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My goal in these lectures is to survey some classical and recent results in
model theoretic algebra. We will concentrate on the fields of real and complex
numbers and discuss connections to pure model theory and algebraic geometry.

Our basic language will be the language of rings Cτ = {+, —, ,0,1}. The
field axioms, Tfieids, consists of the universal axioms for integral domains and the
axiom
VxBy (x — 0 V xy = 1). Since every integral domain can be extended to its
fraction field, integral domains are exactly the /^-substructures of fields. For a
fixed field F we will study the subsets of Fn which are defined in the language

§1 Algebraically closed fields

Let ACF be Tfieids together with the axiom

n-l

Vα0 . . . Vαn_ι3z xn + ]Γ aix
i = 0
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for each n. Clearly ACF is not a complete theory since it does not decide the
characteristic of the field. For each n let φn be the formula

Vz X + ... + S = 0.

n times

For p prime, let ACFp be theory ACF + φp, and let ACFQ = ACF(J{->φn : n =
1,2,...}.

For our purposes the key algebraic fact about algebraically closed fields is
that they are described up to isomorphism by the characteristic and the tran-
scendence degree. This has important model theoretic consequences. Recall that
for a cardinal K a theory is K- categorical if there is, up to isomorphism, a unique
model of cardinality K.

Proposition 1.1. Let p be prime or zero and let /c be an uncountable cardinal.
The theory ACFP is K- categorical, complete, and decidable.



Proof. The cardinality of an algebraically closed field of transcendence degree
λ is equal to N0 + A. Thus the only algebraically closed field of characteristic p
and cardinality « is the one of transcendence degree K.

Vaught's test (a simple consequence of the Lόwenheim-Skolem theorem)
asserts that if a theory is categorical in some infinite cardinal, then the theory
is complete. Finally, any recursively axiomatized complete theory is decidable.

Corollary 1.2. Let φ be an £r-sentence. Then the following are equivalent:

i )CM
ϋ) ACFQ \= φ
iii) ACFp \= φ for sufficiently large primes p.
iv) ACFp \= φ for arbitrarily large primes p.

Proof. Clearly ii)—> i), while i)—»ii) follows from the completeness of ACF$.
If ACFo \= φ, then, since proofs are finite, there is an n such that ACF U

{-i(^ι,..., -*φn} |= φ. Clearly if p> n is prime, then ACFP \= φ. Thus ii)—»iii).
Clearly iii)—>iv)
Suppose ACFQ £ φ. Then by completeness ACF0 |= -κ£, and by ii)—>iii),

for sufficiently large primes p ACFP \= -ιφ. Thus there aren't arbitrarily large
primes p where ACFP (= 0, so iv)—* ii).

Corollary 1.2 has a surprising consequence.

Theorem 1.3 (Ax [A]) Let / : Cn -+ Cn be a polynomial map. If / is one to
one, then / is onto.

Proof. We can easily write down an £r-sentence Φ<j such that a field F \= Φ<j if
and only if for any polynomial map / : Fn —* Fn where each coordinate function
has degree at most rf, if / is one to one, then / is onto. By 1.2, it suffices to
show that for sufficiently large primes p, ACFp \= Φd for all d £ N. Since ACFp

is complete it suffices to show that if K is the algebraic closure of the p element
field, then any one to one polynomial map / : Kn —> Kn is onto.

If / : Kn -» Kn is a polynomial map, then there is a finite subfield KQ C K
such that all coefficients in / come from KQ. Let x £ Kn. There is a finite
KI C K such that K0 C KI and x G K%. Since / : K? -> K%, f is one to one
and KI is finite, f\K\ must be onto. Thus x = f(y) for some y £ K%. So / is
onto.

This result was later given a completely geometric proof by Borel ( [B]).

Definition. We say that an £-theory T has quantifier elimination if and only if
for any £-formula φ(υι,..., υm) there is a quantifier free ^-formula ^(vi, . . . , vm)
such that T \= Vv φ(v) <-»• ψ(v).

The following theorem leads to an easy test for quantifier elimination.



Theorem 1.4. Let £ be a language containing at least one constant symbol.
Let T be an £ theory and let φ(vι, . . . , vm) be an C, formula with free variables
t>ι, . . , vm (we allow the possibility that ra = 0). The following are equivalent:

i) There is a quantifier free ^-formula ψ(υι, . . , vm) such that T h Vϋ (φ(v) <-»•
tf(tθ)
ii) If A and B are models of T, C C .4 and C C β, then .4 |= φ(a) if and only if
B \= φ(a) for all α G C.

proof.
[i) — »• ii)]: Suppose T h Vΰ (0(v) <->• Ψ(v)), where ^ is quantifier free. Let

ά G C where C is a substructure of A and β and the later two structures are
models of T. Since quantifier free formulas are preserved under substructure and
extension

A\=φ(a)~A^ψ(a)

+->C\=ψ(a) (since C C A)

^B\=ψ(ά) (since C C β)

[ii) -> i)]. First, if T h Vϋ <£(ϋ), then T \- Vv (φ(v) <-> c = c). Second, if
T h Vϋ -^(t;), then T h Vv (<^(v) <-» c / c). In fact, if φ is not a sentence we
could use "vi — vi" in place of c — c.

Thus we may assume that both φ(v) and ~^φ(v) are consistent with T.

Let Γ(v) = {φ(ϋ) : ψ is quantifier free and T h Vϋ (ψ(v) -* V'(v))}- Let
di, . . . , dm be new constant symbols. We will show that T + Γ(d) h φ(d). Thus
by compactness there are ψι, . . . , ψn G Γ such that T h Vi; (/\ψi(v) —> Φ(v)).
So T h Vϊ; (^ ̂ t (v) <-*• φ(v)) and ̂  VΊ'(^) is quantifier free. We need only prove
the following claim.

claim. Γ + Γ(J) h φ(d).
Suppose not. Let A \= T + Γ(d) -h ~^φ(d). Let C be the substructure of A

generated by d. [Note: if ra = 0 we need the constant symbol to insure C is
non-empty.]

Let Diag(C) be the set of all atomic and negated atomic formulas with
parameters from C that are true in C. Let Σ = T + Diag(C) + φ(d). If Σ
is inconsistent^ then there are quantifier free formulas quantifier free formulas

V>ι(«0> >VVι(d) € Diag(C), such that T h Vv (/\Ψi(v -> ^Φ(v)). But then
T h Vv (ψ(v) -»• V^i(v)). So\J^ψi(v) G Γ and C |= \/-*l>i(d), a contradiction.
Thus Σ is consistent.

Let β |= Σ. Since Σ D Diag(C), we may assume that C C B. But by a),

since A (= ^(d), β f= - Ψ(d), a contradiction.

The next lemma shows that to prove quantifier elimination for a theory we
need only prove quantifier elimination for formulas of a very simple form.



Lemma 1.5. Suppose that for every quantifier free ^-formula θ(v,w), there
is a quantifier free ψ(v) such that T h Vΰ (3w θ(v,w) <-»• V'(^))- Then every
>C-formula (^(ΰ) is provably equivalent to a quantifier free £-formula.

Proof. We prove this by induction on the complexity of φ.
This is clear if φ(v) is quantifier free.

For i = 0, 1 suppose that T h Vϋ (0, (ϋ) = ψi(v))) where ψt is quantifier free.
If φ(v) = -.ffo(v), then T h Vv (/(i;) <-> --^o(t>))
If φ(v) = Θ0(v) Λ 0ι (ϋ), then T h Vv (<£(ΰ) <-> (ιfo(v) Λ VΊ(V)))
In either case φ is provably equivalent to a quantifier free formula.

Suppose that T h Vv(θ(v,w) «-+ ψ$(v,w}), where ^ is quantifier free. Sup-
pose 0(ΰ) = 3ιt; ^(ϋ, w). Then T h Vϋ (<^(^) -̂> 3ty(^(v, w;)). By our assumptions
there is a quantifier free ψ(v) such that T h Vϋ (3w; ΨQ(V,W) <-» ^(ϋ)). But then
T h V ϋ (ψ(v) ^V)(^))

Thus to show that T has quantifier elimination we need only verify that
condition ii) of theorem 1.4 holds for every formula φ(v) of the form 3wθ(ϋ, w)
where θ(v,w) is quantifier free.

Theorem 1.6 The theory ACF has quantifier elimination.

Proof. Let F be a field and let K and L be algebraically closed extensions of F.
Suppose φ(v, w) is a quantifier free formula, a £ F, b £ K and K \= φ(b, a). We
must show that L \= 3v φ(v,a).

There are polynomials /ι , j , f l f» j G F[X] such that φ(v,a) is equivalent to

Thenίf μ ΛΓ=ι /*j(*) = 0 Λ Λ?=1 ftjί*) for some i.

Let F be the algebraic closure of F. We can view F as a subfield^pf both K
and L. If any /,-j is not identically zero for j = 1, . . . , m, then b £ F C L and
we are done. Otherwise since

»=ι

9ij(X) = 0 has finitely many solutions. Let {GI, . . . , cs} be all of the elements
of L where some </, j vanishes for .; = 1, . . . , m. Thus if we pick any element d
of L with x £ {GI, . . . ,c5}, then L [= φ(d,a).

Quantifier elimination for algebraically closed fields was first proved by
Tarski who gave an explicit algorithm for eliminating quantifiers. The following
weaker property is also of interest.



Definition. A theory T is model complete if whenever M C N and M, N \= T,
then N is an elementary extension of M.

Since quantifier free formulas are preserved under substructure and exten-
sion, any theory with quantifier elimination is model complete. The model
completeness of algebraically closed fields can also be proved be appealing to
Lindstrom's result that any NI-categorical, VΞ-axiomatizable theory is model
complete (see [C]). In fact, model completeness is a weak form of quantifier
elimination. A theory T is model complete if and only if every formula is equiv-
alent to one of the form Ξ v i , . . . , 3vnφ(v, w) where φ is quantifier free.

