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Summary. Infinite-valued Gδdel logic, i.e., Dummett's LC, is extended by pro-
jection modalities and relativizations to truth value sets. An axiomatization for the
corresponding propositional logic (sound and complete relative to any infinite set
of truth values) is given. It is shown that certain simple infinite sets of truth values
correspond to first-order Gόdel logics which are not recursively axiomatizable.

1. Introduction

One of GόdePs main contributions to the study of nonstandard, in particular,
many- valued and intuitionistic logics was his [4]. In that paper, he introduced
a sequence of finite-valued propositional logics Gn intermediate in strength
between classical and intuitionistic propositional logic. The definition of Gn

is uniform, i.e., makes no explicit reference to the number of truth values. The
only restrictions on the set of truth values V are that V is a (linearly ordered)
subset of [0, 1] and that 0, 1 e V. Dummett [3] subsequently showed that the
infinite-valued Gδdel logics are axiomatized by intuitionistic propositional
calculus plus the axiom schema (A D B) V (B D A), We extend this result to
infinite- valued Gδdel logics with the projection modalities on 0 and 1:

Only the addition of Δ is of interest, as V mav be defined by vC<4) = -«~Ά
The main result of the first part of this paper is the completeness theorem

for all infinite sets of truth values V for the axiomatization consisting of the
axiom schemas of intuitionistic propositional logic and of modal logic S4 for
Δ (including the necessitation rule A/ΔA), plus the following schemas:

(A D B) V (B D A)
ΔA V -iΔΛ

V B) D ΔA V Δ5

This paper is in its final form and no similar paper has been or is being submitted
elsewhere.
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The completeness result will be extended to relativizations to arbitrary truth
value sets: A relativization to a subset W C V is obtained by adding a new
connective RW with truth function

if Ae W
otherwise

If V is closed under least upper and greatest lower bounds, we arrive natu-
rally at first-order versions of the corresponding infinite-valued logics, taking
as V the inf and as 3 the sup of the corresponding truth-value distributions.
It is worth pointing out right away that, in contrast to the propositional case,
which logic we get depends crucially on the order type of the set of truth val-
ues. So the Gόdel logic based on [0,1] is axiomatizable while the one based
on {l/k : k G ω \ {0}} U {0} is not. The main result of the second part of the
present paper is that none of the infinite-valued first-order Gόdel logics with
projection modalities (i.e., independent of the order type of the set of truth
values) are recursively axiomatizable.

2. Propositional Gδdel logics

We work in the language Lp of propositional logic containing a countably
infinite set Var of propositional variables (X, F, Z, .. .), the constants T
(true) and JL (false), as well as the connectives Λ, V, D, and Δ. We introduce
-» and V as abbreviations: -»A = A D _L and V^ = -i-Ά The set of formulas
of Lp is denoted Prm(Lp).

Definition 2.1. Let V C [0, 1] be some set of truth values which contains
0 and 1. A valuation 93 based on V is a function from Var to V .. The valu-
ation for formulas is defined as follows:

1. Λ = T:!0(A) = 1.
2. A = J_: Ώ(A) = 0.
3. A Έ Ξ B f \ C : Ώ(A) = min(9J(fl),flJ(C)).
4. A = BvC:W(A)=max(<ΰ(B),<Ώ(C)).
5. A = BDC:

\ l

6. A = ΔB:

93 satisfies α formula A, 93 |= A, if*ϋ(A) = 1. The propositional Gόdel logic
based on V, GP(F), is the set of formulas A s.t. 93(A) = 1 for every 93 based
on V. We write GP(V) |= A for A € GP(V).
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It is easily verified that, for any 93,

otherwise. ' 1 0 if 5 = 0

Also, Δ cannot be defined by the other connectives. (To see this, suppose that
B(X) takes on only 0 or 1. Then, ίίΏ(X) φ 0 φ *B(Y), VO(B(X)) = XJ(B(Y))
independently of whether 3J(X) = 1.)

