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3 Abstract Borel hierarchies

Suppose F C P(X) is a family of sets. Most of the time we would like to
think of F as a countable field of sets (i.e. closed under complements and finite
intersections) and so analogous to the family of clopen subsets of some space.

We define the classes Π ° ( J F ) analogously. Let ΊJQ(F) = F and for every
a > 0 define A G U°Q(F) iff there exists Bn G U°βn for some βn < a such that

A=f)~Bn.
nζω

Define

let ord(F) be the least a such that Borel(F) = Σ°

Theorem 3.1 (ΰtntf, Bledsoe, Mauldin [12]) Suppose F C P(2 ω ) t* α countable
family such that Borel(2α;) C Borel(F). Then ord(F) = ωi.

Corollary 3.2 Suppose X is any space containing a perfect set and F C P(X)
is a countable family such that Borel(X) C Borel(F). Then ord(F) = ω\.

proof:
Suppose 2 ω C I and let F = {AΓ)2ω : A e F}. By Theorem 2.3 we have

that Borel(2ω) C Borel(F) and so by Theorem 3.1 we know ord(F) = ωi. But
this implies oτd(F) = ω\.
•

The proof of Theorem 3.1 is a generalization of Lebesgue's universal set
argument. We need to prove the following two lemmas.

L e m m a 3.3 (Universal sets) Suppose H C P(X) is countable and define

R = {Ax B :AC2ω is clopen and B G H}.

Then for every a with 1 < a < ωx there exists U C 2ω x X with U G Dβ(Λ)
such that for every A G U°Q(H) there exists x£2ω with A = UX.

proof:
This is proved exactly as Theorem 2.6, replacing the basis for X with H.

Note that when we replace Un by U* it is necessary to prove by induction on β
that for every set A G B$(Λ) and n£ω that the set

A* = {(x,y):(xn,y)eA}

is also in U°β(R).
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Lemma 3.4 Suppose H C P(2ω), R is defined as in Lemma 3.3, and

Borel(2ω) C Borel(iJ).

Then for every set A G Borel(Λ) the set D = {x : (x, x) G A} is in Boτel(H).

proof:
If A = B x C where B is clopen and C G H, then D = B DC which is in

Borel(ϋf) by assumption. Note that

{x : (x,x) G f]An} = f]{x : (x,x) G An}
n n

and
{* : (x, x) G~ Λ} = ~ {* : (x, x) G A},

so the result follows by induction.
•
Proof of Theorem 3.1:

Suppose Borel(fΓ) = U°a(H) and let U C 2ω x 2ω be universal for Π°a{H)
given by Lemma 3.3. By Lemma 3.4 the set D = {x : (a?, x) G U} is in Boτel(H)
and hence its complement is in Borel(#) = Π° (H). Hence we get the same old
contradiction: if Ux = ~ Z), then x G D iff a? ̂  D.
•
Theorem 3.5 (Redaw) If X is a second countable space and X can be mapped
continuously onto the unit interval, [0,1], then ord(X) = ω\.

proof:
Let / : X —• [0,1] be continuous and onto. Let B be a countable base for X

and let H = {f(B) : B G B}. Since the preimage of an open subset of [0,1] is
open in X it is clear that Borel([0,1]) C Borel(#). So by Corollary 3.2 it follows
that oτd(H) = ω\. But / maps the Borel hierarchy of X directly over to the
hierarchy generated by H, so ord(X) = ω\.
•

Note that if X is a discrete space of cardinality the continuum then there is
a continuous map of X onto [0,1] but ord(X) = 1.

The Cantor space 2ω can be mapped continuously onto [0,1] via the map

Σ
x(n)
On + l

This map is even one-to-one except at countably many points where it is two-
to-one. It is also easy to see that R can be mapped continuously onto [0,1] and
ωω can be mapped onto 2ω. It follows that in Theorem 3.5 we may replace [0,1]
by 2 ω ,u; ω ,orR.

Myrna Dzamonja points out that any completely regular space Y which
contains a perfect set can be mapped onto [0,1], This is true because if P C Y
is perfect, then there is a continuous map / from P onto [0,1]. But since Y is
completely regular this map extends to Y.

Reclaw did not publish his result, but I did, see Miller [84] and [85].