For algebraically closed fields model completeness implies that if F C K are
algebraically closed fields and Σ is a finite system of equations and inequations
over F which have a solution in K, then Σ already has a solution in F. Model
completeness gives a very simple proof of Hubert's Nullstellensatz. (We refer
the reader to Lang ( [LI]) for all algebraic results. If F is a field and I C
F[Xι,... ,Xn] is an ideal, let VF(I) = {a G Fn : /(α) = 0 for all / G /}.

Corollary 1.7. (Nullstellensatz) If F is an algebraically closed field and
P C F[Xι,..., Xn] is a prime ideal then VF(P) ^ 0.

Proof. Let K be the algebraic closure of F[Xι,... ,Xn]/P. By model com-
pleteness K is an elementary extension of F. By Hubert's basis theorem, P is
finitely generated. Say P = {/i,..., fm).— The sentence

n

3vι...3υn /\/<(*!,. . .,v n) = 0
«=ι

is true in K, as (Xι/P,..., Xn/P) is a witness. By model completeness this
sentence is true in F.

Using the fact that y/Ί is a finite intersection of prime ideals, the above
proof can easily be modified to show that if / is an ideal in F[X] and 1 ^ vT,
then V>(/) φ 0.

While model completeness is useful in some applications, quantifier elimina-
tion is the primary tool for understanding definable sets in algebraically closed
fields.

Definition. A theory T is strongly minimal if for any M \= T, every definable
subset of M is either finite or cofinite. (Note that "definable" means "definable
with parameters".)

If F is algebraically closed, then every definable subset of F is a finite
Boolean combination of sets of the form {x : f ( x ) = 0} where f ( X ) G F[X]. If
f ( X ) is not identically zero, then the set of zeros of / is finite. Thus algebraically
closed fields are strongly minimal.



Quantifier elimination also shows that the definable sets are exactly the
constructible sets of algebraic geometry.

Definition. If F is a field, we say that X C Fn is Zariski closed if it is a finite
union of sets of the form

m

{* :/\Λ(*) = 0}

where /ι,...,/m £ F[Xι,...,Xm].

By Hubert's basis theorem the intersection of a (possibly infinite) collection
of Zariski closed sets is Zariski closed. Thus the Zariski closed sets give a topology
on Fn. A subset of Fn is called constructible if it is a finite Boolean combination
of Zariski closed sets. By quantifier elimination, if F is an algebraically closed
field, then the definable sets are exactly the constructible ones. The following
theorem of Chevalley gives the geometric restatement of quantifier elimination.

Corollary 1.8. The projection of a constructible set is constructible.

Definition. A Zariski closed set is irreducible if it can not be written as a union
of two proper closed subsets. We will refer to irreducible closed sets as varieties.

Since F[X] is Noetherian, there are no infinite descending chains of Zariski
closed sets. Thus every Zariski closed set is a finite union of irreducible closed
sets. Thus by quantifier elimination, if X is definable then X = UΓ=ι(^« ^ Φ)
where Vi is an irreducible component of the Zariski closure of X and O, is Zariski
open. Later we will give a description of the definable functions.

Definition. If A is a commutative ring, let Spec(A) be the set of prime ideals
of A. We call Spec(A) the Zariski spectrum of A. We topologize Spec(A) by
taking basic closed sets {P : aι,..., an £ P} for α 1 } . . . , an £ A.

The Zarsiki spectrum has a model theoretic analog.

Definition. If T is a complete theory and M [= T, an n-type over M is a
maximal set of formulas with parameters from M and free variables v\,..., vn

that is consistent with T. Let Sn(M) be the set of n-types. We call Sn(M) the
Stone Space of M. We topologize 5n(M) by taking basic open sets{p £ 5n(M) :
φ £ p} for each formula φ with parameters from M. Note that these basic sets
are indeed clop en.

The compactness theorem for first order logic implies that 5n(M) is a com-
pact space.



If F is an algebraically closed field there is a natural bijection between
Sn(F) and Spec(F[Xll...ίXn]). If p is an n-type, let Ip = {f G F[X] :
"/(vi, , vn) = 0" G p} It is easy to see that Ip is a prime ideal. Moreover, if
I is any prime ideal, let p be the set of consequences of

By quantifier elimination, p G Sn(F). The map p H-> /p is easily seen to be
continuous. Thus 5pec(F[X]) is compact.

Definition. A complete theory T is u -stable if for any F [= T, 15^(^)1 = \F\.

By Hubert's basis theorem all prime ideals are finitely generated. Thus
|5pec(F[X])| = \F\ for any algebraically closed field F. By the above remarks
|5n(F)| - \F\. Thus for p a prime or zero, ACFp is u -stable. Indeed a basic
result from model theory says that NI -categorical theories are always u -stable.

In u -stable theories there is a notion of Morley Rank which associates an or-
dinal to each definable set. In strongly minimal theories this notion is particular
simple.

Definition. Let M \= T (an arbitrary theory). Let α,6ι, . . . ,6 n G M. We
say that a is algebraic over 6 if there is an £-formula φ(v, w\, . . . , wn) such that
M \= φ(a,b) and {x G M : M |= φ(x,b)} is finite.

If T is strongly minimal then algebraic dependence satisfies the exchange
lemma, namely if α is algebraic over 6, c and not algebraic over 6, then c is
algebraic over 6,α. In algebraically closed fields this is exactly the usual notion
of algebraic dependence.

One can give a well defined notion of dimension, namely dim (ai, . . . , an) is
the maximal cardinality of a subset {α^ , . . . , α, m} such that no α,̂  is algebraic
over {a^ , . . . , α, m} \ {α^ }. If M \= T and X C Mn is definable, then the Morley
rank of X is the maximum dimension of a tuple (61, . . . , 6n) such that for some
elementary extension N of M N \=bζX.

If X has Morley rank m, then the Morley degree of X is the maximum
number of pairwise disjoint definable rank m sets X can be partioned into.

Morley rank and degree have geometric meaning.

Definition. If V is a Zariski closed set in Fn, let F[V] be the ring
F[Xι,...,Xn]/I(V), where I(V) is the ideal of all polynomials which vanish
at each point in V. We call F[V] the coordinate ring of V. If V is irreducible,
then F[V] is an integral domain and we let F(V) be the fraction field of F[V].
We call F(V) the function field of V.

The ring F[V] corresponds to the ring of polynomial functions on V, while
F(V) corresponds to the field of (partial) rational functions on V. There is a
classical dimension theory for varieties.



Definition. If V is an irreducible variety, we define the dimension of V to be the
transcendence degree of F(V) over F. If X is a construetible set its dimension
defined to be the maximal dimension of an irreducible component of the Zariski
closure.

Note that if O is an open subset of an irreducible variety V, then V \ O has
dimension less than the dimension of V.

Proposition 1.9. If V is a variety, then its Morley rank is equal to its dimension.

Proof. If V is a variety of dimension m, then F(V) has transcendence degree m
over F. Let K be the algebraic closure of F(V). Since Xι/I(V),.. .,Xn/I(V)
generate F(V) over F they have transcendence degree m over F. Thus
(Xι/I(V),... ,Xn/I(V)) demonstrates that V has Morely rank at least m.

On the other hand, if L is a field extension of F and L |= ά G F, there
is a ring homomorphsim from F[V] into L given by / »-*• /(α). Clearly the
transcendence degree of ά is at most the transcendence degree of F[V] over F.

Corollary 1.10. If X is a non-empty constructive set, then its Morley rank is
equal to its dimension.

Proof.
First suppose that V is an irreducible variety, O is open, and X = V Π O is

non-empty. If p is the type such that V\ = V(Ip), then p is the type of maximal
Morely rank in V. The type p must contain the formula "ϋ G O", as otherwise
there is a polynomial / ^ Ip such that "f(v) — 0" G p, a contradiction.

If X is an arbitrary cons true tible set, then X = (JfLi ^* ^ ^»> wnere

V i , . , Vm are the irreducible components of the Zariski closures of X, O, is
open, and V^ Π O, is non-empty. The corollary now follows from the first case.

Finally, we will give the promised description of definable functions.

Theorem 1.11. Let F be an algebraically closed field. Let / : Fn -> F be a
definable function. Then there is a nonempty open set O such that:

i) If F has characteristic 0, then there is a rational function r such that

f\0 = r.
ii) If F has characteristic p > 0, then there is a natural number n and a

rational function r such that f\O = σ~n or, where σ is the Frobenious automor-
phism σ(x) = xp.

proof.
Let K be an elementary extension of F containing <ι,...,ίn which are

algebraically independent over F. Since f ( t ) are fixed by any automorphism of
F which fixes t\t... ,ίn and F, f ( t ) is in the perfect closure of F(tι,... >tn).
Thus in characteristic 0 there is a rational function r such that r(t) — f(t). In
characteristic p > 0, we can find a rational function r and a natural number n
such that σ-n(r(i)) = /(i).



Henceforth we consider only the characteristic zero case as the characteristic
p case is analogous. In F consider Y = {x 6 Fn : r(x) = t(x)}. Since r(ΐ) = f ( t )
and the ti are independent, Y has Morely rank n. Since there is a unique n-type
of Morley rank n, Y has Morely rank n and -Y has Morely rank less than n.
Thus if V is the Zariski closure of -.y, dim V < n. Let O = Fn \ V. Then O is
a nonempty open subset of Fn and f\O = r.

In [Pi4] Pillay provides a more extensive introduction to the model theory
of algebraically closed fields.