Definition 2.2. Let LGP δe the calculus obtained by adding to the calculus
for intuitionistic propositional logic [5] the following axioms

T
(A D B) V (B D A)
ΔA V - ΔA
Δ(A V 5) D ΔA V
Δ A D A
ΔA D ΔΔA
Δ(Λ D B) D

as well as the rule λ

Remark 2.1. Maehara [6, Ch. 1] gave a sequent calculus for intuitionistic
logic where the restriction to at most formula in the succedent applies not
generally but only in the case of applications of D:right. If we use such a
calculus, the axioms and rules involving Δ may be subsumed under the two

mles: A,Γ-+Δ AΓ-+Δ

Proposition 2.1. LGP is sound for GP(V), i.e., if LGP h S then
GP(V) μ S.

Proof. By induction on length of derivations.

Proposition 2.2. The deduction theorem obtains in the form: If
Aι,...,An\-B, thenϊ- AAi Λ . . . Λ ΔAn D B.

Note that the usual deduction theorem, which is true in ordinary (infinite-
valued) Gόdel logic, is false here: In general, A D ΔA is not valid.

Proposition 2.3. LGP proves the following formula:

(ADB)^(B^ A)V
(ADB)/\ ((B D A) D A)V
(ADB)/\ ((A ^B)DB)

Proof. Derive (B D A) V ((B D A) D A) from (B D (B D A)) V ((B D A) D
fl), B D (B D A) D B D A, ((B D A) D B), (B D A) D (B D A) D ((B D
A) D A ) , and similarly (A D B) V ((A D B) D B). The result follows from



26 Matthias Baaz

3. Completeness of propositional Gόdel logics with
projections

To prove completeness of LGP we first show that an ordering of the variables
w.r.t. D induces an ordering on all formulas containing these variables only.

Lemma 3.1. Let U = {Xλ, . . . ,Xn,ΔAΊ, . . . ,ΔXn,T, JL}, and let G con-
tain

(a) {A D B,B D A} or {A D 5, (B D A) D A} or {(A D B) D B,B D A]
forallA,BeU.

(b) {Ύ D ΔΛ} or {ΔA D _L} for all ΔA € U.

Then (a), (b) are derivable from G for all formulas containing only Xι, * . . ,
Xn as propositional υaήables.

Proof. By induction on the complexity of formulas:

1. A = C V D: (a) By induction hypothesis, G h C D . D o r G I - . D D C ,
i.e., G\-A<-ϊDoτG\-Ai+C. Apply induction hypothesis.
(b) By (a) we have G h ΔA <-> ΔC or G h ΔA <-» ΔZλ Apply induction
hypothesis.

2. A = C Λ D: Similarly.
3. A = C D D: (a) By induction hypothesis, G h C D £ > o r G h ( C D

D) D -D, so G h Λ <-» T or G h A Ή> D. Apply induction hypothesis.
(b) By (a), we have G h ΔA ++ T or G h ΔA ̂  ΔD.

4. A = ΔC: (a) By induction hypothesis (b) for C, G h ΔC *•» T or
GΔC <-> _L.
(b) G h ΔΔC +> ΔA, so by (a), G h T D ΔC or G h ΔC D _L, hence
G h T D ΔA or G h Δ4 D JL. D

Definition 3.1. Let U = {X^ . . . ,Xn,ΔXι, . . . ,ΔXn,T,±}, and let G be
a set of formulas of the form A D B or (B D A) D A with A,B G U.
G is called a complete D-order if (a) and (b) of Lemma 3.1 are satisfied,
{A D T,_L D B, A D A} C G for all A,B 6 C/, and (ΔX< D Xi) G G for all
i = 1, ..., n.

Definition 3.2. LetG be a complete D-order. The stratification [G*,H*] of
G is defined as follows: Let G' be the least set G1 D G s.t., if {A D C,C D
B} C G1, then also (A D B) G G1 (for all A, B, C £ U), and s.t., if
(T D Xi) € G1 then also (T D ΔX. ) € G1 (for all ΔX{ <Ξ U). Then

G* = G'\{(ADB)DB:(ADB)G G'}, and

H* = {B:{(A?B)DB,ADB}CG'}

Proposition 3.1. Let G be a complete D-order, and [G*,iΓ*] be its stratifi-

cation. ThenG = I\G* /\f\H*
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Proof. Note that h (A D B) D (((A D B) D B) <+ B).

