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7 a-forcing

In this section we generalize the forcing which produced a generic G5 to arbi-
trarily high levels of the Borel hierarchy. Before doing so we must prove some
elementary facts about well-founded trees.

Let OR denote the class of all ordinals. Define T C Q<% to be a tree iff
s Ct € T implies s € T. Define the rank function r : T — OR U {00} of T as
follows:

1.r(s) >0iff seT,
2. r(s)>a+1if g€ Q r(s"q) > a,
3. 7(s) > A (for X a limit ordinal) iff r(s) > « for every o < A.

Now define r(s) = « iff 7(s) > « but not 7(s) > o+ 1 and r(s) = co iff 7(s) > &
for every ordinal a.

Define [T] = {z € Q¥ : Vn z [ n € T}. We say that T is well-founded iff
[T]=0.

Theorem 7.1 T is well-founded ff 7(()) € OR.

proof:
It follows easily from the definition that if r(s) is an ordinal, then

r(s) =sup{r(s"¢)+1:q € Q}.
Hence, if 7({)) = « € OR and z € [T, then
r(z [(n+1)) <r(z[n)

is a descending sequence of ordinals.

On the other hand, if 7(s) = oo then for some ¢ € Q we must have r(s"¢) =
0o. So if 7({)) = oo we can construct (using the axiom of choice) a sequence
sn € T with r(s,) = 0o and su41 = s "z(n). Hence z € [T].
|

Definition. T is a nice a-tree iff

1. T Cw<¥ is a tree,

2. r: T — (a+ 1) is its rank function (r(()) = a),
3. if r(s) >0, then foreveryn€w s"neT,

4. if r(s) = B is a successor ordinal, then for every n € w r(s"n) = f—1,
and

5. if 7(s) = A is a limit ordinal, then #(s"0) > 2 and r(s"n) increases to A as
n — 0o.
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It is easy to see that for every a < w; nice a-trees exist. For X a Hausdorff
space with countable base, B, and T a nice a-tree (a > 2), define the partial
order P = P(X, B, T) which we call a-forcing as follows:

p € Piff p = (¢, F) where
1. t: D — B where D CT° = {s € T : r(s) = 0} is finite,
2. F C T>% x X is finite where

T>°=T\T° = {s €T :r(s) > 0},

3. if (s,z),(s"n,y) € F, then z # y, and

4. if (s,z) € F and t(s"n) = B, then z ¢ B.
The ordering on P is given by p < q ifft, D, and F, D Fy.
Lemma 7.2 P has ccc.

proof:

Suppose A is uncountable antichain. Since there are only countably many
different ¢, without loss we may assume that there exists ¢ such that ¢, = ¢ for
all p € A. Consequently for p,q € A the only thing that can keep p U ¢ from
being a condition is that there must be an z € X and an s,s"n € T>° such that

(s,z),(s"n,z) € (Fp U Fy).

But now for each p € A let Hp, : X — [T>0]<¥ be the finite partial function
defined by
Hy(z) = {s € T>° : (s,2) € Fp}

where domain H) is {z : 3s € T>° (s,z) € Fp}. Then {H, : p € A} is an
uncountable antichain in the order of finite partial functions from X to [T>°]<%,
a countable set.

]
Define for G a P-filter the set U; C X for s € T as follows:

1. for s € T° let U, = B iff 3p € G such that t,(s) = B and
2. for s € T>% let Uy = Nyep ~ Usn
Note that U, is a II3(X)-set where r(s) = 8.

Lemma 7.3 IfG is P-generic over V then in V[G] we have that for everyz € X
and s € T>°
€U, <= Fpe (G (s,z)€F,.
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proof:
First suppose that r(s) = 1 and note that the following set is dense:

D={peP:(s,z) € For In3IB € B z € B and t,(s"n) = B}.

To see this let p € P be arbitrary. If (s,z) € F, then p € D and we are already
done. If (s, z) ¢ F, then let

Y={y:(s,9) € /p}.

Choose B € B with £ € B and Y disjoint from B. Choose s”n not in the domain
of tp, and let ¢ = (4, Fp) be defined by t, =t, U(s"n,B). Soqg <pand g€ D.
Hence D is dense.

Now by definition z € U, iff z € nnew ~ Us-n. So let G be a generic filter
and p € GND. If (s,z) € F, then we know that for every ¢ € G and for every
n, if t;(s"n) = B then = ¢ B. Consequently, £ € U,. On the other hand if
tp(s"n) = B where £ € B, then z ¢ U, and for every ¢ € G it must be that
(s,z) ¢ F, (since otherwise p and ¢ would be incompatible).

Now suppose r(s) > 1. In this case note that the following set is dense:
E={peP:(s,z) € Fyor3n(s"n,z) € Fp}.