§2 Real Closed Fields

We next turn our attention to the field of real numbers. We would like to
prove model completeness and quantifier elimination results analogous to those
for algebraically closed fields. There is one major difficulty: we can not eliminate
quantifiers in the language of rings. In particular in the reals we can define the
ordering by

x < y & 3z (z2 + x = y Λ z ± 0)

and we will see that that this is not equivalent to a quantifier free formula (in
fact by a theorem of Macintyre, McKenna, and van den Dries ([M-M-D]). We
circumvent this difficulty by extending £Γ to £OΓ = £r U {<}• In this language
we will prove quantifier elimination.

We begin by examining the work of Artin and Schrier on the algebraic
structure of the real field (see [LI] for details). For the remainder of this section
we all fields will have characteristic zero. The model theoretic study of the R
began with the work of Tarski. See [D2] for further discussion of Tarski's work.

Definition. A field F is said to be formally real if — 1 is not a sum of squares.
We say F is real closed if it is formally real and has no proper formally real
algebraic extensions.

Lemma 2.1. If F is formally real, and a £ F is not a sum of squares, then
F(y/^a) is formally real.

It follows from 2.1, then if F is real closed and a φ 0, then exactly one of α
and — α has a square root in F. One can then define an order on F such that the
positive elements are exactly the squares. Clearly this is the only way to order
F.

Theorem 2.1. (Artin-Schrier) Let (F,<) be an ordered field. Then the follow-
ing are equivalent.
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i) F is real closed.
ii) F(i) is algebraically closed (were i = \J— 1).
iii) If p(X) G F[X], and α, 6 G F such that α < 6 and p(α) < p(6) then there

is c £ F such that α < c < 6 and p(c) = 0.
iv) For any α £ F either α or — α is a square and every polynomial of odd

degree has a root.

Since iv) does not mention the ordering, we can axiomatize the theory of
real closed fields in the language Cτ by axioms asserting that F is formally real
field of characteristic zero where iv) holds. We call this theory RCF.

Definition. If F is formally real we say that K D F is a real closure of F if it
is a real closed algebraic extension of F.

Clearly every real field has a real closure, however, unlike algebraic closures,
the real closure of a formally real field need not be unique. For example, if t is
transcendental, Q(Vt) and Q(\/—?) are real. Let FI and F2 be real closures of
Q(V?) and Q(^/~t) respectively. Both FI and F2 are real closures of Q(<), but
they are not isomorphic over Q(ί). (Note that this shows that the theory RCF
does not eliminate quantifiers in the language £Γ.) On the other hand, if (F, <)
is an ordered field, then there is a unique real closure /£, where the ordering on
K extend the ordering on F. The proof uses Sturm's algorithm to bound the
location of the roots of a polynomial (see [LI]).

Let RCOF be the theory of real closed ordered fields in the language £or.
The axioms for RCF are the axioms for ordered fields and an axiom schema
asserting the intermediate value theorem for polynomials (2.2 iii).

Theorem 2.3. The theory RCOF has quantifier elimination in £OΓ.

Proof.
We apply theorem 1.4. Let F0 and FI be models of RCOF and let (R, <)

be a common substructure. Then (Λ, <) is an ordered domain. Let L be the real
closure of the fraction field of R. By the uniqueness of real closures we can may
assume that (L, <) is a substructure of F0 and ί\. Suppose φ(υ, w) is quantifier
free, ά E R, b G F0 and F0 (= φ(b,ά). We need to show that FI \= 3v φ(v,a). It
suffices to show that L [= 3v φ(v^a).

As in the proof of theorem 1.6 (and fooling around with the order), we
may assume that there are polynomials /i , . . . , fn , gι , . . . , gm G R[X] such that

φ(v,a) is

Λ /.» =
t=l
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If any of the /; is not zero, then since φ(b, α), α is algebraic over R and thus in
L. So we may assume φ(v,a) is

Since L is a real closed field, by 2.1 ii) we can factor each </,- as a product of
factors of the form (X - c) and (X2 + bX + c) where 62 - 4c < 0. The linear
factors change sign at c, while the quadratic factors do not change signs. If
follows that we can find c*ι , . . . , α/ G C U {-00} and ft , . . . , ft G £ U {-foo} such
that for v G ίb , ψ(v, ά) if and only if

/
\J ai<v< βi.
i=l

Since F0 |= 0(6, ά), for some t, α< < 6 < ft. Then L |= <K^> α).

Corollary 2.4. RCOF and flCF are complete, model and decidable.

proof
Model completeness for RCOF is immediate from quantifier elimination.

For RCF model completeness follows because if F C K are real closed fields,
then, when viewed as £or-structures F is still a substructure of K. Thus K is
an elementary extension in £or and hence in £Γ.

Any real closed field contains (Q, <). Thus the real closure of Q, the real
algebraic numbers, is an elementary submodel of every real closed field, so the
theory is complete.

Since RCF and RCOF are recursively axiomatized and complete, both are
decidable.

Since RCF and RCOF have the same models, we will forget about RCOF
and refer to the theory as RCF.

The next concept is the correct analog of strong minimality for ordered
structures.

Definition. A structure (M, <, . . .) is o-minimal if every definable subset of M
is a finite union of points and intervals.

Corollary 2.5. Every real closed field F is o-minimal.

Proof.
For f ( X ) £ -F, {x : f ( x ) > 0} is a union of intervals. From this o-minimality

follows easily.

The notion of o-minimality was introduced by van den Dries [Dl] and
studied extensively by Pillay and Steinhorn, among others (see for example [P-
S] and [K-P-S]). Of particular interest is the fact that o-minimality leads to
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a deep structure theory for definable sets in n-space. In §3 will give classical
proofs of some of the consequences of o-minimality for real closed fields.

Quantifier elimination leads to a geometric characterization of the definable
sets. Let F be a real closed field

Definition. We say that X C Fn is semialgebraic if it is a finite Boolean
combination of sets of the form {x : f ( x ) > 0} or {x : f ( x ) = 0}, / € F[X].

Clearly, the semialgebraic sets are exactly the quantifier free definable sets.
Quantifier elimination then has the following geometric interpretation.

Corollary 2.6. (Tarski-Seidenberg Theorem) The projection of a semialgebraic
set is semialgebraic.

The next corollaries are typical applications.

Corollary 2.7. If A is a semialgebraic set then the closure of A is semialgebraic.

Proof.
Let d(x, y) = z if and only if z1 — Σ(x* ~~ 2/*)2 anc^ z > O Then the closure

of A is
{x : Ve > 0 By y G A Λ d(x, y) < e}.

Corollary 2.8. Let F be real closed. If X C Fn is a closed and bounded
semialgebraic set and / : X —> Fm is continuous and semialgebraic, then the
image of X is closed and bounded.

Proof. If F = R this is trivial as X is compact if and only if X is closed and
bounded and the continuous image of a compact set is compact. On the other
hand if φ(v,a) defines X and ^(x^y^ϊ)) defines /. There is an £OΓ sentence Φ
asserting that for all ά and β if φ(v, ά) is a closed bounded set Y and ψ(x, y, β)
defines a continuous function with domain Y, then the image is closed and
bounded. This sentence is true in R and hence true in F.

Model completeness has several important applications. The first is Robin-
son's version of Artin's solution to Hubert's 17th problem.

Definition. Let f(X\,... ,Xn) be a rational function over a real closed field R.
We say that / is positive semi-definite if /(ά) > 0 for all α £ R.

Theorem 2.9. (Artin) If / is a positive semi-definite rational function over a
real closed field β, then / is a sum squares of rational functions over R.

The proof uses one algebraic lemma (see [LI]).
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Lemma 2.10. If F is real and a £ F is not a sum of squares, then there is an
ordering of F where α is negative.

Proof of 2.9.
Suppose f(Xι, . . . , Xn] is a positive semi-definite rational function which is

not a sum of squares. Then, by 2.10, there is < an ordering of R(X) where / is
negative. Let K be the real closure of the ordered field (R(X), <). Then K \=
3ϋ f ( v ) < 0. By model completeness this sentence also holds in 72, contradicting
the fact that / is positive semi-definite.

A similar argument can be used to prove the following real nullstenllensatz.

Theorem 2.11. (Dubois-Reisler) Let R be a real closed field and let / be an
ideal in R[X]. Then / = I(V(I)) if and only if αi, . . . , an G / whenever £ α? G /.

(For a proof see [Di] or [B-C-R]).

This style of argument can also be used (and seems essential) to prove some
of the basic properties of Nash functions.

We next examine the definable functions in real closed fields. We let R be
a real closed field.

Lemma 2.12. If / : R — » R is definable, then for any open set U C β, there is
a point x G U such that / is continuous at x.

Proof, (van den Dries [Dl]) By completeness it suffices to prove this for R.
case 1: There is an open set V C U such that / has finite range on V.

In this case we can find an open subset of V on which / is constant.

case 2. Otherwise.
We build VQ D V\ D open subsets of U such that the closure of Vn+\

is contained in Vn. Given Vn, let X be the range of /on V^. By o- minimality
X contains an interval (α, 6) of length less than £. Let Vn+ι be a suitable open
subinterval of Vn Π /~1(α, 6).

Let x £ ΠK' Clearly / is continuous at x.

Lemma 2.12 will generalize to Rn once we know that Rn can not be parti-
tioned into finitely many sets with non-empty interior.

Corollary 2.13. If / : R -* R is definable, then we can partition R = Iι U
. . . In \JF where F is finite and the Ij are disjoint open sets where / is continuous
on each Ij .

Proof.

Otherwise, by o-minimality, {x : f is discontinuous at x} has non-empty
interior, contradicting lemma 2.12.
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Proposition 2.14 (van den Dries [D3]) Let X C Rm+n be definable. There is a
definable function / : Rm -> Rn such that for all x G R™ if 3y G Λn (z, y) G ̂ ,
then (x, /(#)) G A'. (We say that the theory of real closed fields has definable
Skolem functions.)