Definition 3.3. Let V = {Xi, . . . ,Xn,ΔXι, . . . ,ΔXn,T,±}, let G be a
complete D -order on V , and let D, E, E1 and F be formulas in the vari-
ables X\, . . . , Xn. The right reduction R(E D D) is defined by

the left reduction L(E Λ D Λ E' D F) is defined by

where D{, Ci are as follows:

D
AVB
AAB
ADB

ΔA

DI d D2 C2

B
A
T
T

ADB
ADB
ADB

ΎDΔA

A
B
B

BDA
BDA

(ADB)DB
ΔADl..

Proposition 3.2. G h S <->> R(S) and G h 5 <->> L(S).

Proposition 3.3. Let G be a complete and stratified D -order on U =
{Xi, . . . , Xn, ΔXi, . . . , ΔXn, T, J.}, and letAeU,H C U. Suppose that (a)
(T D -L) g G and ̂  (B D A) $ G if B £ H. Then there is a valuation 23
on Fn+2 = {1/fe : 1 < k < n -f 1} U {0} s.ί. 93(G) = 1 and <0(H) > Ώ(A).

Proof. G determines an equivalence relation on U by: A G [B] iff {A D
B, B D A} C G, and an order on the equivalence classes by: [A] < [B] iff
(A D B) G G but (B D A) £ G. We have [T] ± [JL] and [_L] < [T] by (a). ΔA
is in [T] or [J_], and if A G [T], then also ΔA G [T]. Define 93 according to the
(at most n 4- 2) equivalence classes on 17, with 5J([Ί~]) = 1 and 93([JL]) = 0.
Then 93(G) = 1 and 9J(fΓ) > 93(A) by (b).

Proposition 3.4. Let G, H , A be as in the previous proposition. Then G h
H D A if (T D J-) G G or (B D A) G G /or some β G #.

Theorem 3.1. LGP is complete for GP(V) for all infinite D.

Proof. Suppose LGP \f H D A. Let ΛΊ, . .., Xn be the variables in H,
A, and let U = {X^ . . . , Xn, ΔXi, . . . , ΔXn, T, _L}. Let GI, . . . , Gr be all
combinations of the sets {A D B,B D A}, {A D S, (B D A) D A}, {(A D
B)D B,BD A}, and of {T D ΔX*}, {ΔX; D _L}, for all A, B, ΔX{ G U.
Finally, let G1 = {ΔJQ D X{ : 1 < i < n} U {(A D T), (_L D A) : A G ί7}. By
Proposition 2.3, G; , G'l/ ίί D A. Let [G*, if*] be the stratification of G{ UG'.
Then, by Propositions 2.2 and 3.1, G* h Δff* Λ if D A The reduction rules
yield ίΓ and A' s.t. ίΓ U {A'} C U and 93(Δff * Λ H D A) = 93(Δ#* Λ #' D
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A1) whenever 2J(G*) = 1. By Proposition 3.3, there is such a valuation 2J on
Fn+2 s.t. Q3(G*) = 1 and <ϋ(Δ#* Λ H1} > ZJ(A'). 2J may naturally be taken
to be an interpretation on any infinite set of truth values making H D A not
true.

Corollary 3.1. GP(V) = f}neω GP(Vn) for any infinite V.

GP(V) for finite V is axiomatizable using suitable sequent calculi [1]. If
\V\ = n + 2 one may obtain an axiomatization also directly by adding the
schema

( \J Z < - * > X i ) V Z f + T V Z f » _ L

l<i<n

to LGP. To see this, take a formula A valid in GP(F) and replace each vari-
able occurring in it by one of X\, . . . , Xn, T, J_. All formulas thus obtained
are valid in GP(V) and have < n variables, hence, are provable in LGP.
The schema then yields A.

We now proceed to extend the completeness result to relativizations to
arbitrary subsets of the set of truth values.

