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11 Martin-Solovay Theorem

In this section we the theorem below. The technique of proof will be used in the
next section to produce a boolean algebra of order ω\.

Theorem 11.1 (Martin-Solovay [72]) The following are equivalent for an infi-
nite cardinal K:

1. MAK ; i.e., for any poset F which is ccc and family V of dense subsets ofψ
with \V\< K there exists a Ψ-filterG with GO D ψ 0 for all D eV

2. For any ccc σ-ideal I in Borel(2ω) and X C / with \1\ < K we have that

L e m m a 11.2 Let 1 = Borel(2ω)/7 for some ccc σ-ideal I and let P = 1 \ {0}.
The following are equivalent for an infinite cardinal K:

1. for any family V of dense subsets ofψ with \V\ < K, there exists a Ψ-filter
G withGΠDφHiforallDeV

2. for any family T C Iff*' with \T\< K there exists an ultrafilterU on M which
is T-complete, i.e., for every (bn : n G ω) £ T

neU ιff3nbn€U

3. for anyl Cl with \1\ < K

proof:
To see that (1) implies (2) note that for any (6n : n G ω) G W the set

D = {p G Ψ : p < - Y^bn or 3n p < bn}
n

is dense. Note also that any filter extends to an ultrafilter.
To see that (2) implies (3) do as follows. Let H 7 stand for the family of

sets whose transitive closure has cardinality less than the regular cardinal 7, i.e.
they are hereditarily of cardinality less than 7. The set H 7 is a natural model
of all the axioms of set theory except possibly the power set axiom, see Kunen
[54]. Let M be an elementary substructure of H 7 for sufficiently large 7 with

|M|</c, ieM,τ CM.
Let T be all the u -sequences of Borel sets which are in M. Since \F\ < K we

know there exists U an ̂ -complete ultrafilter on 1. Define x G 2ω by the rule:

x(n) = i iff [{y G T : y(n) = i}] G U.
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Claim: For every Borel set B E M:

x e B iff [B] £ U.

proof:
This is true for subbasic clopen sets by definition. Inductive steps just use

that U is an M-complete ultrafilter.
•

To see that (3) implies (1), let M be an elementary substructure of H7 for
sufficiently large j with \M\ < K, I e M,V C M . Let

1 = MΓ)L

By (3) there exists

xe2ω\\Jl.
Let 1 M = IB Π M. Then define

G={[B]eMM :x€B}.

Check G is a P filter which meets every D € Ί).
•

This proves Lemma 11.2.

To prove the theorem it necessary to do a two step iteration. Let P be a
o

poset and QG V be the P-name of a poset, i.e.,

|H]p Q is a poset.

Then we form the poset

Ψ*Q={(p,q):p\\-qe®}

ordered by (p, q) < (p,q) iff p < p and p |h q < q. In general there are two
0

problems with this. First, P* Q is a class. Second, it does not satisfy antisym-
metry: x < y and y < x implies x = y. These can be solved by cutting down
to a sufficiently large set of nice names and modding out by the appropriate
equivalence relation. Three of the main theorems are:

Theorem 11.3 If G is P-generic over V and H is QG-generic over V[G], then

G*H = {(p, q) e P* Q: p € G, qG 6 H}.
0

is a P* Q filter generic over V.
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0

Theorem 11.4 If K is a F* Q-filter generic over V, then

G={p:3q(p,q)eK}

is Ψ-generic over V and

H = {qG:3p(p,q)eK}

is QG-generic over V[G].
0

Theorem 11.5 (Solovay-Tennenbaum [102]) IfΨ is ccc and |hp "Q is ccc", then
o

F* Q is ccc.

For proofs of these results, see Kunen [54] or Jech [43].
Finally we prove Theorem 11.1. (1) implies (2) follows immediately from

Lemma 11.2. To see (2) implies (1) proceed as follows.
Note that K < c, since (1) fails for FIN(c+, 2). We may also assume that the

ccc poset F has cardinality less than K. Use a Lowenheim-Skolem argument to
obtain a set Q C F with the properties that |Q| < «, D Π Q is dense in Q for
every D E V, and for every p, q E Q if p and q are compatible (in F) then there
exists r G Q with r < p and r < q. Now replace F by Q. The last condition on
Q guarantees that Q has the ccc.

Choose X = {xp : p 6 F} C 2ω distinct elements of 2ω. If G is F-filter generic
over V let Q be Silver's forcing for forcing a G^-set, f]n€ω Un, in X such that

G={PEΨ:xpe f)Un}.

0

Let B E V be a countable base for X. A simple description of F* Q can be given
by:

( p , ϊ )€P*Q

iff p E F and <j E V is a finite set of consistent sentences of the form:

1. "x iUn " where x E X or

2. "£ Cf/n " where B E β and n E α>.
o

with the additional requirement that whenever the sentence "x $XJn " is in q
and # = xri then p and r are incompatible (so p |h r ^ G).

0

Note that if D C F is dense in F, then D is predense in F* <Q>, i.e., every
0

r E F* <Q> is compatible with an element of D. Consequently, it is enough to find
0

sufficiently generic filters for F* Q. By Lemma 11.2 and Sikorski's Theorem 10.1
0

it is enough to see that if F* QC I is dense in the ccc cBa algebra IB, then B is
count ably generated. Let

C = {\BCUn]:BeB,neω}.
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We claim that C generates 1. To see this, note that for each p £ Ψ

[χPennun 1=
nξω

\xp€Un\= Σ I B £

furthermore
(p,<D) = \χPer\nUn I

0

and so it follows that every element of IP* Q is in the boolean algebra generated
0

by C and so since F* Q is dense in IB it follows that C generates 1.
•

Define X C 2ω to be a generalized 7-Luzin set for an ideal / in the Borel sets
iff |X| = c and \X Π A\ < c for every A £ I. It follows from the Martin-Solovay
Theorem 11.1 that (assuming that the continuum is regular)

MA is equivalent to
for every ccc ideal / in the Borel subsets of 2ω there exists a generalized

J-Luzin set.
Miller and Prikry [82] show that it is necessary to assume the continuum is

regular in the above observation.




