11 Martin-Solovay Theorem

In this section we the theorem below. The technique of proof will be used in the next section to produce a boolean algebra of order ω_1 .

Theorem 11.1 (Martin-Solovay [72]) The following are equivalent for an infinite cardinal κ :

- MA_κ, i.e., for any poset P which is ccc and family D of dense subsets of P with |D| < κ there exists a P-filter G with G ∩ D ≠ Ø for all D ∈ D
- 2. For any ccc σ -ideal I in Borel(2^{ω}) and $\mathcal{I} \subset I$ with $|\mathcal{I}| < \kappa$ we have that

$$2^{\omega}\setminus\bigcup\mathcal{I}\neq\emptyset$$

Lemma 11.2 Let $\mathbb{B} = \text{Borel}(2^{\omega})/I$ for some ccc σ -ideal I and let $\mathbb{P} = \mathbb{B} \setminus \{0\}$. The following are equivalent for an infinite cardinal κ :

- 1. for any family \mathcal{D} of dense subsets of \mathbb{P} with $|\mathcal{D}| < \kappa$ there exists a \mathbb{P} -filter G with $G \cap D \neq \emptyset$ for all $D \in \mathcal{D}$
- 2. for any family $\mathcal{F} \subseteq \mathbb{B}^{\omega}$ with $|\mathcal{F}| < \kappa$ there exists an ultrafilter U on \mathbb{B} which is \mathcal{F} -complete, i.e., for every $(b_n : n \in \omega) \in \mathcal{F}$

$$\sum_{n \in \omega} b_n \in U \text{ iff } \exists n \ b_n \in U$$

3. for any $\mathcal{I} \subset I$ with $|\mathcal{I}| < \kappa$

$$2^{\omega} \setminus \bigcup \mathcal{I} \neq \emptyset$$

proof:

To see that (1) implies (2) note that for any $\langle b_n : n \in \omega \rangle \in \mathbb{B}^{\omega}$ the set

$$D = \{ p \in \mathbb{P} : p \le -\sum_n b_n \text{ or } \exists n \ p \le b_n \}$$

is dense. Note also that any filter extends to an ultrafilter.

To see that (2) implies (3) do as follows. Let H_{γ} stand for the family of sets whose transitive closure has cardinality less than the regular cardinal γ , i.e. they are hereditarily of cardinality less than γ . The set H_{γ} is a natural model of all the axioms of set theory except possibly the power set axiom, see Kunen [54]. Let M be an elementary substructure of H_{γ} for sufficiently large γ with $|M| < \kappa, I \in M, \mathcal{I} \subseteq M$.

Let \mathcal{F} be all the ω -sequences of Borel sets which are in M. Since $|\mathcal{F}| < \kappa$ we know there exists U an \mathcal{F} -complete ultrafilter on \mathbb{B} . Define $x \in 2^{\omega}$ by the rule:

$$x(n) = i \text{ iff } \left[\{ y \in 2^{\omega} : y(n) = i \} \right] \in U.$$

Descriptive Set Theory and Forcing

Claim: For every Borel set $B \in M$:

$$x \in B$$
 iff $[B] \in U$.

proof:

This is true for subbasic clopen sets by definition. Inductive steps just use that U is an M-complete ultrafilter.

To see that (3) implies (1), let M be an elementary substructure of H_{γ} for sufficiently large γ with $|M| < \kappa, I \in M, \mathcal{D} \subseteq M$. Let

$$\mathcal{I}=M\cap I.$$

By (3) there exists

$$x \in 2^{\omega} \setminus \bigcup \mathcal{I}$$
 .

Let $\mathbb{B}_M = \mathbb{B} \cap M$. Then define

$$G = \{ [B] \in \mathbb{B}_M : x \in B \}.$$

Check G is a \mathbb{P} filter which meets every $D \in \mathcal{D}$.

This proves Lemma 11.2.

To prove the theorem it necessary to do a *two step iteration*. Let \mathbb{P} be a poset and $\hat{\mathbb{Q}} \in V^{\mathbb{P}}$ be the \mathbb{P} -name of a poset, i.e.,

 $\Vdash_{\mathbb{P}} \mathbb{Q}$ is a poset.

Then we form the poset

$$\mathbb{P} * \overset{\circ}{\mathbb{Q}} = \{ (p, \overset{\circ}{q}) : p \models \overset{\circ}{q} \in \overset{\circ}{\mathbb{Q}} \}$$

ordered by $(\hat{p}, \hat{q}) \leq (p, q)$ iff $\hat{p} \leq p$ and $\hat{p} \models \hat{q} \leq q$. In general there are two problems with this. First, $\mathbb{P} * \overset{\circ}{\mathbb{Q}}$ is a class. Second, it does not satisfy antisymmetry: $x \leq y$ and $y \leq x$ implies x = y. These can be solved by cutting down to a sufficiently large set of nice names and modding out by the appropriate equivalence relation. Three of the main theorems are:

Theorem 11.3 If G is \mathbb{P} -generic over V and H is \mathbb{Q}^G -generic over V[G], then

$$G * H = \{(p,q) \in \mathbb{P} * \overset{\circ}{\mathbb{Q}} : p \in G, q^G \in H\}.$$

is a $\mathbb{P} * \overset{\circ}{\mathbb{Q}}$ filter generic over V.