Definition 3.4. Let W C V. The language L^ is Lp plus a monadic op-
erator RW The logic GP(V,W) is defined just like GP(V) with the truth
function for RW given by

0 otherwise

Corollary 3.2. GP(V, W) is axiomatizable for arbitrary W.

Proof. We distinguish cases according to whether W is s.t.

(a) there are {d{ : i € ω] C W, {a : i G ω} C V \ W s.t. di < a < d +i for
all i G u;,

or there is a maximal k s.t. there are {di, . . . , dk} C W and {ei, . . . , βk} C
V \ W and

(b) dι <e2 < ... <e*_ι < dk,
(c) dι <e2 < ... <dk-ι <ek,
(d) ei <d2<...<ek-l <dk,
(e) ei <d2 < ... < dk-ι < ek.

We extend LGP by

(A <+ B) D (RWA ++ RWB)

RWU (-ιRwU) if U G W (U i W) for U = T, 1.

plus the following formulas for cases (b)-(e):

(b) -ι(-ιRvyA0 Λ RwAi Λ ->Rv^2 Λ . . . Λ RW^ Λ /\ -«Δ(>li+ι D A^)) and
ι(RW AI Λ -ιRvyΛ2 Λ . . . Λ Rΐy^fc Λ -.Rw^+i Λ
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(c) ->(-ιRvv AO Λ RwAi Λ ->RwA2 Λ . . . Λ -»RvyAfc Λ /\ -»Δ(A;+ι D A;)) and
-ι(Rw AI Λ ->RwA2 Λ . . . Λ -«RwAfc Λ RwAk+i Λ /\ -«Δ(A;+ι D Ai))

(d) ->(Rw AO Λ -πRw AI Λ RιyA2 Λ . . . Λ RvyAfc Λ /\ ->Δ(A;+ι D Λt )) and
-•(-•Riy AI Λ RιyA2 Λ . . . Λ RwAk Λ -πR^ Afc+i Λ Λ -^(A;+i D Ai))

(e) -ι(R\v AO Λ -iRw AI Λ RwA 2 Λ . . . Λ ->RwAk Λ Λ ~~*Δ(Ai+ι D Ai)) and
-•(-•RW AI Λ RvyA2 Λ . . . Λ ->RwAk Λ RwAk+ι Λ /\ -»Δ(Ai+ι D A{))

Now suppose I/ A. Let [G*,#*] be constructed as in the proof of
Theorem 3.1 (i.e., disregarding RW) and let Yί, . . ., Yt be represen-
tatives of the equivalence classes other than those of J. and T. Let
{Rw(Yι)nι, ,Rw(Yt)nί} (where n< e {0,1} and A° = -.A, A1 = A) be
a restriction on the Rw(Yi) consistent with the order of Yi, . . ., Yt and
with W. Since G* U H* h .B ^ C for C € {Fi, . . . , Yέj T, 1} for all formu-
las B containing only the original variables and V,Λ, D, T, _L, RW can be
eliminated step-by-step using the additional axioms. The construction of a
counterexample then works as before.

Conversely, if for every restriction, {R\v(Yι)nι , , Rw(Yι)nι}VG*\JH* h
A holds, we get G* U H* h A by Proposition 3.4 and RwYi V

4. First-order Gδdel logics

In considering first-order infinite valued logics, care must be taken in choosing
the set of truth values. In order to define the semantics of the quantifier we
must restrict the set of truth values to those which are closed under infima
and suprema. (Note that in propositional infinite valued logics this restriction
is not required.) For instance, the rational interval [0,1] Π Q will not give a
satisfactory set of truth values. The following, however, do:

VR = [0,1]

V° = { l / J f c : J f c G α ; \ { 0 } } u { 0 }

V1 = { l - l / J f c : f c G u ; \ { 0 } } u { l }

We work in a usual first-order language L extending Lp by individual
variables x, t/, 2, . . . , predicate symbols P, Q, ..., function symbols /, #,
. . . , and the quantifiers V and 3.

