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7 α-forcing

In this section we generalize the forcing which produced a generic G$ to arbi-
trarily high levels of the Borel hierarchy. Before doing so we must prove some
elementary facts about well-founded trees.

Let OR denote the class of all ordinals. Define T C Q<ω to be a tree iff
s Ct ET implies s G T. Define the rank function r : T -» OR U {00} of T as
follows:

1. r(s) >0 iff s eT,

2. r(s) > a + 1 iff 3q G Q r(s~q) > α,

3. r(s) > λ (for λ a limit ordinal) iff r(s) > a for every a < λ.

Now define r(s) = α iff r(s) > a but not r(s) > a + 1 and r(s) = 00 iff r(s) > α
for every ordinal a.

Define [T] = {ar G Qω : Vn 3; f n G T}. We say that T is well-founded iff
[T] = 0.

Theorem 7.1 Γ is well-founded tff r(Q) G OR.

proof:

It follows easily from the definition that if r(s) is an ordinal, then

r(s) = sup{r(sΛg) + 1 : q G Q}.

Hence, if r(()) = α G OR and x G [T], then

φ r Γ (π + 1)) < r(x \ n)

is a descending sequence of ordinals.
On the other hand, if r(s) = 00 then for some q G Q we must have r(s~g) =

00. So if r(()) = 00 we can construct (using the axiom of choice) a sequence
sn ET with r(sn) = 00 and sn+i = sn x(n). Hence x G [T].
•

Definition. T is a mce a-tree iff

1. Γ C ω < α ; is a tree,

2. r : T -> (α + 1) is its rank function (r(()) = α),

3. if r(s) > 0, then for every n G ω s~n G T,

4. if r(s) = /? is a successor ordinal, then for every n G ω r(s~n) = /? - 1,

and

5. if r(s) = λ is a limit ordinal, then r(s"0) > 2 and r(s~n) increases to λ as

n —• 00 .
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It is easy to see that for every a < ω\ nice α-trees exist. For X a Hausdorff
space with countable base, B, and T a nice α-tree (a > 2), define the partial
order JP = F(X, B, T) which we call a-forctng as follows:

p£ψif[p= (t,F) where

1. t : D->B where DCΓ° = {sGT: φ ) = 0} is finite,

2. F C Γ > o x I is finite where

T>0 = T \ T° = {s G T : φ ) > 0},

3. if (s,x),(sΛn,ί/) G F, then x φ y> and

4. if (s,z) G F and^(s Λ n)=:5, then x £ B.

The ordering on F is given by p < q iff tp D tq and Fp D Fq.

Lemma 7.2 P Λαs ccc.

proof:
Suppose A is uncountable antichain. Since there are only countably many

different tp without loss we may assume that there exists t such that tp = t for
all p G A. Consequently for p,q G A the only thing that can keep pU q from
being a condition is that there must be an x G X and an s, s~n G T>0 such that

But now for each p e A let Hp : X -^ [T>0]<ω be the finite partial function
defined by

where domain Hp is {x : 3s G T > 0 (5,x) G Fp}. Then {/fp : p G A} is an
uncountable antichain in the order of finite partial functions from X to [T t > 0 ] < ω ,
a countable set.
•

Define for G a F-filter the set Us C X for s G T as follows:

1. for s G T° let {/, = J5 iff Ξp G G such that tp(s) = JB and

2. for * € Γ>° let tf, = Π n e w ~ tVn

Note that t/5 is a Π$(X)-set where r(s) = β.

Lemma 7.3 IfG is Ψ-generic over V then in V[G] we have that for every x G X
and s G T>0

xeUs <=> 3peG (5, x) G Fp.
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proof:
First suppose that r(s) — 1 and note that the following set is dense:

D = {peΨ:(s,x)eFp or 3n3B G B x G B and tp(s~n) = B}.

To see this let p G P be arbitrary. If (s, x) G Fp then p e D and we are already
done. If (s, x) £ Fp then let

Y = {y (s,y)eFp}.

Choose B G B with x E B and y disjoint from B. Choose s~n not in the domain
of tpj and let q = (tqiFp) be defined by ̂  = tp U (s~n, 5 ) . So q < p and q e D.
Hence D is dense.

Now by definition x G Us iff x G Πn€u> ~ ^Vn So let G be a generic filter
and p E G Π D. If (s, x) G Fp then we know that for every q G G and for every
n, if tq(s~n) — B then x £ B. Consequently, x G Us. On the other hand if
tp(s"n) = B where x G 5 , then x £ Us and for every g G G it must be that
(s, 3?) ̂  F ? (since otherwise p and g would be incompatible).

Now suppose r(s) > 1. In this case note that the following set is dense:

E = {p G P : (β, a?) G Fp or Ξn (sΛn, x) G F p } .

To see this let p G P be arbitrary. Then either (s, x) G .Fp and already p € E oτ
by choosing n large enough q = (ί p, F p U {(s~n, x)}) G ί?. (Note r(s~n) > 0.)