Proof. By induction it suffices to prove this for n = 1. For α G R™ let
Xa = {y : (α,y) G X}. By o-minimality Xa is a finite union of points and
intervals. If Xa is empty let /(α) = 0, otherwise we define /(α) by cases.

case 1: If Xa = R, let /(α) = 0.
case 2: If Xa has a least element 6, let /(α) = b.
case 3: If the leftmost interval of Xa = (c, d), let /(α) =
case 4: If the leftmost interval of Xa = (—00, c), let /(α) = c — 1.
case 5: If the leftmost interval of X\ = (c, +00), let /(α) = c + 1.

This exhausts all possibilities. Clearly / is definable and does the job.

Definable functions have a very nice application. The following theorem of
Milnor ([Mi]) was first proved by geometric techniques.

Theorem 2.15. (Curve selection) Let X be a definable sunset of Rn and let
α be a point in the closure of X. There is e > 0 and a continuous function
/ : (0, e) -> Rn. Such that f ( x ) G X for all x G (0, e) and lim^o /(*) = a.

Proof.
Let D = {(5, x) : x G X and \x — a\ < δ}. Since R has definable Skolem

functions, there is an η > 0 and a definable / : (0, η) —>• X such that/(ί) G X
and \f(δ) - a\ < 0 for all δ G (0, η). By 2.13 there is an e G (0, η) such that / is
continuous on (0,r/).

§3 Cell Decomposition

Let R be a real closed field. We next study the structure of semi-algebraic
subsets of Rn. As a warm up we prove Thorn's Lemma. Let

( -1 x < 0
0 x - 0 .
1 x> 0

Theorem 3.1. (Thorn's lemma) Let / i , . . . , fs be a sequence of polynomials in
R[X] closed under differentiation. For σ G {-1,0,1}S let

= {x<=R:/\ βgn(/, (aO) = σ(i)}.
»=ι
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Then each Aσ is either empty, a singleton or an open interval.

Proof.
We proceed by induction on s. If s = 1, then f\ must be identically zero

and the theorem is true.
Assume the theorem is true for s. Without loss of generality assume that

/s+1 has maximal degree. Let η — σ\s. By induction, we can apply the theorem
to /!,..., fs and η. Clearly Aη D Aσ. If Aη is empty or a singleton then so is
Aσ. Thus we may assume Aη is an open interval / = (c, cί). Since fa = fs+\ for
some i < s, and /,- does not change sign on 7, fs+ι is monotonic on /. If fs+ι
does not change sign on 7, then Aσ = I or Aσ — 0. Otherwise /5+ι(α) — 0 for
some a G / and Aσ = {α}, Aσ = (c, α) or Aσ = (α, d).

The next theorem can be thought of as a higher dimensional version of
Thorn's theorem. Let X = Λ Ί , . . . ,Xn.

Theorem 3.2. (Cylindric Decomposition) Suppose /i,.. . ,/5 £ R[X,Y]. There
is a partition of Rn into semi-algebraic sets AI , . . . , Am such that for each i < ra,
there are continuous semialgebraic functions £,^1,... ,£ijt.Ai —» 7Z such that:

i) for all x G A,-, 6,1(2:) < £ί|2(a?) < < &,/.(*) and {&,ι(z),.. .,&,/»}
contains the isolated zeros of the polynomials /ι(x, Y ) , . . . , /,(z, Y) [It is conve-
nient to let ζi,o(x) = —oo and &,/,+! = +00.], and

ii) if a?ι and x2 are in At and either there a) is a j such that

and £»j(#2) = 2/2> of b) there is a j such that ίtjί^*) < Vk <
i= 1,2, then

5

/\ sgn(/i(xi,yi)) = sgn(/f(x2,!fe)).
i=l

[Intuitively ii) says that for x G AI sgτι(fj(x,y)) depends only on the relative
position of y with respect to &,ι(x),... ,6,/,(^) ]

Proof.
Without loss of generality we may assume that /i,.. .,/, is closed under

d
ay-

Let q be the maximal degree of any /»• with respect to Y. Fix x £ Rn. If
/, (a?,y) is not identically zero, it has at most g zeros. Let 2/1 < . . . < t//(a;) be the
isolated zeros of/i (x,y),...,/,(x,y). Then/(x) < eg. For j = l , . . . , / (a?)- 1,
let Ja-j = ( j/ j ,y j+i) and let /x>0 = (-00,yx) and 4|/(a.) = (% ,+oo). Then each
f j ( x , y ) has constant sign for ?/ G /»,,-. Call this sign β j t i ( x ) . We define P^ the
pattern at x to be the the s x 2/(x) + 1 matrix where the ith-row is:

[βito(x),..., /?ίV(;r)(x), sgn(Λ (x, ft)),...,sgn(/,(x, yn))].

Since the entries of Px are just -1, 0 or 1, there are only finitely many (at most
35(254+1)^ possible pasterns. Moreover if P is a pattern, it is routine to show

that Ap = {x : Px = P} is definable and hence semialgebraic.
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Let AI, . . . , Am be all the nonempty Ap. For each i, let /t = l(x) for x G At .
Let &j(x) be the jth-element of {y : y is an isolated zero of some /^(x, Y)} for
j = l, . . . ,/(i) . Clearly ξij is semialgebraic. It is clear from the construction
that i) and ii) hold. We need only show that each ζij is continuous.

Let x G Ai. Let yj = ξi,j(x). Thus some τ/; is an isolated zero of some
/fc(x, y). Since the /,- are closed under ^p, we may assume that /fc(x, y) changes
sign at y j . Since for sufficiently small e > 0, /^(x, y^ - c ) f k ( x , yj + e) < 0, there
is a neighborhood Bj of x such that this is true for all z G Bj. Thus f k ( z , Y )
has a root in (yj — e, t/j + e) for all z £ Bj. Thus if x £ A, then for all sufficiently
small £, there is an open neighborhood B of x such that if z E 5, then some
/fc(z, y) has an isolated zero in (&,j (x) — £,&j(x) + 6) for j = 1, . . . , /(i). Hence
if z G A, Π 5, ζitj(z) G (&j(#) — ̂ j&jOO + ̂ ) Thus £t j is continuous at x.

Cylindric decomposition will be our primary tool for studying semialgebraic
sets. It gives an inductive procedure for building up definable sets.

Definition. -A subset X of R is a 0-cell if X = {α} for some α £ R.
-A subset X of R is a 1-cell if it is an open interval.
- If X C Rm is an n-cell and / : X — > R is a continuous semialgebraic

function, then
Y = {(x,y)€lT+1.x€X,f(x) = y}

is an n-cell.
-If X C Rm is an n-cell, /, g : X — > R are continuous semialgebraic functions

such that /(x) < #(x) for all x G X [we also allow / to be constantly +00 or g
identically — oo], then

y = {(x,y) G /T+1.x G *,/(*) < y < g ( x ) }

is an n + 1-cell.

Theorem 3.3 (Cell Decomposition) If A C Rn is semialgebraic, then A is a
finite union of disjoint cells.

Proof. Let X denote Xlt...,Xn. If /!,...,/, G ΛpΓ] and σG {-1,0,1}% let

Clearly for any semialgebraic set y we can find polynomials fι , . . . , fs and S C
{-1,0, 1}5 such that

The theorem is proved by induction on n. By o- minimality it is true for
n = l. Assume the theorem holds for n. By the above remarks it suffices to
show that for /ι,...,/ 5 G R[X,Y] and σ G {-1,0, 1}5, the theorem holds for
Aσ . We apply cylindric decomposition to /i , . . . , fs . This gives BI , . . . , Bm a



17

semialgebraic partition of Rn. By induction we may assume that each J3, is a
cell. Let

a-j = {(* ,y) :*€f l j - ,y = 6ly(x)}

for j = 1, . . . , /(i) and let

for j = 0, . . . , /(i). The Cίj and Dt',j are cells partitioning Rn+1 such that each
fk has constant sign on each of the cells and Aσ is a finite union of cells of this
kind.

In [K-P-S] it is shown that cell decomposition holds for any o-minimal the-
ory. We can now extend 2.13 to Rn .

Corollary 3.4. If A is a semialgebraic subset of Rn and / : A —* R is semial-
gebraic, then there is B\, . . . , £m a partition of A into semialgebraic sets such
that f\Bi is continuous for i = 1, . . . , m.

Far more is true.

Definition. If A is a semialgebraic subset of Rn and / : A — > R we say that
/ is algebraic if there is a polynomial p(Xι, ...,Xn,Y) such that p(#, /(#)) = 0
for all x £ A.

Corollary 3.5. Every semialgebraic function is algebraic.

Proof.
Suppose / : A — >• ίί is semialgebraic. Apply cylindric decomposition to a

family of polynomials /!,...,/« £ Λpf, Y] which is closed under ̂  such that
the graph of / can be defined in a quantifier free way using /i , . . . , /, . Let
J3ι, . . . , Bm be a partition of Rn into cells given by cylindric decomposition. On
each Bi there is a j such that f\Bij — ξij and there is a p, £ {/i, . . . , /,} such
that £»j(x) is an isolated zero of p(ar,Y) for all x £ £t . Let p = ΠP ' Then
p(x, / ( i ) ) fora l lx€ A.

For R we can say much more. In the above setting suppose U is an open
subset of Rn contained in Bi. If x £ {/, then since ί»,j(«) is an isolated zero of

Thus the partial derivative is nonzero on all of Bi. By the implicit function
theorem we see that f\U is real analytic.

While "analytic functions" do not make sense in an arbitrary o-minimal
structure, van den Dries [Dl] showed that in an o-minimal expansion of an
ordered field then for any definable function and any n we can partition the
domain so that the function is piecewise Cn
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Definition. If U C Rn is an open semialgebraic and / : U —»• R is semialgebraic
and analytic, we say that / is a Nash function.

Corollary 3.5 shows that the study of semialgebraic functions reduces to the
study of Nash functions.

The next lemma is proved by an easy induction. For the purpose of this
lemma R° = {0}.