Definition 4.1. Let V C [0,1] be some set of truth values which contains
0 and 1 and is closed under supremum and infimum. An interpretation 3 =
{£>, s) based on V is given by the domain D and the valuation function s where
s maps atomic formulas in Prm(L:3ί) into V and n-ary function symbols to
functions from Dn to D.

s can be extended in the obvious way to a function on all terms. The
valuation for formulas is defined as follows:

(1) A Ξ Ξ T : 3 ( A ) = 1.
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(2) A = _L: 3(Λ) = 0.
(S) A = P(tίt . . . , tn) is atomic: 3(4) = s(P)(s(t1), ..., s(ίn)).
(4) A = B/\C: J(A) = min(3(B),3(C)).
(5) A = B V C: 3(A) = max(3(Λ),3(B)).
(6) A = B D C:

(7) A =

TΛe se£ {3(A(d)) : d € £)} w cαi/ed £Λe distribution o/ A(x), we denote
it by Όistrι(A(x)). The quantifiers are, as usual, defined by infimum and
supremum of their distributions.

(8) A = φx)B(x): 3(A) = inf Distr3(B(x)).
(9) A = (3x)B(x): 3 (A) = supΌist^(B(x)).

3 satisfies α formula A, 3 |= A, if3(A) = 1.
The first-order Gόdel logic based on V, G(V), is the set of all for-

mulas A(x) s.t. 3 [= A(ά) for every interpretation based on V and every
aeV<ω.

While the set of tautologies of propositional infinite- valued Gόdel logic is
independent of the set of truth values, this is not the case in the first-order
case. Here, the infinite-valued systems need not be equivalent.

Proposition 4.1. Let

C = (Bx)(A(x) D (Vy)A(y)) and
C' = (3x)((3y)A(y) D A(x))

C' is valid in both G(VQ) and G(Vl). C is valid in G(Vl) but not in G(V°).
Neither C nor C1 are valid in G(Vβ).

Proof. See [2].

If V C V, then G(V) C G(F), i.e., G(VR) is the logic with the fewest
valid formulas. The next proposition shows that there are infinitely many
infinite- valued first-order Gόdel logics.

Proposition 4.2. Let Vk = {f + ̂  : 0 < x < k,y G ω \ {0}}. Then

G(Vk}cG(Vί)ifk>t.

Proof. Since Vt can be embedded in Vk preserving the order structure if k > t ,
wehaveG(Vfc) CG(Vί).

Let
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= f\ (V^)[Pί(x)«(Vα;)Pj(a;)]Λ
0<ί<j<*

Λ f\ (3x) [Pi(x) D (Vy)P(y)} D (Vy)Pi(y) Λ
0<i<k

Λ f\ (Vx)Pi(x) < R Λ (Vx)Q(x) < # Λ (Vz)Pi(z) < (Vx)Q(x),
0<i<fc

where A <£ £ = (A D B) Λ ((5 D ,4) D 4), and let

Fk = FΣ D (3*)(Q(aO D (Vy)Q(y)) V Λ

If one of the conditions in F£ is not satisfied, then the value of Fk equals 1,
since then every conjunct in F£ gets a value < R. If all conditions are satisfied,
and the value of R is < 1, then Fk expresses: (Vx)Q(α ) is an infimum which
is different from k distinct infima none of which is a minimum. In G(Vfc), it
then must be a minimum, and so the value of (3x)(Q(x) D (Vy)Q(y)) V R
equals 1. This need not be the case in general in G(Vι) with ί > k.

In terms of complexity, there may be significant differences as well. It was
shown, e.g., that G(V^) is axiomatizable [7], but that G(V°) is not [2].

As in the prepositional case, we may extend G(V) to G(V, W) by adding
an operator R\γ. The definition of interpretation is extended by adding the
clause

(10) A = RWB:

3(A) = {
ί 0 otherwise

and the other definitions amended accordingly.

5. Incompleteness of first-order Gδdel logics with
0-1-projections and relativizations

In order to prove the main theorem of this section we need some tools from
recursion theory.