Now assume the result is true for all Us~n. Let p EGΠE. If (5, x) G F p then
for every q G G and n we have (s Λ n, x) ̂  JF^ and so by induction x ζέ ί/β

Λ

n and
so x £ Us. On the other hand if (s"ny x) E Fp, then by induction x £Us-n and
so x ^ ί/s, and so again for every q G G we have (5, x) ̂  i^ .
•

The following lemma is the heart of the old switcheroo argument used in
Theorem 6.2. Given any Q C X define the rank(p, Q) as follows:

rank(p, Q) = max{r(s) : (s, x) G Fp for some x G X \ Q).

L e m m a 7.4 (Rank Lemma). For any β > 1 and p G P /Λere ezisfc p compatible
with p such that

1. rank(p, Q) < β + 1 αnrf

2. for any qeΨ i/rank(g,Q) < β, then

p and q compatible implies p and q compatible.

proof:
Let po < p be any extension which satisfies: for any (s, x) G Fp and n G w,

if r(s) = λ > β is a limit ordinal and r(s"n) < β + 1, then there exist m G w
such that (s"n~m, x) G Fpo Note that since r(s~n) is increasing to λ there are



24 7 a-FORCING

only finitely many (s,x) and s Λ n t o worry about. Also r(s"n~m) > 0 so this is
possible to do.

Now let p be defined as follows:

tp = tp

and
i ^ = {(s, x)eFPo :xeQ oτ r(s) < β + 1}.

Suppose for contradiction that there exists q such that rank(g,Q) < /?, p and g
compatible, but p and q incompatible. Since p and q are incompatible either

1. there exists (s, x) G Fq and tp(s"n) = B with x G £, or

2. there exists (s, a?) G Fp and tq(s~n) = £? with x G 5, or

3. there exists (s,x) G Fp and (s"n,x) G F g , or

4. there exists (s,x) G F g and (sΛn,x) G F p .

(1) cannot happen since tp = *p and so p, g would be incompatible. (2) cannot
happen since r(s) = 1 and β > 1 means that (s, a?) G Fp and so again p and g are
incompatible. If (3) or (4) happens for x G Q then again (in case 3) (s, x) G Fp
or (in case 4) (s~n, x) G Fp and so p, g incompatible.

So assume x £ Q. In case (3) by the definition of rank(g, Q) < β we know
that r(s"n) < β. Now since T is a nice tree we know that either r(s) < β and so
(5, x) G Fp or r(s) = λ a limit ordinal. Now if λ < β then (s, a?) G Fp. If λ > β
then by our construction of po there exist m with (sΛnΛm, x) G Fp and so p, g
are incompatible. Finally in case (4) since x £ Q and so r(s) < β we have that
r(s"n) < β and so (s~n, x) G Fp and so p, g are incompatible.
•

Intuitively, it should be that statements of small rank are forced by conditions
of small rank. The next lemma will make this more precise. Let L^ (Pa : a < K)
be the infinitary propositional logic with {Pα : α < «} as the atomic sentences.
Let Πo-sentences be the atomic ones, {Pa : a < K}. For any β > 0 let 0 be a
Ilβ-sentence iff there exists Γ C I L . Λ IL-sentences and

Models for this propositional language can naturally be regarded as subsets
Y G K where we define

1. y μ P α i f f α e y ,

2. Y \= -1(9 iff not y |=0, and

3. y |= M Γ iffy (= 0 for every 0 G Γ.
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L e m m a 7.5 (Rank and Forcing Lemma) Suppose rank : F —• OR is any func-
Q

tion on a poset F which satisfies the Rank Lemma 7.4- Suppose \\~χYC K and
for every p £ F and a < K if

p \\~ α EY

then there exist p compatible with p such that rank(p) = 0 and

P \\- a ey .

Then for every Up-sentence θ (in the ground model) and every p £ F, if

p\\- "γ\=θ»

then there exists p compatible with p such that rank(p) < β and

p\\- "γ\=θ".

proof:
This is one of those lemmas whose statement is longer than its proof. The

proof is induction on β and for β = 0 the conclusion is true by assumption. So
suppose β > 0 and θ = /)(\t/)GΓ ~^Φ where Γ C \Jδ<β Πj-sentences. By the rank
lemma there exists p compatible with p such that rank(p) < β and for every
q E F with rank(g) < β if p, q compatible then p, q compatible. We claim that

Suppose not. Then there exists r < p and ψ £ Γ such that

By inductive assumption there exists r compatible with r such that

rank(f) < β

such that

But f,p compatible implies r,p compatible, which is a contradiction because

θ —• - i ^ and so

Some earlier uses of rank in forcing arguments occur in SteePs forcing, see
Steel [106], Friedman [29], and Harrington [36]. It also occurs in Silver's analysis
of the collapsing algebra, see Silver [99].