Theorem 11.4 If K is a $\mathbb{P}*\mathbb{Q}$ -filter generic over V, then

 $G = \{p : \exists q \ (p,q) \in K\}$

is \mathbb{P} -generic over V and

$$H = \{q^G : \exists p \ (p,q) \in K\}$$

is \mathbb{Q}^G -generic over V[G].

Theorem 11.5 (Solovay-Tennenbaum [102]) If \mathbb{P} is ccc and $\Vdash_{\mathbb{P}} \overset{\circ}{\mathbb{Q}}$ is ccc", then $\mathbb{P} * \overset{\circ}{\mathbb{Q}}$ is ccc.

For proofs of these results, see Kunen [54] or Jech [43].

Finally we prove Theorem 11.1. (1) implies (2) follows immediately from Lemma 11.2. To see (2) implies (1) proceed as follows.

Note that $\kappa \leq c$, since (1) fails for FIN(c^+ , 2). We may also assume that the ccc poset \mathbb{P} has cardinality less than κ . Use a Lowenheim-Skolem argument to obtain a set $Q \subseteq \mathbb{P}$ with the properties that $|Q| < \kappa$, $D \cap Q$ is dense in Q for every $D \in \mathcal{D}$, and for every $p, q \in Q$ if p and q are compatible (in \mathbb{P}) then there exists $r \in Q$ with $r \leq p$ and $r \leq q$. Now replace \mathbb{P} by Q. The last condition on Q guarantees that Q has the ccc.

Choose $X = \{x_p : p \in \mathbb{P}\} \subseteq 2^{\omega}$ distinct elements of 2^{ω} . If G is \mathbb{P} -filter generic over V let \mathbb{Q} be Silver's forcing for forcing a G_{δ} -set, $\bigcap_{n \in \omega} U_n$, in X such that

$$G = \{ p \in \mathbb{P} : x_p \in \bigcap_{n \in \omega} U_n \}.$$

Let $\mathcal{B} \in V$ be a countable base for X. A simple description of $\mathbb{P} * \overset{\circ}{\mathbb{Q}}$ can be given by:

 $(p,q) \in \mathbb{P} * \overset{\circ}{\mathbb{Q}}$

iff $p \in \mathbb{P}$ and $q \in V$ is a finite set of consistent sentences of the form:

- 1. " $x \notin \overset{\circ}{U}_n$ " where $x \in X$ or
- 2. " $B \subseteq \overset{\circ}{U}_n$ " where $B \in \mathcal{B}$ and $n \in \omega$.

with the additional requirement that whenever the sentence " $x \notin \overset{\circ}{U}_n$ " is in q and $x = x_r$, then p and r are incompatible (so $p \models r \notin G$).

Note that if $D \subseteq \mathbb{P}$ is dense in \mathbb{P} , then D is predense in $\mathbb{P} * \mathring{\mathbb{Q}}$, i.e., every $r \in \mathbb{P} * \mathring{\mathbb{Q}}$ is compatible with an element of D. Consequently, it is enough to find sufficiently generic filters for $\mathbb{P} * \mathring{\mathbb{Q}}$. By Lemma 11.2 and Sikorski's Theorem 10.1 it is enough to see that if $\mathbb{P} * \mathring{\mathbb{Q}} \subseteq \mathbb{B}$ is dense in the ccc cBa algebra \mathbb{B} , then \mathbb{B} is countably generated. Let

$$C = \{ [B \subseteq U_n] : B \in \mathcal{B}, n \in \omega \}.$$

We claim that C generates \mathbb{B} . To see this, note that for each $p \in \mathbb{P}$

$$[x_p \in \cap_n U_n] = \prod_{n \in \omega} [x_p \in U_n]$$
$$[x_p \in U_n] = \sum_{B \in \mathcal{B}, x_p \in B} [B \subseteq U_n]$$

furthermore

$$(p, \emptyset) = [x_p \in \cap_n U_n]$$

and so it follows that every element of $\mathbb{P} * \hat{\mathbb{Q}}$ is in the boolean algebra generated by C and so since $\mathbb{P} * \hat{\mathbb{Q}}$ is dense in \mathbb{B} it follows that C generates \mathbb{B} .

Define $X \subseteq 2^{\omega}$ to be a generalized *I*-Luzin set for an ideal *I* in the Borel sets iff $|X| = \mathfrak{c}$ and $|X \cap A| < \mathfrak{c}$ for every $A \in I$. It follows from the Martin-Solovay Theorem 11.1 that (assuming that the continuum is regular)

MA is equivalent to

for every ccc ideal I in the Borel subsets of 2^{ω} there exists a generalized *I*-Luzin set.

Miller and Prikry [82] show that it is necessary to assume the continuum is regular in the above observation.