Definition 5.1. Letψ be an effective recursive enumeration of the set PR* of
all primitive recursive functions from ω to ω. We define a two place function
φ (which enumerates a subclass ofPR\):

( 0 ifx = Q
0 ifΨk(y) = Qforl<y<x
1 otherwise

The index set Oφ is defined as {k : (Vy)ψk(y) = 0}

Proposition 5.1. The index set Oφ is not recursively enumerable.
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Proof. By definition of φ, {k : (Vy)φk(y) = 0} = {k : (Vy)^fc(tf) = 0}. But
for every g £ PR} the index set {k : (Vy)ψk = 9} is Π\ -complete. Therefore
Oφ is Πι -complete and thus not recursively enumerable.

The essence of the incompleteness proof is represented by a sequence of
formulas (Ak)keω constructed via φ s.t.

G(V,W) \= Ak *=ϊ k e Oφ

i.e. Oφ is m-reducible to the validity problem of G(V, W).
We prove the incompleteness result separately for W which have a cumu-

lation point which is approached from above and those with one approached
from below. The idea is to write down axioms which express that the val-
ues of P(sn(0)) form a decreasing sequence in W as long as ψk(n) — 0, and
that P(sn(0)) gets the value of P(0) if ψk(n) ^ 0 Using Δ, we can force
Distr(P(α;)) to have no minimum iff the decreasing sequence is infinite. Thus,
the value of (3x)Δ(P(x) D (Vj/)P(y)) will equal lίίφk = 0 and equal 0 oth-
erwise. For W with a cumulation point approached from below the argument
is similar with an increasing sequence.

Theorem 5.1. Suppose V is a set of truth values and W C V is infinite and
there are only finitely many elements ofW between any two elements ofW.
Then G(V,W) is incomplete.

Proof. Obviously W cannot have both a minimum and a maximum. Suppose
first that it has no minimum, i.e., contains an infinite descending sequence
with no lower bound in W.

Let P be a one-place predicate symbol, s be the function symbol for the
successor function and 0 be the constant symbol representing 0 (in particular,
we choose a signature containing this symbol and all symbols from Robinson's
arithmetic Q).

Let AI be a conjunction of axioms strong enough to represent every re-
cursive function (e.g. the axioms of Q) and a defining axiom for the function
φ and write Δ in front of every positively occurring atomic formula. This
ensures that these formulas behave essentially as classical formulas. We de-
fine the formulas A$, A% , A% for k £ ω; for formulas representing the equality
ψk(x) = 0 we write [ψk(x) = 0] (these also contain Δ in front of atomic
formulas).
A\ = (Vx,y)Hψk(x) = 0] Λ Δ(* < y) D ̂ [φk(y) = 0])

Aj = (Vx)[[φk(s(x)) = 0] D -.Δ(P(x) D P(s(x))) Λ RwP(s(x))]

A5 = RvyP(O)

Finally we set

Bk = AI Λ A% Λ Al Λ Al Λ A5
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and
Ak=BkD H

Provided 3(Bk) = 1, the sequence given by 3(P(sn(0))) lies in W, hence
cannot contain a cumulation point. Hence, the implication Ak is true iff this
sequence is infinite, i.e., iff ψk(n) = 0 for all n € ω.

Now suppose W contains an infinite increasing sequence without upper
bound in W. We have to replace

A\ by (Vx)[[φk(x)=Q]D^Δ(P(s(x))DP(x))/\RwP(s(x))]

and set Ak = Bk D -ι(3a?)Δ((3y)P(y) D P ( x ) ) .

6. Conclusion

The results of this paper establish that no extension of the infinite-valued
first-order Gόdel logic is recursively enumerable, if

1. the projection function Δ (or by a negation symmetric to -ι, i.e.,

which would make ΔA definable as ~~ A) and
2. a relativization operator based on a subset W C V s.t. there are only

finitely many elements of W between any two elements of W.

are present. This leaves open the question whether the result holds for all
relativizations, and in particular, whether G([0,1], [0,1]) (= G(V#) extended
by 0-1-projections) and G([0,1], [0,1] Π Q) are r.e. Further investigations of
0-1-projections promise to shed light on these problems.
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