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3 Abstract Borel hierarchies

Suppose F' C P(X) is a family of sets. Most of the time we would like to
think of F' as a countable field of sets (i.e. closed under complements and finite
intersections) and so analogous to the family of clopen subsets of some space.
We define the classes IIQ(F) analogously. Let I3(F) = F and for every
a > 0 define A € I3 (F) iff there exists B, € II§ for some B, < o such that

A= ﬂ ~ B,,.

new
Define
To(F)={~B:BeI(F)}
AL(F) =Ta(F)NEo(F),
Borel(F) = Uy <, Za(F), and
let ord(F) be the least o such that Borel(F) = E9(F).

[ ]

Theorem 3.1 (Bing, Bledsoe, Mauldin [12]) Suppose F C P(2%) is a countable
family such that Borel(2*) C Borel(F'). Then ord(F) = w;.

Corollary 3.2 Suppose X is any space containing a perfect set and F C P(X)
is a countable family such that Borel(X) C Borel(F). Then ord(F) = w;.

proof: R

Suppose 2“ C X and let F' = {AN2¥ : A € F}. By Theorem 2.3 we have
that Borel(2¥) C Borel(F) and so by Theorem 3.1 we know ord(F) = w;. But
this implies ord(F') = wy.
|

The proof of Theorem 3.1 is a generalization of Lebesgue’s universal set
argument. We need to prove the following two lemmas.

Lemma 3.3 (Universal sets) Suppose H C P(X) s countable and define
R={AxB:ACZ2"is clopen and B € H}.

Then for every a with 1 < a < w; there exists U C 2* x X with U € O%(R)
such that for every A € OO (H) there ezists ¢ € 2* with A = U,.

proof:
This is proved exactly as Theorem 2.6, replacing the basis for X with H.

Note that when we replace U, by U, it is necessary to prove by induction on 3
that for every set A € IIJ(R) and n € w that the set

A* ={(z,y) : (zn,y) € A}

is also in IJ?,(R).
]
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Lemma 3.4 Suppose H C P(2*), R is defined as in Lemma 3.3, and
Borel(2¥) C Borel(H).
Then for every set A € Borel(R) the set D = {z : (z,z) € A} is in Borel(H).

proof:
If A= B x C where B is clopen and C € H, then D = BN C which is in
Borel(H) by assumption. Note that

{z :(z,2) € ﬂAn} = n{x ((z,z) € An}

and
{z:(z,2) e~ A} =~ {z : (2,2) € A},
so the result follows by induction.
[ ]
Proof of Theorem 3.1:

Suppose Borel(H) = II%(H) and let U C 2¥ x 2* be universal for II%(H)
given by Lemma 3.3. By Lemma 3.4 the set D = {z : (z,z) € U} is in Borel(H)
and hence its complement is in Borel(H) = II2(H). Hence we get the same old
contradiction: if Uy =~ D, then z € D iff z ¢ D.

u

Theorem 3.5 (Rectaw) If X is a second countable space and X can be mapped
continuously onto the unit interval, [0,1], then ord(X) = w;.

proof:

Let f : X — [0,1] be continuous and onto. Let B be a countable base for X
and let H = {f(B) : B € B}. Since the preimage of an open subset of [0, 1] is
open in X it is clear that Borel([0, 1]) C Borel(H). So by Corollary 3.2 it follows
that ord(H) = wi. But f maps the Borel hierarchy of X directly over to the
hierarchy generated by H, so ord(X) = w;.

u

Note that if X is a discrete space of cardinality the continuum then there is
a continuous map of X onto [0, 1] but ord(X) = 1.

The Cantor space 2¢ can be mapped continuously onto [0, 1] via the map

= z(n)
D> ontL”
n=0
This map is even one-to-one except at countably many points where it is two-
to-one. It is also easy to see that R can be mapped continuously onto [0, 1] and
w* can be mapped onto 2¢. It follows that in Theorem 3.5 we may replace [0, 1]
by 2¢, w*, or R.
Myrna Dzamonja points out that any completely regular space Y which
contains a perfect set can be mapped onto [0, 1]. This is true because if P CY
is perfect, then there is a continuous map f from P onto [0,1]. But since Y is

completely regular this map extends to Y.
Reclaw did not publish his result, but I did, see Miller [84] and [85].






