many points of Y, is closed and
uncountable, therefore must have nonempty interior.) If C is a nonempty clopen
set in the interior of the accumulation points of Y, then since {{BNC] : B € B}
is a, we have by the proof of Theorem 13.3, that the order of Y is a.

|

Theorem 14.8 Suppose that in V there is a separable metric space, X, with
hereditary order B for some f < w;. Let G be FIN(k,2)-generic over V for any
k> w. Then in V[G] the space X has hereditary order 3.

proof:
In V[G] let Y C X be uncountable. For contradiction, suppose that

p[l—ord();)gaandl}glzwl

for some p € FIN(k,2) and @ < . Working in V' by the usual A-system
argument we can get ¢ < p and

(Pzi:cGA)

for some A € [X]“* such that and p, < ¢ and

]
pr |FZEY

for each z € A and
dom(pz) Ndom(py) = dom(q)

for distinct £ and y in A. Since A is uncountable we know that in V' the order
of A is w,. Consequently, there exists R C A which is £2(A) but not II2(A).
We claim that in V[G] the set RNY is not I2(Y). If not, there exists r < ¢

and ,§' such that
() o [} o
rlF“YNR=Y NS and S€I%(4)".

Since Borel sets are coded by reals there exists I' € [£]* NV such that for any

z € A the statement “Z €.§"’ is decided by conditions in FIN(T,2) and also let
T’ be large enough to contain the domain of r.
Define .
T={z€A:q|-z€eS}

According to Lemma 14.4 the set T is II3(A). Consequently, (assuming o > 3)
there are uncountably many = € A with £ € RAT. Choose such an z which also
has the property that dom(p;) \ dom(g) is disjoint from I'. This can be done
since the p, form a A system. But now, if z € T'\ R, then

rUp; |F “Z e{}ng' and z ¢}?' NR”.
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On the other hand, if z € R\ T, then there exists # < r in FIN(T', 2) such that
o
Fl- ¢S
and consequently,
0 0 ° .
fUp |F“2¢Y NS and z €Y NR”.

Either way we get a contradiction and the result is proved.
|

Theorem 14.9 (CH) There exists X C 2% such that X has hereditary order w,.

proof:

By Theorem 8.2 there exists a countably generated ccc cBa B which has order
wy. For any b € B with b # 0 let ord(b) be the order of the boolean algebra you
get by looking only at {c € B : ¢ < b}. Note that in fact B has the property that
for every b € B we have ord(b) = w;. Alternatively, it easy to show that any ccc
c¢Ba of order w; would have to contain an element b such that every ¢ < b has
order wi.

By the proof of the Sikorski-Loomis Theorem 9.1 we know that B is isomor-
phic to Borel(Q)/meager(Q) where @ is a ccc compact Hausdorff space with a
basis of cardinality continuum.

Since @ has ccc, every open dense set contains an open dense set which is a
countable union of basic open sets. Consequently, by using CH, there exists a
family F of meager sets with |F| = w; such that every meager set is a subset
of one in F. Also note that for any nonmeager Borel set B in @ there exists a
basic open set C and F € F with C\ F C B. Hence by Mahlo’s construction
(Theorem 10.2) there exists a set X C @ with the property that for any Borel
subset B of @

|BN X| <w iff B meager.

Let B be a countable field of clopen subsets of @ such that

{[B]meager(Q) :Be B}

generates B. Let
R={XNB:BEe€B}.

If X C 2¢ is the image of X under the characteristic function of the sequence B
(see Theorem 4.1), then X has hereditary order w;. Of course X is really just
the same as X but retopologized using B as a family of basic open sets. Let
Y € [X]“'. Since ord(p) = w; for any basic clopen set the following claim shows
that the order of Y (or rather the image of Y under the characteristic function
of the sequence B) is w;.

Claim: There exists a basic clopen p in @ such that for every Borel B C p,

|BNY| < w iff B meager.
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proof:

Let p and ¢ stand for nonempty basic clopen sets. Obviously if B is meager
then BNY is countable, since BN X is countable. To prove the other direction,
suppose for contradiction that for every p there exists ¢ < p and Borel B, C ¢
such that B, is comeager in ¢ and By NY is countable. By using ccc there exists
a countable dense family ¥ and By for ¢ € ¥ with B, C ¢ Borel and comeager
in ¢ such that B, NY is countable. But

B=|J{B,:q€x}

is a comeager Borel set which meets Y in a countable set. This implies that Y
is countable since X is contained in B except for countable many points.
]

Theorem 14.10 Suppose G is FIN(k,2)-generic over V where V is a model
of CH and k > w. Then in V[G] there exists a separable metric space X with
|X| = w1 and hereditarily of order w;.

proof:

Immediate from Theorem 14.8 and 14.9.
]

Finally, we show that there are no large spaces of hereditary order w; in the
Cohen real model.

Theorem 14.11 Suppose G is FIN(k,2)-generic over V where V is a model of
CH and & > wy. Then in V[G] for every separable metric space X with |X| = wy
there exists Y € [X]“? with ord(Y) < w;.

proof:
By the argument used in the proof of Lemma 14.6 we can find

(Ga : a < wq) € V[G]

whichis ) . FIN(w,2)-generic over V and a FIN(w, 2)-name 7 for an element
of 2% such that Y = {r% : @ < wy} is subset of X. We claim that ord(Y) < w;.
Let

F={reC]:CC2" clopen }

where boolean values are in the unique complete boolean algebra B in which
FIN(w, 2) is dense. Let I be the complete subalgebra of B which is generated by
F . First note that the order of F in F is less than w;. This is because F contains
a countable dense set:

D={H{cE]F:p_<_c}:p€ FIN(w,2)}.

Since D is countable and £9(D) = F, it follows that the order of F is countable.
I claim that the order of Y is essentially less than or equal to the order of F
in F.
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Lemma 14.12 Let B be a cBa, 7 a B-name for an element of 2“, and
F={reC]:CC2% clopen }.

Then for each B C 2* a IIY set coded in V the boolean value [ T € B | is WY (F)
and conversely, for every c € OO (F) there exists a B C 2* a T2 set coded in V
such thatc=|T€ B].

proof:

Both directions of the lemma are simple inductions.
u

Now suppose the order of F in F is a. Let B C 2 be any Borel set coded
in V[G]. By ccc there exists H = G [ £ where ¥ C & is countable set in V such
that B is coded in V[H]. Consequently, since we could replace V with V[H] and
delete countably many elements of Y we may as well assume that B is coded in
the ground model. Since the order of F is a we have by the lemma that there
exists a IIQ set A such that

[reA]l=[reB]

It follows that
YNA=YNB

and hence order of Y is less than or equal to a (or three since we neglected

countably many elements of Y).
|