Lemma 3.6. If A is a fc-cell in Rn, then there is a projection map π : Rn —*• R*
such that π is a homeomorphism from A to an open set in R*. Also if k > 0,
there is a homeomorphism between A and (0, l)k.

By Corollary 3.6, every cell in Rn is connected. This type of result will not
hold for arbitrary real closed fields R because even R need not be connected.
For example, if R is the real algebraic numbers R = {x : x < π} U {x : x > π}.

Let R be a real closed field. We say that a definable X C Rn is definably
connectediΐtheτe are no definable open sets U and V such that UΓ\X and VΓ\X
are disjoint and X C U U V. It is easy to see that in any real closed field cells
are definably connected.

Cell decomposition easily implies the following important theorem of Whit-
ney.

Theorem 3.7. If A C Rn is semialgebraic then A — C\ U . . . U Cm where
C Ί , . . . , Cm are semialgebraic, connected and closed in A (ie. every semialgebraic
set has finitely many connected components).

In real closed fields we can develop a dimension theory paralleling the theory
for algebraically closed fields.

Definition. Let R be real closed and let K be a |.β|+-saturated elementary ex-
tension of R. If α i , . . . , an £ K, let dim (ai , . . . , an/R) be the transcendence
degree of Λ(αι, . . . ,αn) over R. If A is a definable subset of Rn defined by
^(vii i V m δ ) , let Aκ = {x e Kn : K |= φ(x,ί)}. Note that by model com-
pleteness, Aκ does not depend on the choice of φ. We define dim (A) the
dimension of A to be the maximum of dim (a/R) for α £ Aκ. Our final propo-
sition shows that this corresponds to the topological and geometric notions of
dimension.

Proposition 3.8. i) dim (A) is the largest k such that A contains a fc-cell.
ii) dim (A) is the largest k such that there is a projection of A onto Rk with

non-empty interior.
iii) dim (A) = dim (V) where V is the Zariski closure of A.
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For further information on semialgebraic sets and real algebraic geometry
the reader should consult [Di] or [BCR].

§4 Definable Equivalence Relations.

In algebra and geometry we often want to consider quotient structures. For
this reason it is useful to study definable equivalence relations. The best we
could hope for is that a definable equivalence relation has a definable set of
representatives. This is possible in real closed fields. Let R be real closed.

Lemma 4.1. Let A be a definanble subset of Rm+n. For α E Rm let Aa =
{x £ tf1 : (α,z) E A}. There is a definable function / : Rm -> Rn such that
/(α) E Aa for all α G Rm and /(α) = /(&) if Aa = Ab. We call / an invariant
Skolem function.

Proof. Let / be the Skolem function defined in 2.14. It is clear from the proof
of 2.14 that /(α) = /(&) whenever Aa = Ab.

Corollary 4.2. If E is a definable equivalence relation on a definable subset of
Rn then there is a definable set of representatives.

In algebraically closed fields we will not usually be able to find definable
sets of representatives. For example suppose xEy <ΦΦ> x1 = y2, then by strong
minimality E does not have a definable set of representatives. The next best
thing would be if there is a definable function / such that /(x) = f ( y ) if and
only if f ( x ) = f ( y ) . Our next goal is to show this is true in algebraically closed
fields.

Definition. Let T be any theory and let M be a suitably saturated model of T.
Let X C Mn be definable with parameters. We say that 6 E Mn is a canonical
base for X if and only if for any automorphism σ of M, σ fixes X setwise if and
only if σ(6) = 6.

We say that T eliminates imaginaries if and only if every definable subset
of Mn has a canonical base.

We first illustrate the connection between elimination of imaginaries and
equivalence relations.

Lemma 4.3. Suppose T eliminates imaginaries and at least two elements of M
are definable over 0. If E is a definable equivalence relation on Mn, there is a
definable / : Mn -> Mm such that x E y if and only if f ( x ) - f ( y ) .
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Proof.
We first show that for any formula φ(v,ά) there is a formula ψa(v,w) and

a unique 6 such that
φ(v,ά) <->ψa(υ,b).

By elimination of imaginaries we can find a canonical base 6 for X — {v : φ(a, v)}.
Clearly X must be definable over 6. Thus there is a formula ψ(v,w) such that
X = {v : ψ(v,b)}. Further there is a formula θ(w) such that 0(6) and if c φ b
and 0(c), then ψ(v,c) does not define X. Let ψa(v, w) be θ(w) Λ ^(ι>, w).

By compactness we can find ψiy...,ψn such that one of the ψi works for
each α. By the usual coding tricks we can reduce to a single formula ψ (a
sequence of parameters made up of the distinguished elements is added to the
witness 6 to code into the parameters the least i such that ψi works for α).

The lemma follows if we let φ(v, w) be v E w and let /(α) be the unique 6
such that v E a if and only if ψ(v, b).

We will show that algebraically closed fields eliminate imaginaries. This
will follow from the following two lemmas.

Lemma 4.4. Let K be a saturated algebraically closed field and let X C Kn

be definable. There is a finite C C Km such that if σ is an automorphism of K,
then σ fixes X setwise if and only if σ fixes C setwise.

Proof.
Let φ(v, αi, . . . , αm) define X . Consider the equivalence relation E on Km

given by
a E b & (φ(v, a) «-+ φ(ϋ, &)).

Let α denote the equivalence class a/E. Any automorphism of σ fixes X setwise
if and only if it fixes α. (Note: a is an example of an "imaginary" element that
we would like to eliminate.) We say that an element x £ K is algebraic over α
if and only if there are only finitely many conjugates of x under automorphisms
which fix α.

Our first claim is that there is b £ Km algebraic over α such a E b. Choose
6 such that 6 E α, and j = |{t < m : 6, is algebraic over α}| is maximal. We must
show that .; = m. Suppose not. By reordering the variables we may assume that
&ι, . . . , bj are algebraic over α and 6t is not algebraic over α for i > j. Let

Y = {x G K :3y j + 2.. 3yn (&ι, . . . , f y , x , y j +2, - - - ,yn) £^ and

(6ι,...,6;,«,j(, +ι , . . . ,yn) E ά}.

Clearly &; +ι E Y. If Y is finite, then any element of y is algebraic over
&ι, . . . ,6j,α, and hence algebraic over a. Thus by choice of 6, Y is infinite. If
y is infinite, then since K is strongly minimal, Y is cofinite. In particular they
is d £ K such that d is algebraic over 0. But then we can find d; +2, . . . , dm

such that (bι,...,bj,d,dj+2,...,dm)/E = a and & ι , . . . , f y , d are algebraic over
α. contradicting the maximality of j.
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Let C be the set of all conjugates of b under automorphisms fixing a. So
C is fixed setwise by any automorphism which fixes a. If c £ C, then c/E = a.
Thus a is fixed under all automorphisms which permute C. In particular an
automorphism fixes X setwise if and only if it fixes C setwise.

The proof above is due to Lascar and Pillay and works for any strongly
minimal set D where the algebraic closure of 0 is infinite.

The second step is to show that if C C Km is finite, then there is 6 G Kl such
that any automorphsim of K fixes C setwise if and only if it fixes 6 pointwise.
This step holds for any field

Lemma 4.5. Let F be any field. Let 61, . . . , bm G Fn. There is / and a c G Fl

such that if σ is any automorphism of ί1, then σc = c if and only if σ fixes
C = {&ι, . . . , όm} setwise.

Proof.
This is very easy if n = 1. If 61, . . . , 6m £ F, consider the polynomial

m m — 1

*=1 i=0

Then an automorphism of F fixes {δι,...,6m} setwise if and only if it fixes
(CQ, . . . , cm_ι). Here c0, . . . , cm_ι are obtained by applying the elementary sym-
metric functions to 61 , . . . , bm .

The general case is an easy amplification of that idea. Suppose 6j =

fti,...,A- Let

for i = 1, . . . , m. Let

By unique factorization, an automorphsim of K fixes p if and only if it permutes
the qi if and only if it permutes the 6, . Let c be the coefficients of p(X,Y).

Corollary 4.6. (Poizat [P]) The theory of algebraically closed field eliminates
imaginaries.

In [M2] we give a different proof of elimination of imaginaries for alge-
braically closed fields using "fields of definition" from algebraic geometry (see
[L2]).

Suppose E is a definable equivalence relation on K. If any ~-class is infinite,
then there is a unique cofinite class. Suppose all ~ classes are finite. There is a
number n such that all but finitely many equivalence classes have size n. Let B
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be the number of points not in a class of size n. A moment's thought shows that
the best we can hope to do is characterize the possible values of |5|(mod n).

Theorem 4.7. (van den Dries-Marker-Martin [D-M-M]) Let K be an alge-
braically closed field of characteristic zero and let ~ be a definable equivalence
relation on K where all but finitely many classes have size n. Let B be the set
of points not in a class of size n. Then \B\ = l(mod n).

Albert generalized theorem 4.7. We give his argument here. Since the projective
line P1 is K U {00} and the Euler characteristic of P1 is 2, theorem 4.7 is a
corollary to the following result of Albert.

Theorem 4.8 Let K be a field of characteristic zero and let C be a smooth
projective curve over K. If ~ is a definable equivalence relation on K where
almost all classes have size n and B is the number of points not in a class of size
n, then \B\ = χ(C')(mod n), where χ(C) is the Euler characteristic of C mod n.

Our proof of 4.8 will use the following simple combinatorial fact.

Lemma 4.9. Let ~0 and ~ι be equivalence relation on C such that all but
finitely many E^-classes have size n for i = 1,2. Let Bi = {x £ C : \x/ ~< | φ n}.
Suppose for all but finitely many a?, x/ ~Q= x/ ~ι, then [.Sol = |#ι|(mod n).