To see this let p € IP be arbitrary. Then either (s, ) € F, and already p € E or
by choosing n large enough ¢ = (t,, F, U {(s"n,z)}) € E. (Note r(s"n) > 0.)
Now assume the result is true for all U,-,. Let p € GNE. If (s,z) € Fp then
for every ¢ € G and n we have (s"n,z) ¢ F, and so by induction z ¢ U,-, and
so £ € U,. On the other hand if (s"n,z) € F}, then by induction z € U,-, and
so z ¢ U,, and so again for every ¢ € G we have (s,z) ¢ F,.
|
The following lemma is the heart of the old switcheroo argument used in

Theorem 6.2. Given any @ C X define the rank(p, Q) as follows:
rank(p, Q) = max{r(s) : (s,z) € F,, for some z € X \ Q}.

Lemma 7.4 (Rank Lemma). For any 8 > 1 and p € IP there exists p compatible
with p such that

1. rank(p,Q) < B+ 1 and
2. for any q € P if rank(q, Q) < B, then

p and q compatible implies p and q¢ compatible.

proof:
Let pg < p be any extension which satisfies: for any (s,z) € F, and n € w,

if 7(s) = A > f is a limit ordinal and r(s"n) < B+ 1, then there exist m € w
such that (s"n"m,z) € Fp,. Note that since r(s"n) is increasing to A there are
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only finitely many (s,z) and s"n to worry about. Also r(s"n"m) > 0 so this is
possible to do.
Now let p be defined as follows:

and
Fs={(s,z) € Fp, :x € Qorr(s) < B+ 1}.

Suppose for contradiction that there exists ¢ such that rank(q,@) < 3, p and ¢
compatible, but p and ¢ incompatible. Since p and ¢ are incompatible either

1. there exists (s,z) € Fy and t,(s"n) = B with z € B, or
2. there exists (s,z) € F, and t4(s"n) = B with z € B, or
3. there exists (s,z) € F, and (s"n,z) € F, or

4. there exists (s,z) € Fy and (s"n,z) € Fp.

(1) cannot happen since ¢; = t, and so p,q would be incompatible. (2) cannot
happen since r(s) = 1 and § > 1 means that (s, ) € F; and so again p and ¢ are
incompatible. If (3) or (4) happens for z € Q then again (in case 3) (s,z) € F;
or (in case 4) (s"n,z) € F5 and so p, ¢ incompatible.

So assume z ¢ Q. In case (3) by the definition of rank(q, @) < B we know
that r(s"n) < B. Now since T is a nice tree we know that either r(s) < 8 and so
(s,z) € Fp or r(s) = A a limit ordinal. Now if A < 3 then (s,z) € F3. If A > 3
then by our construction of py there exist m with (s"n"m,z) € F; and so p, q
are incompatible. Finally in case (4) since z ¢ @ and so r(s) < # we have that
7(s"n) < B and so (s"n,z) € F; and so p, q are incompatible.

n

Intuitively, it should be that statements of small rank are forced by conditions
of small rank. The next lemma will make this more precise. Let Lo, (Py : @ < k)
be the infinitary propositional logic with {P, : @ < k} as the atomic sentences.
Let ITp-sentences be the atomic ones, {P, : @ < k}. For any # > 0 let 8 be a
Ig-sentence iff there exists I' C |J; . 5 [Ts-sentences and

0= /Y\ .
yer

Models for this propositional language can naturally be regarded as subsets
Y C & where we define

.LYEP,ffaeY,
2. Y E-fiff not Y | 6, and
3. YEMTIffY =6 for every § € T.
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Lemma 7.5 (Rank and Forcing Lemma) Suppose rank : P — OR is any func-

tion on a poset P which satisfies the Rank Lemma 7.4. Suppose |I-]P}°’C K and
for everyp €EP and a < k if

o
plFaey
then there exist p compatible with p such that rank(p) = 0 and

o
plFaey.
Then for every Ilg-sentence 0 (in the ground model) and every p € P, if
o
p '*_ 43 Yh 9”
then there exists p compatible with p such that rank(p) < B and
I'j “_ « {;F 0»‘

proof:

This is one of those lemmas whose statement is longer than its proof. The
proof is induction on # and for # = 0 the conclusion is true by assumption. So
suppose # > 0 and 6 = /X\wel“ -1 where T' C U6<ﬁ II5-sentences. By the rank
lemma there exists § compatible with p such that rank(p) < g and for every
q € P with rank(q) < 3 if p, ¢ compatible then p,q compatible. We claim that

Pl ePE o
Suppose not. Then there exists » < p and ¥ € I such that
rlF“YEY.
By inductive assumption there exists # compatible with » such that
rank(7) < 8

such that .

1’,‘. |l_ 13 Ytz w” .
But 7,p compatible implies #,p compatible, which is a contradiction because
# — =) and so

o
p “,_ « Yl= _"l,b”.

u

Some earlier uses of rank in forcing arguments occur in Steel’s forcing, see
Steel [106], Friedman [29], and Harrington [36]. It also occurs in Silver’s analysis
of the collapsing algebra, see Silver [99].