Proof of 4.8
Suppose C C Pm. Let Co = CΓ\Km. By 4.6 there is a definable / : CQ -> K1

such that x ~ y if and only if f ( x ) = f ( y ) for x,y £ CQ. By 1.11 there is a
Zariski open U C CQ and a rational p : U — * K1 such that f\U — p. Let C\ be
the Zariski closure of the image of CQ under p. Then C\ is an irreducible affine
curve. There is a smooth projective curve C^, an open V C CΊ, and a rational
one-to-one r : V — > CΊ (see [H] for the facts about curves used in this proof).
The composition τ o p maps a dense open subset of C into 62- There is a total
rational g : C — >• 62 extending τ o p. There is a cofinite subset Z of C such that
0(x) — g(y) if and only if x ~ y for x, y £ Z. Consider the equivalence relation
~ι on C given by x ~ι y if and only if g ( x ) — g ( y ) . By 4.9 we may assume
ι*^ — f^Λ .

Let (V, E, F) be a triangulation of 62 such that the set of verticies V con-
tains Vb = {g(x) : x G B}. Let (V*,E*,F*) be the triangulation of C obtained
by pulling back the triangulation of C^. Since the edges and faces do not contain
images of points in B, \E*\ = n\E\ and |F*| = n\F\, while |F*|

Thus

n).

The situation in characteristic p is more complex.
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Theorem 4.10.([D-M-M]) Let K be an algebraically closed field of characteristic
p and let ~ be a definable equivalence relation on K such that all but finitely
many ^-classes have size n. Let B be the set of points not in a class of size n.

i) If n < p, then \B\ = l(mod p).
ii) If n = p = 2, then \B\ = 0(mod p).
iii) If n = p + s where ! < « < § , then |B| φ p + l(mod n).
iv) Everything else is possible.

A consequence of Hurwitz theorem (see [H]) is that if X and Y are smooth
projective curves and / : X —» Y is a non-trivial rational map, then the genus
of Y is at most the genus of X. This has two interesting consequences for us.
First, in the proof of 4.9, if C = P1, then the curve 62 has genus zero and we
may assume that €2 is P1. Thus if ~ is a definable equivalence relation on K
there is a rational function / : K —» K such that there is a Zariski open U C K
such that x ~ y <£> f ( x ) = f(y) for all but z, y £ U (this is proved in [D-M-M]
by an appeal to Luroth's theorem).

Second, let C be a curve of genus g > 1. View C as a structure by taking
as relations all definable subsets of Cn. This is a strongly minimal set which
does eliminate imaginaries. Suppose, for example, that C C K^. Let ~ be the
equivalence relation on C given by (x, t/) ~ (u, v) if and only if x = u. Then C/ ~
is essentially K. If we could eliminate imaginaries there would be a definable
map /o : C/ ~—* Cn and by composing with a projection, there would be a
nontrivial definable map from C/ ~ to C. As in the proof of 4.9 this induces a
rational map from P1 into C, violating Hurwitz's theorem.

§5 u -stable groups.

In this section we will survey some of the basic properties of u -stable groups.
Comprehensive surveys of these subjects can be found in [BN], [Po3] and [NP].
Here we assume passing acquaintance with the results about u -stable theories.
The reader is referred to [Bl], [Pil] and [Po4].

Definition. An ω-stable group is an u -stable structure (G, •,...) where (G, •) is
a group.

Lemma 5.1. (Baldwin-Saxel [BS]) An u -stable group has no infinite chain of
definable subgroups.

Proof.
Let HQ D HI D be an infinite descending chain of definable subgroups.

We can find elements {aσ : σ G 2<ω} such that
i) if <τ D r then aσίϊ\σ\ C aτH\τ\, and
ii) if aσιH\σ\+ι and α<7θ#|<7|+ι are distinct cosets.
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This gives a countable set of parameters over which there are 2N° types,
contradicting α -stability.

Definition. A group G is connected if it has no definable subgroup of finite
index.

Lemma 5.2. If G is an α -stable group, then there is G° a definable connected
subgroup of G of finite index.

Proof.
If not then we can build an infinite descending sequence of finite index

subgroups.

We call G° the connected component of G. Note that G° is fixed by all
group automorphisms of G.

Definition. If A C G we say that p(v) £ Sι(A) is a generic type over A if
RM(p) = RM(G).

Generic types are our main tool in studying α -stable groups. We begin by
summarizing basic facts about generic types. We fix G an α -stable group.

Lemma 5.3. i) There are only finitely many types generic over A.
ii) If 6 is generic over A and a £ A, then ab and b~l are generic over A.
iii) Any element of G is the product of two generics (in an elementary

extension).

Proof.
i) There are only finitely many types of maximal rank,
ii) The maps x \-+ ax and x ι-+ x~l are definable bijections and definable

bijections preserve rank.
iii) Let a £ G. Let 6 be generic. Then αά"1 is also a generic and a = (ab~l)b.

Lemma 5.4. An α -stable group G is connected if and only if there is a unique
generic type in SΊ(G).

Proof.
Suppose H is a proper definable subgroup of finite index. Then each coset

of H contains a type of maximal Morley rank. Thus the generic type is not
unique.

On the other hand suppose Pi , . . . ,pn

 are the generic types of G. Let H =
{g £ G : for all realizations b of p\ (in, say, a saturated elementary extension),
gb is also a realization of pi}. We call H the left-stabilizer of p in G.

claim. H is definable.
There is a formula θ(v) which isolated pi from the other generic types. Then

H = {g : θ(g v) £ pi}. By definability of types there is a formula dθ(w) such
that G |= dθ(w) if and only if θ(g - v) £ pi. Clearly H = {g : dθ(g)}.
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Suppose 6 realizes pi (in an elementary extension) and α E G, then ab
realizes p, for some i. Thus the coset aH contains a generic. Hence H has finite
index so H = G. Similarly G stabilizes each p{. A similar argument works for
right stabilizers.

Let a and 6 be independent realizations of p\ and p2. Let pi be the heir of
Pi to G U {6} (ie. p* is the unique extension of pi to G U {&} of maximal rank).
By the above arguments b stabalizes pj, thus ba realizes p* and, in particular, ba
realizes pi. A similar argument (using right stabilizers) shows that ba realizes

Pi-

We now have enough tools to prove the following theorem of Macintyre
([Mac]).

Theorem 5.5. Let (#,+, •,...) be an infinite ω-stable field. Then K is alge-
braically closed.

Proof.
Suppose K is not algebraically closed. Let F be a finite Galois extension of

K. There is L such that K C L C F and the Galois group of F/L is a cyclic
extension of prime order q. Since L is a finite extension of K, we can interpret L
in K. Thus L is ω-stable so we may, without loss of generality assume that F/K
is cyclic of prime order. By Galois theory (see [LI]) F = K(&) where either
q ^ p and aq £ K or q = p and ap + a £ K.

We first show that (K, +,...) is connected. Suppose not. Let H be the
connected component. For any α £ A", x »->• ax is an automorphism of (ίf,+)
and hence preserves F. But then # is a proper ideal of K, a contradiction.

Since (AT, +) is connected, there is a unique type of maximal rank. Thus
there is a unique type of maximal rank in the group (K*,-,...) and hence it is
connected.

Consider the multiplicative homomorphism x ι-+ xn. If α is a generic of K,
then, since α is algebraic over αn, RM(αn) = RM(α). Thus {xn : x £ K*} is a
subgroup of K* of maximal rank. Since Kx is connected, every element of K
has an nth-root in K. This rules out the case aq G K.

Suppose K has characteristic p > 0. Consider the additive homomorphism
x h-» xp + x. As above if α is generic, so is ap + a. Thus since the additive group
is connected, for any 6 E K, there is a solution to Xp -f X = 6. This rules out
the case ap + α G -K".
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As an aside, we note the following theorem of Pillay and Steinhorn ([PS])
can be thought of as the real version of Macintyre's theorem.

Theorem 5.6. Let (ί1,+,-,<,...) be an o-minimal ordered field. Then F is
real closed.

Proof.
Let f ( X ) G F[X]. Suppose α,6 G F, a < b and /(α) < 0 < /(6). Consider

the set X- = {x G (α,6) : /(*) < 0} and X+ = {x G (α,6) : /(*) > 0}.
Since / is continuous X~ and X+ are open. By o-minimality there is c G
(α, 6) \ (X- U X+). Clearly /(c) = 0. By 2.1, F is real closed.

One important problem in the model theory of groups is to understand the
simple groups of finite Morley rank.

Cherlin's Conjecture. Every simple group of finite Morley rank is an algebraic
group over an algebraically closed field.

We recall the definition of an algebraic group.

Definition. An abstract variety is a topological space B with a finite open cover
Uι,..., Un, affine Zariski closed sets V\,..., Vn and homeomorphisms /,- : Ui —>
Vi such that if Vij = /<(t/i Π Uj) and fitj : Vij -> V$ | f is the map ft o /r1, then
Vij is Zariski open and fcj is a morphism. If W is a second abstract variety
with cover Z\,..., Zm where </t : Zi —> W^ is a homeomorphism onto an affine
Zariski closed set, then h : V —> W is a morphism if all the maps hij : Vi —» Wj
by gj oho /i~

1 are morphisms of affine varieties.

Abstract varieties are the algebraic-geometric analog of manifolds. Clearly
affine and projective varieties are examples of abstract varieties, as are open
subsets of projective varieties. We drop the modifier "abstract".

Definition. An algebraic group is a group (G, •) where G is a variety and and
inverse are morphisms.

The standard examples of algebraic groups are matrix groups. For example
consider GLn(K), the invertible n x n matrices. As the underlying set we take

{(dij,b) G Kn*+l : 6det(α(f |J )) = 1}. This is a Zariski closed set in affine n2 + l-
space. The extra dimension codes the fact that the determinant is non-zero.
Matrix multiplication is easily seen to be given by polynomials. Using Cramer's
rule one sees that the inverse is also given by polynomials.

The group law on an elliptic curve is an example of a non-affine algebraic
group.

It is easy to see that every algebraic group G over an algebraically closed field
K is interpretable in K. Thus, by elimination of imaginaries, G is isomorphic
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to a constructible group. A priori one might expect there to be constructive
groups which are not isomorphic to algebraic groups. This is not the case.

Theorem 5.7. (van den Dries [D4]) Let K be an algebraically closed field.
Every constructible group over K is K-definably isomorphic to an algebraic
group.

Van den Dries' proof uses a theorem of Weil's on group chunks. Weil's
theorem actually shows that if V is an irreducible variety and / : V x V — >• V
is a generically surjective rational map such that f ( x ( f ( y , z)) = /(/(#, 2/), z) for
independent generic z, y, z, then there is a birationaly equivalent algebraic group
G, such that generically / agrees with the multiplication of G.

Hrushovski (see [Bol] or [Po3]) gave a model theoretic proof of theorem 5.7
avoiding Weil's theorem. In [Hrl] Hrushovski proved the following result which
can be though of a general model theoretic form of Weil's theorem.

Theorem 5.8. (Hrushovski) Let T be an ω-stable theory. Let p £ Sn(A) be a
stationary type and let / be a partial A-definable function such that

i) if α and 6 are independent realizations of p, then /(α,6) realizes p and
/(α,6) is independent over A from α and 6 separately, and

ii) if α,δ and c are independent realizations of p, then /(α,/(&, c)) =

Then there is a definable connected group (G, •) such that p is the generic type
of G and if α, 6 are independent generics of G, then a - b = /(α, 6).

Pillay [Pi2] proved the following o-minimal analog of theorem 5.6.

Theorem 5.9. If G is a group definable in an o-minimal expansion of R, then
G is definably isomorphic to a Lie Group.

Finally we remark that Peterzil, Pillay and Starchenko have recently proved
the following o-minimal analog of Cherlin's conjecture.

Theorem 5.10. If G is a simple group definable in an o-minimal theory, then
there is a definable real closed field K such that G is definably isomorphic to a
group definable in K. Indeed there is an algebraic group H definable over K
such that G is definably isomorphic to H°.
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§6 Expansions and reducts of algebraically closed fields.

Suppose D is a strongly minimal set. The algebraic closure relation on D
has the following properties.

i)XC aclpf),
ii) acl(acl(X)) = acl(X),
iii) if α € acl(X, 6) \ acl(X), then b G acl(Λ\ α), and
iv) if a G aclpf), then there is a finite X0 C X such that α G acl(X0).

We say that X C D is independent if x ^ acl(X \ {x}, for all x G X. We
say that X is a 60515 for A if A C acl(X) and X is independent. A simple
generalization of the arguments from linear algebra show that any two basis for
A have the same cardinality. We call this cardinality dim A.

Definition. We say that a strongly minimal set D is trivial if whenever A C D,
then

acl(A) = U acl(α).
α€Λ

We say that D is modular if

dim (A U J3) = dim A + dim B - dim (Λ Π B)

for any finite dimensional algebraically closed A, B C D.
We say that D is locally modular if we can name one point and make it

modular (this is equivalent to being make it modular by naming a small number
of points).

The theory of Z with the successor function x i—>• x + 1 is a trivial strongly
minimal set. Here α G acl(X) if and only if α — sn(x) for some n G Z and x £ X.

If V is a vector space over the rationale. The strongly minimal set (V, +)
is modular. Here acl(X) is the linear span of X. We can modify this to give
a locally modular example. Consider (V,/) where / is the ternary function
/(#, y, z) = x + y — z. In this language, acl(X) is the smallest coset of a linear
subspace that contains X. For example acl(α) = {α} and acl(α,6) is the line
containing α and 6. It is easy to see that (V,/) is not modular. Let α,6, c
be independent points and let d = c + b — a. Then dim (α,6, c, d) = 3 while
dim (α, 6) = dim (c, d) = 2 and acl(α, 6) Π acl(c, d) = 0. On the other hand if we
name 0, we are essentially back to the structure (V,+).

Let K be an algebraically closed field of infinite transcendence degree. We
claim that (X, +, •) is not locally modular. Let k be an algebraically closed
subfield of transcendence degree n. We will show that even localizing at k the
geometry is not modular. Let α, 6, x be algebraically independent over k. Let y —
ax + b. Then dim (k(x, y, α, 6)) = 3 + n while dim (*(x, y)) = dim (fc(α, 6)) = 2.
But acl(fc(x, y)) Π acl(£(α, 6)) = k contradicting modularity. To see this suppose
d G kι = acl(k(a,b)} and y is algebraic over k(d,x). Let kι = acl(fc(cf)). Then
there is p(X,Y) G ti[-X",y] an irreducible polynomial such that p(x, y) = 0.
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By model completeness p(X,Y) is still irreducible over acl(£(α,ό))[X, Y]. Thus
p(X,Y) is a(Y — aX — b) for some a £ acl(fc(α,6)) which is impossible as then
a £ kι and α,6 £ kι.

The geometry of strongly minimal sets has been one of the most important
topics in model theory for the last decade. Much of this work was motivated by
the following conjecture.

Zilber's Conjecture. If D is a non-locally modular strongly minimal set, then
D is bi-interpretable with an algebraically closed field.

Zilber's conjecture was refuted by Hrushovski in [Hr2] (see also [BSh]).
Though false Zilber's conjecture led to two interesting problems about alge-
braically closed fields.

Expansion Problem: Can an algebraically closed field have a nontrivial
strongly minimal expansion?

Interpret ability Problem: Suppose D is a non-locally modular strongly min-
imal set interpretable in an algebraically closed field K . Does D interpret Kl

In [Hr3] Hrushovski showed that there are nontrivial strongly minimal ex-
pansions of algebraically closed fields. Indeed, one can find a strongly minimal
structure (F, +, ,Θ,Θ) such that (F, + ,) and (F, 0,0) are algebraically closed
fields of different characteristics! Prior to Hrushovski's work several positive
results were obtained. The first is an unpublished result of Macintyre.

Proposition 6.1. If / : C —> C is a non-rational analytic function,then
(C, +, , /) is not strongly minimal.

Proof.
Suppose not. By strong minimality / must have only finitely many zeros

and poles. Thus (see [L3]) f ( x ) = g(x)eh^ where g is rational and h is entire.
Since g is definable so is fo(x) = eh(χ\ But /0 is infinite to one, so the inverse
image of some point is infinite and cofinite, contradicting strong minimality.

Is this structure stable?

Definition. Suppose 5 C R2n. Let

5* = {(αi -h α 2 i , . . . , α2n_ι + a2ni) € Cn : ( α i , . . . , a2n) £ S}.

A semialgebraic expansion of C is an expansion (C,-h, ,5*) where S C R2n is
semi algebraic.

There are two obvious ways to get a semialgebraic expansion. The first is
to add a predicate for a set which is already constructible. The second is to
add a predicate for R. The next theorem shows that these are the only two
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possibilities. Since the reals are unstable, this shows in a very strong way that
there are no nontrivial strongly minimal semialgebraic expansions of C.

Theorem 6.2([M1]) If A — (C, +, , 5*) is a semialgebraic expansion then R is
A- definable.

We will prove this theorem using four lemmas. The first lemma is the basic
step. We omit the proof, but remark that it works in a more general setting.

Lemma 6.3 If A = (C,+, ,S"*) where S* is an infinite coinfinite subset of C
definable and S is definable in an o-minimal expansion of R, then R is definable
in A.

We give here a proof of 6.2 from 6.3 which is more direct that the original
argument from [Ml] and is based on an argument from [Hr3]. Assume that 5*
is not constructive and R is not definable. By 6.3 we may assume that every
^-definable subset of C is finite or cofinite. Since C is uncountable, this suffices
to show that the structure A is strongly minimal. The next lemma of Hrushovski
shows that we may assume that S* C C2. It replaces a less general inductive
argument using Bertini's theorem.

Lemma 6.4. If X C Cn is non-constructible and A — (C,-f, ,S"*) is strongly
minimal, then there is a non-constructible Λ-definable h : C —» C.

Proof.
Without loss of generality assume that every definable subset of Cm is

constructive for m < n. Let Xa = {x G C""1 : (α,z) G X} for a G C. Each
Xa is constructive. Thus for each α G C we can find a number mα, a formula
Φa(v\ι - > ^n-i) MI, . . . , wm<J in £Γ, and parameters ba G Cm* such that

x G Xa &Φa(x,ba).

Since A is saturated, compactness insures there are formulas φι>...yφk such
that for each α at least one of the φi works. By standard coding tricks one
formula φ(v\,..., vn, wι,..., wm) suffices.

Define an equivalence relation E on Cm by

a E b & MX (φ(x, a) <-> φ(x, 6)).

By elimination of imaginaries, there is a constructive function g : Cm —* C1

such that a E b if and only if g(ά) = g(b).
Define / : C -* C' by

/(α) = y <-> V6 (Vz (φ(z, 6) <-> z G Xa) -> g(b) = y).
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Clearly / is definable and (α,y) G X & 36 (g(b) = /(α) Λ φ(y,b)). Since 0 is
constructible and X is not, / is not constructible. Let ft be a non-constructible
coordinate of /.

Lemma 6.5. Suppose S* is semi algebraic and non-constructible. Let ft be as
in 6.4 and let H be it graph. There is an irreducible curve C such that H Π C
and C\H are infinite.

Proof. In our setting ft is semi algebraic. Consider the following two predicates
over R:

R0(x, y) <-> 3z h(x) = y + zi

RI(X, z) <-+ 3y ft(x) = y + zi

Let Vi be the Zariski closure of Rt in R2. Each Λ, is one dimensional, thus, by
3.8, each Vi has dimension one. In particular, since each one dimensional irre-
ducible component of Vi is a curve, we can find non-trivial polynomials f i ( X , V)
such that

Λt (χ,y)-»Λ (χ,y) = 0.
We now move back to C. Let

AO = {(*, y, *, w) G C4 : /0(x, y) = Λ(x, z) = 0 Λ ty = y + *t}.

Let
Λ = {(a:, w) : 3y, 0 (x, y, z, ιy) G -Ao}

Clearly ^4 and ^4o are constructible and one dimensional. Moreover (x, Λ(x)) G A
for x G R. Thus by strong minimality (x,Λ(x)) G A for all but finitely many
x G C. Thus there is C an irreducible component of the Zariski closure of A such
that(x,Λ(x)) G C for all but finitely many x G C. Since ft is not constructible,
for a generic x there is more than one y such that (x, y) G C. Thus H Γ\ C and
C\ H are infinite.

The following lemma of Hrushovski finishes the proof. In [Ml] this was
proved in the semialgebraic case by appealing to a weak version of the Riemann-
Roch theorem.

Lemma 6.6. Let Λ = (C,+, -,X) be a nontrivial expansion of C, where X is
an infinite coinfinite subset of an irreducible curve C. Then A is not strongly
minimal.

Proof.
We assume A is strongly minimal. The proof breaks into cases depending

on the genus of C. If C has genus 0 there is a Zariski open U C C and a one to
one rational p : U —> C. Clearly p(X) is an infinite coinfinite subset of C.

Any curve is birationally equivalent to a smooth projective curve. Since
projective curves can be interpreted in C and rational maps are definable, we
may, without loss of generality, assume that C is a smooth projective curve.
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If C has genus 1 , then there is a morphism 0 : C x C — > C making C a divis-
ible abelian group (see [H] or [F]). We consider the ω-stable group Q = (C, φ, X).
The sets X and C \ X are Morley rank one subsets of C. Thus there are dis-
tinct types of maximal Morley rank. Hence, by 5.4, Q has a definable subgroup
of finite index. But a divisible abelian group has no finite index subgroups, a
contradiction.

If C has genus g > 1, we must pass to J(C) the Jacobian Variety of C. We
summarize the facts we use (see [L2] or [Mu]). (Note: If C has genus 1, then

i) J(C) is an irreducible g dimensional variety.
ii) There is a rational p : C9 — » J(C) which takes g independent generic

points of C to the generic of J(C).
iii) There is a morphism φ : J(C) x J(C) — > J(C) making J(C) a divisible

abelian group.

By ii) p(X*) and p((C \ X)9) both have Morley rank g. Thus, as in the
genus 1 case, we are lead to a contradiction

That concludes to proof of theorem 6.2.

Here are three natural open questions related to the expansion problem. Let K
be algebraically closed.

1) Is there a non- trivial infinite multiplicative subgroup G of K such that
(K, +, , G) has finite Morley rank?

2) Suppose K has characteristic p > 0. Is there a non-trivial infinite additive
subgroup G of K such that (K, + , ,G) has finite Morley rank? The answer is
no if K has characteristic zero ([Po3]).

3) Suppose K has characteristic p > 0. Is there an undefinable automor-
phism σ of K such that (K, +, , σ) is strongly minimal?

The Interpretability Problem is still open. An important special case was
proved by Rabin ovich [R].

Theorem 6.7. Let K be algebraically closed and let Xι, . . . ,X n be con-
structible. If Ω = (K,Xι, . . . ,Xn) is non-locally modular, then Ω interprets
and algebraically closed field isomorphic to K.

Prior to Rabin ovich 's theorem results were know in some special cases.

Theorem 6.8. (Martin[Maj) Let p : C — » C be a non-linear rational function.
Then multiplication is definable in (C,+,p.

The next result gives a complete description of reducts of C that contain +.
For each α G C, let λα(x) — ax. We say that a subset X C Cn is module definable
if it is definable in the structure (C,+,λα : α G C). If X is module definable,
then there is no field definable in (C, +,JΓ). This is the only restriction.
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Theorem 6.9. (Marker-Pillay [MP]) If X is constructible but not module de-
finable, then multiplication is definable in (C,+,X).

There are three steps to the proof. The main step is due to Rabinovich and
Zilber. The proof below, follows their basic ideas, but is simplification of their
original argument.

Theorem 6.10. If C is an irreducible non-linear curve, then there is a field
interpret able in A = (C, +, C).

Proof, (sketch)
Without loss of generality we assume that (0,0) £ C. If p £ C, let Cp be

the curve obtained by translating p to the origin. If p is a nonsingular point on
C, let m(p) be the slope of the curve at p. Let C and D be curves through the
origin. We define two new curves

and
C®D = {(*,*) : By ( x , y ) E C Λ (y, z) E D}.

If C and D have slopes m and n at the origin, then, if they are smooth at (0,0),
C Θ D and C 0 D respectively have slopes ra + n and mn at the origin.

We show how to define a "fuzzy" field structure on C. Let α and 6 be
independent generic points of C. There is a point d on C such that m(α)+m(6) =
m(d). We show that d is algebraic over a and 6.

Let D be the curve Ca Θ CV There is a number s such that |Car Π D\ — s
for all but finitely many points x £ C. We claim that \Cd Π D| < s. Clearly
Cd and £) have the same slope at (0,0). Thus the origin is a multiple point
of intersection. If we make a small translation along the curve, the point of
intersection at the origin will become two or more simple points of intersection.
Moreover, no new multiple points of intersection will form. Thus the number of
points of intersection goes up. Since this translation was generic, we must have
originally had fewer that the generic number of point of intersection.

Similarly if m(α)m(6) — m(e), then e is algebraic over a and 6. Thus
there are formulas A(x, y, z) and M(x, y, z) such that if α and 6 are independent
generic points on C, then {z : A(a,b,z}} and {z : M(α,6,z)} are finite, if
m(α) + m(6) = ra(d), then A(atb,d) and if m(ά)m(b} = m(e) then M(α,6, e).
This is what we call a "fuzzy field". Using Hrushovski's group configuration (see
[Bo2]) one sees that in an ω-stable fuzzy field one can interpret a field.

The proof of 6.9 also works if C is a strongly minimal set (in (C,+,C))
which is a finite union of non-linear curves. The next lemma shows that this is
the only case we need consider.
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Lemma 6.11. If X is a constructible set which is not module definable, then
there is a strongly minimal subset of C2 which is a finite union of non-linear
curves.

The proof is an inductive argument using Bertini's theorem. Theorem 6.10
now follows from the next lemma.

Lemma 6.12. If K is an algebraically closed field of characteristic zero and
A = (K, +,...) is a reduct in which there is an infinite iterpretable field F, then
• is definable in A.

Proof.
Since A is strongly minimal, K is contained in the algebraic closure of

F. By a theorem of Hrushovski (see for example [Pi3] ) or [Po3]) there is a
proper definable normal subgroup N of K+ such that K+/N is definably (in
A) isomorphic to a group G contained in Fn. Since K as characteristic 0, by a
result of Poizat (see [Po3]) N = {0}, so G = K+. It is known ([Po3]) that any
infinite field F interpretable in a pure algebraically closed field K is definably
(in K) isomorphic to K. It then follows that F is also a pure algebraically closed
field. In out case this implies that the group G is definable in F.

Since G is definable in F, by theorem 5.6, G is definably isomorphic to
an algebraic group over F. It is easy to see that G is one dimensional and
connected. It is well known (see [Sp]) that any such group is either an elliptic
curve or isomorphic to the additive or multiplicative group of the field. Since G
is torsion free it must be isomorphic to the additve group of the F. In particular
in A, there is a definable isomorphism between K+ and F+. We identify F+

and K* and define ® a multiplication on fί, induced by the multiplication on
F.

Let B = {a £ K : Vz,y (x ® (ay) = a(x ® y)}. We claim that B = K.
Clearly all the natural numbers are in B. Thus B must be cofinite. Since any
element of K can be written as the sum of two elements of B, it is easy to see
that B — K. Let σ be the map x ι-» 1 0 x. It is easy to see that σ is definable
in A and

xy = z & σ~1(x) 0 σ~l(y) - σ~l(z).

So multiplication is definable in A.

One could also ask about analogous problems for R. Some of the most
important recent work in model theory has been the study of o-minimal expan-
sions of R. The most exciting breakthrough was Wilkie's proof that the theory
of (R,+, -,ex) is model complete and o-minimal. We refer the reader to [W],
[MMD] and [DD] for more information on this subject.

The problem of additive reducts was solved in the series of papers [PSS],
[Pe] and [MPP].
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Theorem 6.13 i) (Pillay-Scowcroft-Steinhorn) If B C Rn is bounded then
multiplication is not definable in the structure (R, +, <,B,\a : α G R).

ii) (Peterzil) If X C Rn is semialgebraic but not definable in (R,+,<
, |[0,1]2, λα : a G R),then multiplication is definable in (R, +, <,X).

iii) (Marker-Peterzil-Pillay) If X C Rn is semialgebraic but not definable
in (R, +, <, λα : α G R), then |[0,1] is definable in (R, +, <,X).

Recently Peterzil and Starchenko ([PeS]) have proved the o-mimmal analog
of Zilber's conjectue.

Let M be an o-minimal structure. We say that M is nontrivial at α if there
is an open interval / containing α and a definable continuous F : I x I —> M
such that for all b G / x I the functions x *-> F(b, x) and x π-» F(z, 6) are strictly
monotone. Otherwise we say that M is trivial at α.

Theroem 6.14. (Perterzil-Starchenko) Let M be an Ni-saturated o-minimal
structure. If α G M, then exactly one of the following hold:

i) M is trivial at α,
ii) the sturucture that M induces on a neighborhood of α is a reduct of an

ordered vector space, or
iii) the structure that M induces on a neighborhood of α is an o-minimal ex-

pansion of a real closed field.
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